Under Construction



NuttX Operating System

User's Manual

by

Gregory Nutt

Last Update: March 26, 2007

1.0 Introduction

This manual provides general usage information for the NuttX RTOS from the perspective of the firmware developer.

1.1 Document Overview

This user's manual is divided into three sections plus a index:

1.2 Intended Audience and Scope

The intended audience for this document are firmware developers who are implementing applications on NuttX. Specifically, this documented is limited to addressing only NuttX RTOS APIs that are available to the application developer. As such, this document does not focus on any technical details of the organization or implementation of NuttX. Those technical details are provided in the NuttX Porting Guide.

Information about configuring and building NuttX is also needed by the application developer. That information can also be found in the NuttX Porting Guide.


2.0 OS Interfaces

This section describes each C-callable interface to the NuttX Operating System. The description of each interface is presented in the following format:

Function Prototype: The C prototype of the interface function is provided.

Description: The operation performed by the interface function is discussed.

Input Parameters: All input parameters are listed along with brief descriptions of each input parameter.

Returned Values: All possible values returned by the interface function are listed. Values returned as side-effects (through pointer input parameters or through global variables) will be addressed in the description of the interface function.

Assumptions/Limitations: Any unusual assumptions made by the interface function or any non-obvious limitations to the use of the interface function will be indicated here.

POSIX Compatibility: Any significant differences between the NuttX interface and its corresponding POSIX interface will be noted here.

NOTE: In order to achieve an independent name space for the NuttX interface functions, differences in function names and types are to be expected and will not be identified as differences in these paragraphs.


2.1 Task Control Interfaces

Tasks. NuttX is a flat address OS. As such it does not support processes in the way that, say, Linux does. NuttX only supports simple threads running within the same address space. However, the programming model makes a distinction between tasks and pthreads:

File Descriptors and Streams. This applies, in particular, in the area of opened file descriptors and streams. When a task is started using the interfaces in this section, it will be created with at most three open files.

If CONFIG_DEV_CONSOLE is defined, the first three file descriptors (corresponding to stdin, stdout, stderr) will be duplicated for the the new task. Since these file descriptors are duplicated, the child task can free close them or manipulate them in any way without effecting the parent task. File-related operations (open, close, etc.) within a task will have no effect on other tasks. Since the three file descriptors are duplicated, it is also possible to perform some level of redirection.

pthreads, on the other hand, will always share file descriptors with the parent thread. In this case, file operations will have effect only all pthreads the were started from the same parent thread.

The following task control interfaces are provided by Nuttx:

2.1.1 task_create

Function Prototype:

   #include <sched.h>
   int task_create(char *name, int priority, int stack_size, main_t entry, const char *argv[]);

Description: This function creates and activates a new task with a specified priority and returns its system-assigned ID.

The entry address entry is the address of the "main" function of the task. This function will be called once the C environment has been set up. The specified function will be called with four arguments. Should the specified routine return, a call to exit() will automatically be made.

Note that an arbitrary number of arguments may be passed to the spawned functions. The maximum umber of arguments is an OS configuration parameter (CONFIG_MAX_TASK_ARGS).

The arguments are copied (via strdup) so that the life of the passed strings is not dependent on the life of the caller to task_create().

The newly created task does not inherit scheduler characteristics from the parent task: The new task is started at the default system priority and with the SCHED_FIFO scheduling policy. These characteristcs may be modified after the new task has been started.

The newly created task does inherit the first three file descriptors (corresponding to stdin, stdout, and stderr) and redirection of standard I/O is supported.

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: This is a NON-POSIX interface. VxWorks provides the following similar interface:

   int taskSpawn(char *name, int priority, int options, int stackSize, FUNCPTR entryPt,
                 int arg1, int arg2, int arg3, int arg4, int arg5,
                 int arg6, int arg7, int arg8, int arg9, int arg10);

The NuttX task_create() differs from VxWorks' taskSpawn() in the following ways:

2.1.2 task_init

Function Prototype:

   #include <sched.h>
   STATUS task_init(_TCB *tcb, char *name, int priority, uint32 *stack, uint32 stack_size,
                    maint_t entry, const char *argv[]);

Description:

This function initializes a Task Control Block (TCB) in preparation for starting a new thread. It performs a subset of the functionality of task_create() (see above).

Unlike task_create(), task_init() does not activate the task. This must be done by calling task_activate().

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: This is a NON-POSIX interface. VxWorks provides the following similar interface:

   STATUS taskInit(WIND_TCB *pTcb, char *name, int priority, int options, uint32 *pStackBase, int stackSize,
                   FUNCPTR entryPt, int arg1, int arg2, int arg3, int arg4, int arg5,
                   int arg6, int arg7, int arg8, int arg9, int arg10);

The NuttX task_init() differs from VxWorks' taskInit() in the following ways:

2.1.3 task_activate

Function Prototype:

    #include <sched.h>
    STATUS task_activate( _TCB *tcb );

Description: This function activates tasks created by task_init(). Without activation, a task is ineligible for execution by the scheduler.

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: This is a NON-POSIX interface. VxWorks provides the following similar interface:

    STATUS taskActivate( int tid );

The NuttX task_activate() differs from VxWorks' taskActivate() in the following ways:

2.1.4 task_delete

Function Prototype:

    #include <sched.h>
    STATUS task_delete( pid_t pid );

Description: This function causes a specified task to cease to exist -- its stack and TCB will be deallocated. This function is the companion to task_create().

Input Parameters:

Returned Values:

Assumptions/Limitations:

task_delete() must be used with caution: If the task holds resources (for example, allocated memory or semaphores needed by other tasks), then task_delete() can strand those resources.

POSIX Compatibility: This is a NON-POSIX interface. VxWorks provides the following similar interface:

    STATUS taskDelete( int tid );

The NuttX task_delete() differs from VxWorks' taskDelete() in the following ways:

2.1.5 exit

Function Prototype:

    #include <sched.h>
    void exit( int code );

    #include <nuttx/unistd.h>
    void _exit( int code );

Description: This function causes the calling task to cease to exist -- its stack and TCB will be deallocated. exit differs from _exit in that it flushs streams, closes file descriptors and will execute any function registered with atexit().

Input Parameters:

Returned Values: None.

Assumptions/Limitations:

POSIX Compatibility: This is equivalent to the ANSI interface:

    void exit( int code );
And the unix interface:
    void _exit( int code );

The NuttX exit() differs from ANSI exit() in the following ways:

2.1.6 task_restart

Function Prototype:

    #include <sched.h>
    STATUS task_restart( pid_t pid );

Description: This function "restarts" a task. The task is first terminated and then reinitialized with same ID, priority, original entry point, stack size, and parameters it had when it was first started.

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: This is a NON-POSIX interface. VxWorks provides the following similar interface:

    STATUS taskRestart (int tid);

The NuttX task_restart() differs from VxWorks' taskRestart() in the following ways:

2.1.7 getpid

Function Prototype:

    #include <unistd.h>
    pid_t getpid( void );

Description: This function returns the task ID of the calling task. The task ID will be invalid if called at the interrupt level.

Input Parameters: None.

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: Compatible with the POSIX interface of the same name.

2.2 Task Scheduling Interfaces

By default, NuttX performs strict priority scheduling: Tasks of higher priority have exclusive access to the CPU until they become blocked. At that time, the CPU is available to tasks of lower priority. Tasks of equal priority are scheduled FIFO.

Optionally, a Nuttx task or thread can be configured with round-robin scheduler. This is similar to priority scheduling except that tasks with equal priority and share CPU time via time-slicing. The time-slice interval is a constant determined by the configuration setting CONFIG_RR_INTERVAL.

The OS interfaces described in the following paragraphs provide a POSIX- compliant interface to the NuttX scheduler:

2.2.1 sched_setparam

Function Prototype:

    #include <sched.h>
    int sched_setparam(pid_t pid, const struct sched_param *param);

Description: This function sets the priority of the task specified by pid input parameter.

NOTE: Setting a task's priority to the same value has the similar effect to sched_yield(): The task will be moved to after all other tasks with the same priority.

Input Parameters:

Returned Values: On success, sched_setparam() returns 0 (OK). On error, -1 (ERROR) is returned, and errno is set appropriately.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:

2.2.2 sched_getparam

Function Prototype:

    #include <sched.h>
    int sched_getparam (pid_t pid, struct sched_param *param);

Description: This function gets the scheduling priority of the task specified by pid.

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.2.3 sched_setscheduler

Function Prototype:

    #include <sched.h>
    int sched_setscheduler (pid_t pid, int policy, const struct sched_param *param);

Description: sched_setscheduler() sets both the scheduling policy and the priority for the task identified by pid. If pid equals zero, the scheduler of the calling thread will be set. The parameter 'param' holds the priority of the thread under the new policy.

Input Parameters:

Returned Values: On success, sched_setscheduler() returns OK (zero). On error, ERROR (-1) is returned, and errno is set appropriately:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.2.4 sched_getscheduler

Function Prototype:

    #include <sched.h>
    int sched_getscheduler (pid_t pid);

Description: sched_getscheduler() returns the scheduling policy currently applied to the task identified by pid. If pid equals zero, the policy of the calling process will be retrieved. * * Inputs: * * Return Value: This function returns the current scheduling policy.

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:

2.2.5 sched_yield

Function Prototype:

    #include <sched.h>
    int sched_yield( void );

Description: This function forces the calling task to give up the CPU (only to other tasks at the same priority).

Input Parameters: None.

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.2.6 sched_get_priority_max

Function Prototype:

    #include <sched.h>
    int sched_get_priority_max (int policy)

Description: This function returns the value of the highest possible task priority for a specified scheduling policy.

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.2.7 sched_get_priority_min

Function Prototype:

    #include <sched.h>
    int sched_get_priority_min (int policy);

Description: This function returns the value of the lowest possible task priority for a specified scheduling policy.

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.2.8 sched_get_rr_interval

Function Prototype:

    #include <sched.h>
    int sched_get_rr_interval (pid_t pid, struct timespec *interval);

Description: sched_rr_get_interval() writes the timeslice interval for task identified by pid into the timespec structure pointed to by interval. If pid is zero, the timeslice for the calling process is written into 'interval. The identified process should be running under the SCHED_RR scheduling policy.'

Input Parameters:

Returned Values: On success, sched_rr_get_interval() returns OK (0). On error, ERROR (-1) is returned, and errno is set to:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.3 Task Switching Interfaces

2.3.1 sched_lock

Function Prototype:

    #include <sched.h>
    STATUS sched_lock( void );

Description: This function disables context switching by Disabling addition of new tasks to the ready-to-run task list. The task that calls this function will be the only task that is allowed to run until it either calls sched_unlock (the appropriate number of times) or until it blocks itself.

Input Parameters: None.

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: This is a NON-POSIX interface. VxWorks provides the comparable interface:

    STATUS taskLock( void );

2.3.2 sched_unlock

Function Prototype:

    #include <sched.h>
    STATUS sched_unlock( void );

Description: This function decrements the preemption lock count. Typically this is paired with sched_lock() and concludes a critical section of code. Preemption will not be unlocked until sched_unlock() has been called as many times as sched_lock(). When the lockCount is decremented to zero, any tasks that were eligible to preempt the current task will execute.

Input Parameters: None.

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: This is a NON-POSIX interface. VxWorks provides the comparable interface:

    STATUS taskUnlock( void );

2.3.3 sched_lockcount

Function Prototype:

    #include <sched.h>
    sint32 sched_lockcount( void )

Description: This function returns the current value of the lockCount. If zero, preemption is enabled; if non-zero, this value indicates the number of times that sched_lock() has been called on this thread of execution.

Input Parameters: None.

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: None.


2.4 Named Message Queue Interfaces

NuttX supports POSIX named message queues for intertask communication. Any task may send or receive messages on named message queues. Interrupt handlers may send messages via named message queues.

2.4.1 mq_open

Function Prototype:

    #include <mqueue.h>
    mqd_t mq_open( const char *mqName, int oflags, ... );

Description: This function establish a connection between a named message queue and the calling task. After a successful call of mq_open(), the task can reference the message queue using the address returned by the call. The message queue remains usable until it is closed by a successful call to mq_close().

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:

2.4.2 mq_close

Function Prototype:

    #include <mqueue.h>
    int mq_close( mqd_t mqdes );

Description: This function is used to indicate that the calling task is finished with the specified message queued mqdes. The mq_close() deallocates any system resources allocated by the system for use by this task for its message queue.

If the calling task has attached a notification request to the message queue via this mqdes (see mq_notify()), this attachment will be removed and the message queue is available for another task to attach for notification.

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.4.3 mq_unlink

Function Prototype:

    #include <mqueue.h>
    int mq_unlink( const char *mqName );

Description: This function removes the message queue named by "mqName." If one or more tasks have the message queue open when mq_unlink() is called, removal of the message queue is postponed until all references to the message queue have been closed.

Input Parameters:

Returned Values: None.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.4.4 mq_send

Function Prototype:

    #include <mqueue.h>
    int mq_send( mqd_t mqdes, const void *msg, size_t msgLen, int msgPrio );

Description: This function adds the specified message (msg) to the message queue (mqdes). The "msgLen" parameter specifies the length of the message in bytes pointed to by "msg." This length must not exceed the maximum message length from the mq_getattr().

If the message queue is not full, mq_send() will in the message in the message queue at the position indicated by the "msgPrio" argument. Messages with higher priority will be inserted before lower priority messages. The value of "msgPrio" must not exceed MQ_PRIO_MAX.

If the specified message queue is full and O_NONBLOCK is not set in the message queue, then mq_send() will block until space becomes available to the queue the message.

If the message queue is full and osNON_BLOCK is set, the message is not queued and ERROR is returned.

Input Parameters:

Returned Values: None.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:

2.4.5 mq_receive

Function Prototype:

    #include <mqueue.h>
    int mq_receive( mqd_t mqdes, void *msg, size_t msgLen, int *msgPrio );

Description: This function receives the oldest of the highest priority messages from the message queue specified by "mqdes." If the size of the buffer in bytes (msgLen) is less than the "mq_msgsize" attribute of the message queue, mq_receive will return an error. Otherwise, the select message is removed from the queue and copied to "msg."

If the message queue is empty and O_NONBLOCK was not set, mq_receive() will block until a message is added to the message queue. If more than one task is waiting to receive a message, only the task with the highest priority that has waited the longest will be unblocked.

If the queue is empty and O_NONBLOCK is set, ERROR will be returned.

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:

2.4.6 mq_notify

Function Prototype:

    #include <mqueue.h>
    int mq_notify( mqd_t mqdes, const struct sigevent *notification );

Description: If the "notification" input parameter is not NULL, this function connects the task with the message queue such that the specified signal will be sent to the task whenever the message changes from empty to non-empty. One notification can be attached to a message queue.

If "notification" is NULL, the attached notification is detached (if it was held by the calling task) and the queue is available to attach another notification.

When the notification is sent to the registered task, its registration will be removed. The message queue will then be available for registration.

Input Parameters:

Returned Values: None.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:

2.4.7 mq_setattr

Function Prototype:

    #include <mqueue.h>
    int mq_setattr( mqd_t mqdes, const struct mq_attr *mqStat,
                     struct mq_attr *oldMqStat);

Description: This function sets the attributes associated with the specified message queue "mqdes." Only the "O_NONBLOCK" bit of the "mq_flags" can be changed.

If "oldMqStat" is non-null, mq_setattr() will store the previous message queue attributes at that location (just as would have been returned by mq_getattr()).

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.4.8 mq_getattr

Function Prototype:

    #include <mqueue.h>
    int mq_getattr( mqd_t mqdes, struct mq_attr *mqStat);

Description: This functions gets status information and attributes associated with the specified message queue.

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.5 Counting Semaphore Interfaces

Semaphores. Semaphores are the basis for synchronization and mutual exclusion in NuttX. NuttX supports POSIX semaphores.

Semaphores are the preferred mechanism for gaining exclusive access to a resource. sched_lock() and sched_unlock() can also be used for this purpose. However, sched_lock() and sched_unlock() have other undesirable side-affects in the operation of the system: sched_lock() also prevents higher-priority tasks from running that do not depend upon the semaphore-managed resource and, as a result, can adversely affect system response times.

Priority Inversion. Proper use of semaphores avoids the issues of sched_lock(). However, consider the following example:

  1. Some low-priority task, Task C, acquires a semphore in order to get exclusive access to a protected resource.
  2. Task C is suspended to allow some high-priority task,
  3. Task A, to execute.
  4. Task A attempts to acquire the semaphore held by Task C and gets blocked until Task C relinquishes the semaphore.
  5. Task C is allowed to execute again, but gets suspended by some medium-priority Task B.

At this point, the high-priority Task A cannot execute until Task B (and possibly other medium-priority tasks) completes and until Task C relinquishes the semaphore. In effect, the high-priority task, Task A behaves as though it were lower in priority than the low-priority task, Task C! This phenomenon is called priority inversion.

Some operating systems avoid priority inversion by automatically increasing the priority of the low-priority Task C (the operable buzz-word for this behavior is priority inheritance). NuttX does not support this behavior. As a consequence, it is left to the designer to provide implementations that will not suffer from priority inversion. The designer may, as examples:

POSIX semaphore interfaces:

2.5.1 sem_init

Function Prototype:

    #include <semaphore.h>
    int sem_init ( sem_t *sem, int pshared, unsigned int value );

Description: This function initializes the UN-NAMED semaphore sem. Following a successful call to sem_init(), the semaphore may be used in subsequent calls to sem_wait(), sem_post(), and sem_trywait(). The semaphore remains usable until it is destroyed.

Only sem itself may be used for performing synchronization. The result of referring to copies of sem in calls to sem_wait(), sem_trywait(), sem_post(), and sem_destroy(), is not defined.

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:

2.5.2 sem_destroy

Function Prototype:

    #include <semaphore.h>
    int sem_destroy ( sem_t *sem );

Description: This function is used to destroy the un-named semaphore indicated by sem. Only a semaphore that was created using sem_init() may be destroyed using sem_destroy(). The effect of calling sem_destroy() with a named semaphore is undefined. The effect of subsequent use of the semaphore sem is undefined until sem is re-initialized by another call to sem_init().

The effect of destroying a semaphore upon which other tasks are currently blocked is undefined.

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.5.3 sem_open

Function Prototype:

    #include <semaphore.h>
    sem_t *sem_open ( const char *name, int oflag, ...);

Description: This function establishes a connection between named semaphores and a task. Following a call to sem_open() with the semaphore name, the task may reference the semaphore associated with name using the address returned by this call. The semaphore may be used in subsequent calls to sem_wait(), sem_trywait(), and sem_post(). The semaphore remains usable until the semaphore is closed by a successful call to sem_close().

If a task makes multiple calls to sem_open() with the same name, then the same semaphore address is returned (provided there have been no calls to sem_unlink()).

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:

2.5.4 sem_close

Function Prototype:

    #include <semaphore.h>
    int sem_close ( sem_t *sem );

Description: This function is called to indicate that the calling task is finished with the specified named semaphore, sem. The sem_close() deallocates any system resources allocated by the system for this named semaphore.

If the semaphore has not been removed with a call to sem_unlink(), then sem_close() has no effect on the named semaphore. However, when the named semaphore has been fully unlinked, the semaphore will vanish when the last task closes it.

Care must be taken to avoid risking the deletion of a semaphore that another calling task has already locked.

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.5.5 sem_unlink

Function Prototype:

    #include <semaphore.h>
    int sem_unlink ( const char *name );

Description: This function will remove the semaphore named by the input name parameter. If one or more tasks have the semaphore named by name oepn when sem_unlink() is called, destruction of the semaphore will be postponed until all references have been destroyed by calls to sem_close().

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:

2.5.6 sem_wait

Function Prototype:

    #include <semaphore.h>
    int sem_wait ( sem_t *sem );

Description: This function attempts to lock the semaphore referenced by sem. If the semaphore as already locked by another task, the calling task will not return until it either successfully acquires the lock or the call is interrupted by a signal.

Input Parameters:

Returned Values:

If sem_wait returns -1 (ERROR) then the cause of the failure will be indicated by the thread-specific errno value (a pointer to this value can be obtained using get_errno_ptr()). The following lists the possible values for errno:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.5.7 sem_trywait

Function Prototype:

    #include <semaphore.h>
    int sem_trywait ( sem_t *sem );

Description: This function locks the specified semaphore only if the semaphore is currently not locked. In any event, the call returns without blocking.

Input Parameters:

Returned Values:

If sem_wait returns -1 (ERROR) then the cause of the failure will be indicated by the thread-specific errno value (a pointer to this value can be obtained using get_errno_ptr()). The following lists the possible values for errno:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.5.8 sem_post

Function Prototype:

    #include <semaphore.h>
    int sem_post ( sem_t *sem );

Description: When a task has finished with a semaphore, it will call sem_post(). This function unlocks the semaphore referenced by sem by performing the semaphore unlock operation.

If the semaphore value resulting from this operation is positive, then no tasks were blocked waiting for the semaphore to become unlocked; The semaphore value is simply incremented.

If the value of the semaphore resulting from this operation is zero, then on of the tasks blocked waiting for the semaphore will be allowed to return successfully from its call to sem_wait().

NOTE: sem_post() may be called from an interrupt handler.

Input Parameters:

Returned Values:

Assumptions/Limitations: This function cannot be called from an interrupt handler. It assumes the currently executing task is the one that is performing the unlock.

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.5.9 sem_getvalue

Function Prototype:

    #include <semaphore.h>
    int sem_getvalue ( sem_t *sem, int *sval );

Description: This function updates the location referenced by sval argument to have the value of the semaphore referenced by sem without effecting the state of the semaphore. The updated value represents the actual semaphore value that occurred at some unspecified time during the call, but may not reflect the actual value of the semaphore when it is returned to the calling task.

If sem is locked, the value return by sem_getvalue() will either be zero or a negative number whose absolute value represents the number of tasks waiting for the semaphore.

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.


2.6 Watchdog Timer Interfaces

NuttX provides a general watchdog timer facility. This facility allows the NuttX user to specify a watchdog timer function that will run after a specified delay. The watchdog timer function will run in the context of the timer interrupt handler. Because of this, a limited number of NuttX interfaces are available to he watchdog timer function. However, the watchdog timer function may use mq_send(), sigqueue(), or kill() to communicate with NuttX tasks.

2.6.1 wd_create

Function Prototype:

    #include <wdog.h>
    WDOG_ID wd_create (void);

Description: The wd_create function will create a watchdog by allocating the appropriate resources for the watchdog.

Input Parameters: None.

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: This is a NON-POSIX interface. VxWorks provides the following comparable interface:

    WDOG_ID wdCreate (void);

Differences from the VxWorks interface include:

2.6.2 wd_delete

Function Prototype:

    #include <wdog.h>
    STATUS wd_delete (WDOG_ID wdog);

Description: The wd_delete function will deallocate a watchdog. The watchdog will be removed from the timer queue if has been started.

Input Parameters:

Returned Values:

Assumptions/Limitations: It is the responsibility of the caller to assure that the watchdog is inactive before deleting it.

POSIX Compatibility: This is a NON-POSIX interface. VxWorks provides the following comparable interface:

    STATUS wdDelete (WDOG_ID wdog);

Differences from the VxWorks interface include:

2.6.3 wd_start

Function Prototype:

    #include <wdog.h>
    STATUS wd_start( WDOG_ID wdog, int delay, wdentry_t wdentry,
                     intt argc, ....);

Description: This function adds a watchdog to the timer queue. The specified watchdog function will be called from the interrupt level after the specified number of ticks has elapsed. Watchdog timers may be started from the interrupt level.

Watchdog times execute in the context of the timer interrupt handler, but with the PIC/PID address environment that was in place when wd_start() was called.

Watchdog timers execute only once.

To replace either the timeout delay or the function to be executed, call wd_start again with the same wdog; only the most recent wd_start() on a given watchdog ID has any effect.

Input Parameters:

Returned Values:

Assumptions/Limitations: The watchdog routine runs in the context of the timer interrupt handler and is subject to all ISR restrictions.

POSIX Compatibility: This is a NON-POSIX interface. VxWorks provides the following comparable interface:

    STATUS wdStart (WDOG_ID wdog, int delay, FUNCPTR wdentry, int parameter);

Differences from the VxWorks interface include:

2.6.4 wd_cancel

Function Prototype:

    #include <wdog.h>
    STATUS wd_cancel (WDOG_ID wdog);

Description: This function cancels a currently running watchdog timer. Watchdog timers may be canceled from the interrupt level.

Input Parameters:

Returned Values:

Assumptions/Limitations:

POSIX Compatibility: This is a NON-POSIX interface. VxWorks provides the following comparable interface:

    STATUS wdCancel (WDOG_ID wdog);

2.6.5 wd_gettime

Function Prototype:

    #include <wdog.h>
    Sint wd_gettime(WDOG_ID wdog);

Description: This function returns the time remaining before the the specified watchdog expires.

Input Parameters:

Returned Value: The time in system ticks remaining until the watchdog time expires. Zero means either that wdog is not valid or that the wdog has already expired.


2.7 Clocks and Timers

2.7.1 clock_settime

Function Prototype:

    #include <time.h>
    int clock_settime(clockid_t clockid, const struct timespec *tp);

Description:

Input Parameters:

Returned Values:

If successful, the clock_settime() function will return zero (OK). Otherwise, an non-zero error number will be returned to indicate the error:

2.7.2 clock_gettime

Function Prototype:

    #include <time.h>
    int clock_gettime(clockid_t clockid, struct timespec *tp);

Description:

Input Parameters:

Returned Values:

If successful, the clock_gettime() function will return zero (OK). Otherwise, an non-zero error number will be returned to indicate the error:

2.7.3 clock_getres

Function Prototype:

    #include <time.h>
    int clock_getres(clockid_t clockid, struct timespec *res);

Description:

Input Parameters:

Returned Values:

If successful, the clock_getres() function will return zero (OK). Otherwise, an non-zero error number will be returned to indicate the error:

2.7.4 mktime

Function Prototype:

    #include <time.h>
    time_t mktime(struct tm *tp);

Description:

Input Parameters:

Returned Values:

If successful, the mktime() function will return zero (OK). Otherwise, an non-zero error number will be returned to indicate the error:

2.7.5 gmtime_r

Function Prototype:

    #include <time.h>
    struct tm *gmtime_r(const time_t *clock, struct tm *result);

Description:

Input Parameters:

Returned Values:

If successful, the gmtime_r() function will return zero (OK). Otherwise, an non-zero error number will be returned to indicate the error:

2.7.6 localtime_r

    #include <time.h>
    #define localtime_r(c,r) gmtime_r(c,r)

2.7.7 timer_create

Function Prototype:

    #include <time.h>
    int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid);

Description: The timer_create() function creates per-thread timer using the specified clock, clock_id, as the timing base. The timer_create() function returns, in the location referenced by timerid, a timer ID of type timer_t used to identify the timer in timer requests. This timer ID is unique until the timer is deleted. The particular clock, clock_id, is defined in <time.h>. The timer whose ID is returned will be in a disarmed state upon return from timer_create().

The evp argument, if non-NULL, points to a sigevent structure. This structure is allocated by the called and defines the asynchronous notification to occur. If the evp argument is NULL, the effect is as if the evp argument pointed to a sigevent structure with the sigev_notify member having the value SIGEV_SIGNAL, the sigev_signo having a default signal number, and the sigev_value member having the value of the timer ID.

Each implementation defines a set of clocks that can be used as timing bases for per-thread timers. All implementations shall support a clock_id of CLOCK_REALTIME.

Input Parameters:

  • clockid. Specifies the clock to use as the timing base. Must be CLOCK_REALTIME.
  • evp. Refers to a user allocated sigevent structure that defines the asynchronous notification. evp may be NULL (see above).
  • timerid. The pre-thread timer created by the call to timer_create().

Returned Values:

If the call succeeds, timer_create() will return 0 (OK) and update the location referenced by timerid to a timer_t, which can be passed to the other per-thread timer calls. If an error occurs, the function will return a value of -1 (ERROR) and set errno to indicate the error.

  • EAGAIN. The system lacks sufficient signal queuing resources to honor the request.
  • EAGAIN. The calling process has already created all of the timers it is allowed by this implementation.
  • EINVAL. The specified clock ID is not defined.
  • ENOTSUP. The implementation does not support the creation of a timer attached to the CPU-time clock that is specified by clock_id and associated with a thread different thread invoking timer_create().

POSIX Compatibility: Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:

  • Only CLOCK_REALTIME is supported for the clockid argument.

2.7.8 timer_delete

Function Prototype:

    #include <time.h>
    int timer_delete(timer_t timerid);

Description: The timer_delete() function deletes the specified timer, timerid, previously created by the timer_create() function. If the timer is armed when timer_delete() is called, the timer will be automatically disarmed before removal. The disposition of pending signals for the deleted timer is unspecified.

Input Parameters:

  • timerid. The pre-thread timer, previously created by the call to timer_create(), to be deleted.

Returned Values:

If successful, the timer_delete() function will return zero (OK). Otherwise, the function will return a value of -1 (ERROR) and set errno to indicate the error:

  • EINVAL. The timer specified timerid is not valid.

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.7.9 timer_settime

Function Prototype:

    #include <time.h>
    int timer_settime(timer_t timerid, int flags, const struct itimerspec *value,
                      struct itimerspec *ovalue);

Description: The timer_settime() function sets the time until the next expiration of the timer specified by timerid from the it_value member of the value argument and arm the timer if the it_value member of value is non-zero. If the specified timer was already armed when timer_settime() is called, this call will reset the time until next expiration to the value specified. If the it_value member of value is zero, the timer will be disarmed. The effect of disarming or resetting a timer with pending expiration notifications is unspecified.

If the flag TIMER_ABSTIME is not set in the argument flags, timer_settime() will behave as if the time until next expiration is set to be equal to the interval specified by the it_value member of value. That is, the timer will expire in it_value nanoseconds from when the call is made. If the flag TIMER_ABSTIME is set in the argument flags, timer_settime() will behave as if the time until next expiration is set to be equal to the difference between the absolute time specified by the it_value member of value and the current value of the clock associated with timerid. That is, the timer will expire when the clock reaches the value specified by the it_value member of value. If the specified time has already passed, the function will succeed and the expiration notification will be made.

The reload value of the timer will be set to the value specified by the it_interval member of value. When a timer is armed with a non-zero it_interval, a periodic (or repetitive) timer is specified.

Time values that are between two consecutive non-negative integer multiples of the resolution of the specified timer will be rounded up to the larger multiple of the resolution. Quantization error will not cause the timer to expire earlier than the rounded time value.

If the argument ovalue is not NULL, the timer_settime() function will store, in the location referenced by ovalue, a value representing the previous amount of time before the timer would have expired, or zero if the timer was disarmed, together with the previous timer reload value. Timers will not expire before their scheduled time.

NOTE:At present, the ovalue argument is ignored.

Input Parameters:

  • timerid. The pre-thread timer, previously created by the call to timer_create(), to be be set.
  • flags. Specifie characteristics of the timer (see above)
  • value. Specifies the timer value to set
  • ovalue. A location in which to return the time remaining from the previous timer setting (ignored).

Returned Values:

If the timer_gettime() succeeds, a value of 0 (OK) will be returned. If an error occurs, the value -1 (ERROR) will be returned, and errno set to indicate the error.

  • EINVAL. The timerid argument does not correspond to an ID returned by timer_create() but not yet deleted by timer_delete().
  • EINVAL. A value structure specified a nanosecond value less than zero or greater than or equal to 1000 million, and the it_value member of that structure did not specify zero seconds and nanoseconds.

POSIX Compatibility: Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:

  • The ovalue argument is ignored.

2.7.10 timer_gettime

Function Prototype:

    #include <time.h>
    int timer_gettime(timer_t timerid, struct itimerspec *value);

Description: The timer_gettime() function will store the amount of time until the specified timer, timerid, expires and the reload value of the timer into the space pointed to by the value argument. The it_value member of this structure will contain the amount of time before the timer expires, or zero if the timer is disarmed. This value is returned as the interval until timer expiration, even if the timer was armed with absolute time. The it_interval member of value will contain the reload value last set by timer_settime().

Due to the asynchronous operation of this function, the time reported by this function could be significantly more than that actual time remaining on the timer at any time.

Input Parameters:

  • timerid. Specifies pre-thread timer, previously created by the call to timer_create(), whose remaining count will be returned.

Returned Values:

If successful, the timer_gettime() function will return zero (OK). Otherwise, an non-zero error number will be returned to indicate the error:

  • EINVAL. The timerid argument does not correspond to an ID returned by timer_create() but not yet deleted by timer_delete().

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.7.11 timer_getoverrun

Function Prototype:

    #include <time.h>
    int timer_getoverrun(timer_t timerid);

Description: Only a single signal will be queued to the process for a given timer at any point in time. When a timer for which a signal is still pending expires, no signal will be queued, and a timer overrun will occur. When a timer expiration signal is delivered to or accepted by a process, if the implementation supports the Realtime Signals Extension, the timer_getoverrun() function will return the timer expiration overrun count for the specified timer. The overrun count returned contains the number of extra timer expirations that occurred between the time the signal was generated (queued) and when it was delivered or accepted, up to but not including an implementation-defined maximum of DELAYTIMER_MAX. If the number of such extra expirations is greater than or equal to DELAYTIMER_MAX, then the overrun count will be set to DELAYTIMER_MAX. The value returned by timer_getoverrun() will apply to the most recent expiration signal delivery or acceptance for the timer. If no expiration signal has been delivered for the timer, or if the Realtime Signals Extension is not supported, the return value of timer_getoverrun() is unspecified.

NOTE: This interface is not currently implemented in NuttX.

Input Parameters:

  • timerid. Specifies pre-thread timer, previously created by the call to timer_create(), whose overrun count will be returned.

Returned Values: If the timer_getoverrun() function succeeds, it will return the timer expiration overrun count as explained above. timer_getoverrun() will fail if:

  • EINVAL. The timerid argument does not correspond to an ID returned by timer_create() but not yet deleted by timer_delete().

POSIX Compatibility: Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:

  • This interface is not currently implemented by NuttX.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.


2.8 Signal Interfaces

NuttX provides signal interfaces for tasks. Signals are used to alter the flow control of tasks by communicating asynchronous events within or between task contexts. Any task or interrupt handler can post (or send) a signal to a particular task. The task being signaled will execute task-specified signal handler function the next time that the task has priority. The signal handler is a user-supplied function that is bound to a specific signal and performs whatever actions are necessary whenever the signal is received.

There are no predefined actions for any signal. The default action for all signals (i.e., when no signal handler has been supplied by the user) is to ignore the signal. In this sense, all NuttX are real time signals.

Tasks may also suspend themselves and wait until a signal is received.

The following signal handling interfaces are provided by NuttX:

2.8.1 sigemptyset

Function Prototype:

    #include <signal.h>
    int sigemptyset(sigset_t *set);

Description: This function initializes the signal set specified by set such that all signals are excluded.

Input Parameters:

  • set. Signal set to initialize.

Returned Values:

  • 0 (OK), or -1 (ERROR) if the signal set cannot be initialized.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.8.2 sigfillset

Function Prototype:

    #include <signal.h>
    int sigfillset(sigset_t *set);

Description: This function initializes the signal set specified by set such that all signals are included.

Input Parameters:

  • set. Signal set to initialize

Returned Values:

  • 0 (OK), or -1 (ERROR) if the signal set cannot be initialized.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.8.3 sigaddset

Function Prototype:

    #include <signal.h>
    int sigaddset(sigset_t *set, int signo);

Description: This function adds the signal specified by signo to the signal set specified by set.

Input Parameters:

  • set. Signal set to add signal to
  • signo. Signal to add

Returned Values:

  • 0 (OK), or -1 (ERROR) if the signal number is invalid.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.8.4 sigdelset

Function Prototype:

    #include <signal.h>
    int sigdelset(sigset_t *set, int signo);

Description: This function deletes the signal specified by signo from the signal set specified by set.

Input Parameters:

  • set. Signal set to delete the signal from
  • signo. Signal to delete

Returned Values:

  • 0 (OK), or -1 (ERROR) if the signal number is invalid.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.8.5 sigismember

Function Prototype:

    #include <signal.h>
    int  sigismember(const sigset_t *set, int signo);

Description: This function tests whether the signal specified by signo is a member of the set specified by set.

Input Parameters:

  • set. Signal set to test
  • signo. Signal to test for

Returned Values:

  • 1 (TRUE), if the specified signal is a member of the set,
  • 0 (OK or FALSE), if it is not, or
  • -1 (ERROR) if the signal number is invalid.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.8.6 sigaction

Function Prototype:

    #include <signal.h>
    int sigaction( int signo, const struct sigaction *act,
                   struct sigaction *oact );

Description: This function allows the calling task to examine and/or specify the action to be associated with a specific signal.

The structure sigaction, used to describe an action to be taken, is defined to include the following members:

  • sa_u.sa_handler. A pointer to a signal-catching function.
  • sa_u.sa_sigaction. An alternative form for the signal catching function.
  • sa_mask. Additional set of signals to be blocked during execution of the signal-catching function.
  • sa_flags: Special flags to affect behavior of a signal.

If the argument act is not NULL, it points to a structure specifying the action to be associated with the specified signal. If the argument oact is not NULL, the action previously associated with the signal is stored in the location pointed to by the argument oact. If the argument act is NULL, signal handling is unchanged by this function call; thus, the call can be used to enquire about the current handling of a given signal.

When a signal is caught by a signal-catching function installed by the sigaction() function, a new signal mask is calculated and installed for the duration of the signal-catching function. This mask is formed by taking the union of the current signal mask and the value of the sa_mask for the signal being delivered, and then including the signal being delivered. If and when the signal handler returns, the original signal mask is restored.

Signal catching functions execute in the same address environment as the task that called sigaction() to install the signal-catching function.

Once an action is installed for a specific signal, it remains installed until another action is explicitly requested by another call to sigaction().

Input Parameters:

  • sig. Signal of interest
  • act. Location of new handler
  • oact. Location to store old handler

Returned Values:

  • 0 (OK), or -1 (ERROR) if the signal number is invalid.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name. Differences from the POSIX implementation include:

  • Special values of sa_handler in the struct sigaction act input not handled (SIG_DFL, SIG_IGN).
  • All sa_flags in struct sigaction of act input are ignored (all treated like SA_SIGINFO).

2.8.7 sigprocmask

Function Prototype:

    #include <signal.h>
    int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

Description: This function allows the calling task to examine and/or change its signal mask. If the set is not NULL, then it points to a set of signals to be used to change the currently blocked set. The value of how indicates the manner in which the set is changed.

If there are any pending unblocked signals after the call to sigprocmask(), those signals will be delivered before sigprocmask() returns.

If sigprocmask() fails, the signal mask of the task is not changed.

Input Parameters:

  • how. How the signal mast will be changed:
    • osSIG_BLOCK. The resulting set is the union of the current set and the signal set pointed to by the set input parameter.
    • osSIG_UNBLOCK. The resulting set is the intersection of the current set and the complement of the signal set pointed to by the set input parameter.
    • osSIG_SETMASK. The resulting set is the signal set pointed to by the set input parameter.
  • set. Location of the new signal mask
  • oset. Location to store the old signal mask

Returned Values:

  • 0 (OK), or -1 (ERROR) if how is invalid.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.8.8 sigpending

Function Prototype:

    #include <signal.h>
    int sigpending( sigset_t *set );

Description: This function stores the returns the set of signals that are blocked for delivery and that are pending for the calling task in the space pointed to by set.

If the task receiving a signal has the signal blocked via its sigprocmask, the signal will pend until it is unmasked. Only one pending signal (for a given signo) is retained by the system. This is consistent with POSIX which states: "If a subsequent occurrence of a pending signal is generated, it is implementation defined as to whether the signal is delivered more than once."

Input Parameters:

  • set. The location to return the pending signal set.

Returned Values:

  • 0 (OK) or -1 (ERROR)

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.8.9 sigsuspend

Function Prototype:

    #include <signal.h>
    int sigsuspend( const sigset_t *set );

Description: The sigsuspend() function replaces the signal mask with the set of signals pointed to by the argument set and then suspends the task until delivery of a signal to the task.

If the effect of the set argument is to unblock a pending signal, then no wait is performed.

The original signal mask is restored when sigsuspend() returns.

Waiting for an empty signal set stops a task without freeing any resources (a very bad idea).

Input Parameters:

  • set. The value of the signal mask to use while suspended.

Returned Values:

  • -1 (ERROR) always

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name. Differences from the POSIX specification include:

  • POSIX does not indicate that the original signal mask is restored.
  • POSIX states that sigsuspend() "suspends the task until delivery of a signal whose action is either to execute a signal-catching function or to terminate the task." Only delivery of the signal is required in the present implementation (even if the signal is ignored).

2.8.10 sigwaitinfo

Function Prototype:

    #include <signal.h>
    int sigwaitinfo(const sigset_t *set, struct siginfo *info);

Description: This function is equivalent to sigtimedwait() with a NULL timeout parameter. (see below).

Input Parameters:

  • set. The set of pending signals to wait for.
  • info. The returned signal values

Returned Values:

  • Signal number that cause the wait to be terminated, otherwise -1 (ERROR) is returned.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.8.11 sigtimedwait

Function Prototype:

    #include <signal.h>
    int sigtimedwait( const sigset_t *set, struct siginfo *info,
                      const struct timespec *timeout );

Description: This function selects the pending signal set specified by the argument set. If multiple signals are pending in set, it will remove and return the lowest numbered one. If no signals in set are pending at the time of the call, the calling task will be suspended until one of the signals in set becomes pending OR until the task interrupted by an unblocked signal OR until the time interval specified by timeout (if any), has expired. If timeout is NULL, then the timeout interval is forever.

If the info argument is non-NULL, the selected signal number is stored in the si_signo member and the cause of the signal is store in the si_code member. The content of si_value is only meaningful if the signal was generated by sigqueue(). The following values for si_code are defined in signal.h:

  • SI_USER. Signal sent from kill, raise, or abort
  • SI_QUEUE. Signal sent from sigqueue
  • SI_TIMER. Signal is result of timer expiration
  • SI_ASYNCIO. Signal is the result of asynch IO completion
  • SI_MESGQ. Signal generated by arrival of a message on an empty message queue.

Input Parameters:

  • set. The set of pending signals to wait for.
  • info. The returned signal values
  • timeout. The amount of time to wait

Returned Values:

  • Signal number that cause the wait to be terminated, otherwise -1 (ERROR) is returned.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name. Differences from the POSIX interface include:

  • Values for si_codes differ
  • No mechanism to return cause of ERROR. (It can be inferred from si_code in a non-standard way).
  • POSIX states that "If no signal is pending at the time of the call, the calling task shall be suspended until one or more signals in set become pending or until it is interrupted by an unblocked, caught signal." The present implementation does not require that the unblocked signal be caught; the task will be resumed even if the unblocked signal is ignored.

2.8.12 sigqueue

Function Prototype:

    #include <signal.h>
    int sigqueue (int tid, int signo, const union sigval value);

Description: This function sends the signal specified by signo with the signal parameter value to the task specified by tid.

If the receiving task has the signal blocked via its sigprocmask, the signal will pend until it is unmasked. Only one pending signal (for a given signo) is retained by the system. This is consistent with POSIX which states: "If a subsequent occurrence of a pending signal is generated, it is implementation defined as to whether the signal is delivered more than once."

Input Parameters:

  • tid. ID of the task to receive signal
  • signo. Signal number
  • value. Value to pass to task with signal

Returned Values:

  • On success (at least one signal was sent), zero (OK) is returned. On error, -1 (ERROR) is returned, and errno is set appropriately.
    • EGAIN. The limit of signals which may be queued has been reached.
    • EINVAL. signo was invalid.
    • EPERM. The task does not have permission to send the signal to the receiving process.
    • ESRCH. No process has a PID matching pid.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name. Differences from the POSIX interface include:

  • Default action is to ignore signals.
  • Signals are processed one at a time in order
  • POSIX states that, "If signo is zero (the null signal), error checking will be performed but no signal is actually sent." There is no null signal in the present implementation; a zero signal will be sent.

2.8.13 kill

Function Prototype:

   #include <sys/types.h>
   #include <signal.h>
   int kill(pid_t pid, int sig);

Description: The kill() system call can be used to send any signal to any task.

If the receiving task has the signal blocked via its sigprocmask, the signal will pend until it is unmasked. Only one pending signal (for a given signo) is retained by the system. This is consistent with POSIX which states: "If a subsequent occurrence of a pending signal is generated, it is implementation defined as to whether the signal is delivered more than once."

Input Parameters:

  • pid. The id of the task to receive the signal. The POSIX kill() specification encodes process group information as zero and negative pid values. Only positive, non-zero values of pid are supported by this implementation. ID of the task to receive signal
  • signo. The signal number to send. If signo is zero, no signal is sent, but all error checking is performed.

Returned Values:

  • OK or ERROR

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name. Differences from the POSIX interface include:

  • Default action is to ignore signals.
  • Signals are processed one at a time in order
  • Sending of signals to 'process groups' is not supported in NuttX.

2.9 Pthread Interfaces

NuttX does not support processes in the way that, say, Linux does. NuttX only supports simple threads or tasks running within the same address space. For the most part, threads and tasks are interchangeable and differ primarily only in such things as the inheritance of file descriptors. Basically, threads are initialized and uninitialized differently and share a few more resources than tasks.

The following pthread interfaces are supported in some form by NuttX:

No support for the ollowing pthread interfaces is provided by NuttX:

  • pthread_atfork. register fork handlers.
  • pthread_attr_getdetachstate. get and set the detachstate attribute.
  • pthread_attr_getguardsize. get and set the thread guardsize attribute.
  • pthread_attr_getinheritsched. get and set the inheritsched attribute.
  • pthread_attr_getscope. get and set the contentionscope attribute.
  • pthread_attr_getstack. get and set stack attributes.
  • pthread_attr_getstackaddr. get and set the stackaddr attribute.
  • pthread_attr_setdetachstate. get and set the detachstate attribute.
  • pthread_attr_setguardsize. get and set the thread guardsize attribute.
  • pthread_attr_setscope. get and set the contentionscope attribute.
  • pthread_attr_setstack. get and set stack attributes.
  • pthread_attr_setstackaddr. get and set the stackaddr attribute.
  • pthread_barrier_destroy. destroy and initialize a barrier object.
  • pthread_barrier_init. destroy and initialize a barrier object.
  • pthread_barrier_wait. synchronize at a barrier.
  • pthread_cleanup_pop. establish cancellation handlers.
  • pthread_cleanup_push. establish cancellation handlers.
  • pthread_condattr_getclock. get and set the clock selection condition variable attribute.
  • pthread_condattr_getpshared. get and set the process-shared condition variable attributes.
  • pthread_condattr_setclock. get and set the clock selection condition variable attribute.
  • pthread_condattr_setpshared. get and set the process-shared condition variable attributes.
  • pthread_getconcurrency. get and set the level of concurrency.
  • pthread_getcpuclockid. access a thread CPU-time clock.
  • pthread_mutex_getprioceiling. get and set the priority ceiling of a mutex.
  • pthread_mutex_setprioceiling. get and set the priority ceiling of a mutex.
  • pthread_mutex_timedlock. lock a mutex.
  • pthread_mutexattr_getprioceiling. get and set the prioceiling attribute of the mutex attributes object.
  • pthread_mutexattr_getprotocol. get and set the protocol attribute of the mutex attributes object.
  • pthread_mutexattr_gettype. get and set the mutex type attribute.
  • pthread_mutexattr_setprioceiling. get and set the prioceiling attribute of the mutex attributes object.
  • pthread_mutexattr_setprotocol. get and set the protocol attribute of the mutex attributes object.
  • pthread_mutexattr_settype. get and set the mutex type attribute.
  • pthread_rwlock_destroy. destroy and initialize a read-write lock object.
  • pthread_rwlock_init. destroy and initialize a read-write lock object.
  • pthread_rwlock_rdlock. lock a read-write lock object for reading.
  • pthread_rwlock_timedrdlock. lock a read-write lock for reading.
  • pthread_rwlock_timedwrlock. lock a read-write lock for writing.
  • pthread_rwlock_tryrdlock. lock a read-write lock object for reading.
  • pthread_rwlock_trywrlock. lock a read-write lock object for writing.
  • pthread_rwlock_unlock. unlock a read-write lock object.
  • pthread_rwlock_wrlock. lock a read-write lock object for writing.
  • pthread_rwlockattr_destroy. destroy and initialize the read-write lock attributes object.
  • pthread_rwlockattr_getpshared. get and set the process-shared attribute of the read-write lock attributes object.
  • pthread_rwlockattr_init. destroy and initialize the read-write lock attributes object.
  • pthread_rwlockattr_setpshared. get and set the process-shared attribute of the read-write lock attributes object.
  • pthread_setcanceltype. set cancelability state.
  • pthread_setconcurrency. get and set the level of concurrency.
  • pthread_spin_destroy. destroy or initialize a spin lock object.
  • pthread_spin_init. destroy or initialize a spin lock object.
  • pthread_spin_lock. lock a spin lock object.
  • pthread_spin_trylock. lock a spin lock object.
  • pthread_spin_unlock. unlock a spin lock object.
  • pthread_testcancel. set cancelability state.

2.9.1 pthread_attr_init

Function Prototype:

    #include <pthread.h>
    int pthread_attr_init(pthread_attr_t *attr);

Description: Initializes a thread attributes object (attr) with default values for all of the individual attributes used by the implementation.

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_attr_init() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.2 pthread_attr_destroy

Function Prototype:

    #include <pthread.h>
    int pthread_attr_destroy(pthread_attr_t *attr);

Description: An attributes object can be deleted when it is no longer needed.

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_attr_destroy() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.3 pthread_attr_setschedpolicy

Function Prototype:

    #include <pthread.h>
    int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_attr_setschedpolicy() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.4 pthread_attr_getschedpolicy

Function Prototype:

    #include <pthread.h>
    int pthread_attr_getschedpolicy(pthread_attr_t *attr, int *policy);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_attr_getschedpolicy() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.5 pthread_attr_getschedpolicy

Function Prototype:

   #include <pthread.h>
    int pthread_attr_setschedparam(pthread_attr_t *attr,
				      const struct sched_param *param);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_attr_getschedpolicy() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.6 pthread_attr_getschedparam

Function Prototype:

   #include <pthread.h>
     int pthread_attr_getschedparam(pthread_attr_t *attr,
				      struct sched_param *param);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_attr_getschedparam() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.7 pthread_attr_setinheritsched

Function Prototype:

   #include <pthread.h>
    int pthread_attr_setinheritsched(pthread_attr_t *attr,
					int inheritsched);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_attr_setinheritsched() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.8 pthread_attr_getinheritsched

Function Prototype:

   #include <pthread.h>
     int pthread_attr_getinheritsched(const pthread_attr_t *attr,
					int *inheritsched);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_attr_getinheritsched() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.9 pthread_attr_setstacksize

Function Prototype:

   #include <pthread.h>
    int pthread_attr_setstacksize(pthread_attr_t *attr, long stacksize);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_attr_setstacksize() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.10 pthread_attr_getstacksize

Function Prototype:

    #include <pthread.h>
   int pthread_attr_getstacksize(pthread_attr_t *attr, long *stackaddr);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_attr_getstacksize() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.11 pthread_create

Function Prototype:

    #include <pthread.h>
    int pthread_create(pthread_t *thread, pthread_attr_t *attr,
			  pthread_startroutine_t startRoutine,
			  pthread_addr_t arg);

Description: To create a thread object and runnable thread, a routine must be specified as the new thread's start routine. An argument may be passed to this routine, as an untyped address; an untyped address may also be returned as the routine's value. An attributes object may be used to specify details about the kind of thread being created.

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_create() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.12 pthread_detach

Function Prototype:

    #include <pthread.h>
    int pthread_detach(pthread_t thread);

Description: A thread object may be "detached" to specify that the return value and completion status will not be requested.

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_detach() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.13 pthread_exit

Function Prototype:

    #include <pthread.h>
    void pthread_exit(pthread_addr_t pvValue);

Description: A thread may terminate it's own execution.

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_exit() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.14 pthread_cancel

Function Prototype:

    #include <pthread.h>
    int pthread_cancel(pthread_t thread);

Description:

The pthread_cancel() function shall request that thread be canceled. The target thread's cancelability state determines when the cancellation takes effect. When the cancellation is acted on, thread shall be terminated.

When cancelability is disabled, all cancels are held pending in the target thread until the thread changes the cancelability. When cancelability is deferred, all cancels are held pending in the target thread until the thread changes the cancelability or calls pthread_testcancel().

Cancelability is asynchronous; all cancels are acted upon immediately (when enable), interrupting the thread with its processing.

Input Parameters:

  • thread. Identifies the thread to be canceled.

Returned Values:

If successful, the ptnread_cancel() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • ESRCH. No thread could be found corresponding to that specified by the given thread ID.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name. Except:

  • The thread-specific data destructor functions shall be called for thread. However, these destructors are not currently supported.
  • Cancellation types are not supported. The thread will be canceled at the time that pthread_cancel() is called or, if cancelation is disabled, at the time when cancelation is re-enabled.
  • pthread_testcancel() is not supported.
  • Thread cancellation at cancellation points is not supported.

2.9.15 pthread_setcancelstate

Function Prototype:

    #include <pthread.h>
    int pthread_setcancelstate(int state, int *oldstate);

Description:

The pthread_setcancelstate() function atomically sets both the calling thread's cancelability state to the indicated state and returns the previous cancelability state at the location referenced by oldstate. Legal values for state are PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DISABLE.<.li>

Any pending thread cancelation may occur at the time that the cancelation state is set to PTHREAD_CANCEL_ENABLE.

Input Parameters:

  • state New cancelation state. One of PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE.<.li>
  • oldstate. Location to return the previous cancelation state.

Returned Values:

If successful, the pthread_setcancelstate() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • ESRCH. No thread could be found corresponding to that specified by the given thread ID.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.16 pthread_testcancelstate

Function Prototype:

    #include <pthread.h>
    int pthread_setcancelstate(void);

Description:

NOT SUPPORTED Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_setcancelstate() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.17 pthread_join

Function Prototype:

    #include <pthread.h>
    int pthread_join(pthread_t thread, pthread_addr_t *ppvValue);

Description: A thread can await termination of another thread and retrieve the return value of the thread.

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_join() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.18 pthread_yield

Function Prototype:

    #include <pthread.h>
    void pthread_yield(void);

Description: A thread may tell the scheduler that its processor can be made available.

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_yield() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.19 pthread_self

Function Prototype:

    #include <pthread.h>
    pthread_t pthread_self(void);

Description: A thread may obtain a copy of its own thread handle.

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_self() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.20 pthread_getschedparam

Function Prototype:

    #include <pthread.h>
    int pthread_getschedparam(pthread_t thread, int *policy,
                              struct sched_param *param);

Description: The pthread_getschedparam() functions will get the scheduling policy and parameters of threads. For SCHED_FIFO and SCHED_RR, the only required member of the sched_param structure is the priority sched_priority.

The pthread_getschedparam() function will retrieve the scheduling policy and scheduling parameters for the thread whose thread ID is given by thread and will store those values in policy and param, respectively. The priority value returned from pthread_getschedparam() will be the value specified by the most recent pthread_setschedparam(), pthread_setschedprio(), or pthread_create() call affecting the target thread. It will not reflect any temporary adjustments to its priority (such as might result of any priority inheritance, for example).

The policy parameter may have the value SCHED_FIFO or SCHED_RR (SCHED_OTHER and SCHED_SPORADIC, in particular, are not supported). The SCHED_FIFO and SCHED_RR policies will have a single scheduling parameter, sched_priority.

Input Parameters:

  • thread. The ID of thread whose scheduling parameters will be queried.
  • policy. The location to store the thread's scheduling policy.
  • param. The location to store the thread's priority.

Returned Values: 0 (OK) if successful. Otherwise, the error code ESRCH if the value specified by thread does not refer to an existing thread.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.21 pthread_setschedparam

Function Prototype:

    #include <pthread.h>
    int pthread_setschedparam(pthread_t thread, int policy,
                              const struct sched_param *param);

Description: The pthread_setschedparam() functions will set the scheduling policy and parameters of threads. For SCHED_FIFO and SCHED_RR, the only required member of the sched_param structure is the priority sched_priority.

The pthread_setschedparam() function will set the scheduling policy and associated scheduling parameters for the thread whose thread ID is given by thread to the policy and associated parameters provided in policy and param, respectively.

The policy parameter may have the value SCHED_FIFO or SCHED_RR. (SCHED_OTHER and SCHED_SPORADIC, in particular, are not supported). The SCHED_FIFO and SCHED_RR policies will have a single scheduling parameter, sched_priority.

If the pthread_setschedparam() function fails, the scheduling parameters will not be changed for the target thread.

Input Parameters:

  • thread. The ID of thread whose scheduling parameters will be modified.
  • policy. The new scheduling policy of the thread. Either SCHED_FIFO or SCHED_RR. SCHED_OTHER and SCHED_SPORADIC are not supported.
  • param. The location to store the thread's priority.

Returned Values:

If successful, the pthread_setschedparam() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • EINVAL. The value specified by policy or one of the scheduling parameters associated with the scheduling policy policy is invalid.
  • ENOTSUP. An attempt was made to set the policy or scheduling parameters to an unsupported value (SCHED_OTHER and SCHED_SPORADIC in particular are not supported)
  • EPERM. The caller does not have the appropriate permission to set either the scheduling parameters or the scheduling policy of the specified thread. Or, the implementation does not allow the application to modify one of the parameters to the value specified.
  • ESRCH. The value specified by thread does not refer to a existing thread.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.22 pthread_key_create

Function Prototype:

    #include <pthread.h>
    int pthread_key_create( pthread_key_t *key, void (*destructor)(void*) )

Description:

This function creates a thread-specific data key visible to all threads in the system. Although the same key value may be used by different threads, the values bound to the key by pthread_setspecific() are maintained on a per-thread basis and persist for the life of the calling thread.

Upon key creation, the value NULL will be associated with the the new key in all active threads. Upon thread creation, the value NULL will be associated with all defined keys in the new thread.

Input Parameters:

  • key is a pointer to the key to create.
  • destructor is an optional destructor() function that may be associated with each key that is invoked when a thread exits. However, this argument is ignored in the current implementation.

Returned Values:

If successful, the pthread_key_create() function will store the newly created key value at *key and return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • EAGAIN. The system lacked sufficient resources to create another thread-specific data key, or the system-imposed limit on the total number of keys per task {PTHREAD_KEYS_MAX} has been exceeded
  • ENONMEM Insufficient memory exists to create the key.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

  • The present implementation ignores the destructor argument.

2.9.23 pthread_setspecific

Function Prototype:

    #include <pthread.h>
    int pthread_setspecific( pthread_key_t key, void *value )

Description:

The pthread_setspecific() function associates a thread- specific value with a key obtained via a previous call to pthread_key_create(). Different threads may bind different values to the same key. These values are typically pointers to blocks of dynamically allocated memory that have been reserved for use by the calling thread.

The effect of calling pthread_setspecific() with a key value not obtained from pthread_key_create() or after a key has been deleted with pthread_key_delete() is undefined.

Input Parameters:

  • key. The data key to set the binding for.
  • value. The value to bind to the key.

Returned Values:

If successful, pthread_setspecific() will return zero (OK). Otherwise, an error number will be returned:

  • ENOMEM. Insufficient memory exists to associate the value with the key.
  • EINVAL. The key value is invalid.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

  • pthread_setspecific() may be called from a thread-specific data destructor function.

2.9.24 pthread_getspecific

Function Prototype:

    #include <pthread.h>
    void *pthread_getspecific( pthread_key_t key )

Description:

The pthread_getspecific() function returns the value currently bound to the specified key on behalf of the calling thread.

The effect of calling pthread_getspecific() with a key value not obtained from pthread_key_create() or after a key has been deleted with pthread_key_delete() is undefined.

Input Parameters:

  • key. The data key to get the binding for.

Returned Values:

The function pthread_getspecific() returns the thread- specific data associated with the given key. If no thread specific data is associated with the key, then the value NULL is returned.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

  • pthread_getspecific() may be called from a thread-specific data destructor function.

2.9.25 pthread_key_delete

Function Prototype:

    #include <pthread.h>
    int pthread_key_delete( pthread_key_t key )

Description:

This POSIX function should delete a thread-specific data key previously returned by pthread_key_create(). However, this function does nothing in the present implementation.

Input Parameters:

  • key. The key to delete

Returned Values:

  • Always returns EINVAL.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.26 pthread_mutexattr_init

Function Prototype:

    #include <pthread.h>
    int pthread_mutexattr_init(pthread_mutexattr_t *attr);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_mutexattr_init() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.27 pthread_mutexattr_destroy

Function Protoype:

    #include <pthread.h>
    int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_mutexattr_destroy() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.28 pthread_mutexattr_getpshared

Function Prototype:

    #include <pthread.h>
    int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr,
					int *pshared);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_mutexattr_getpshared() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.29 pthread_mutexattr_setpshared

Function Prototype:

    #include <pthread.h>
   int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
					int pshared);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_mutexattr_setpshared() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.30 pthread_mutex_init

Function Prototype:

    #include <pthread.h>
    int pthread_mutex_init(pthread_mutex_t *mutex,
			      pthread_mutexattr_t *attr);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_mutex_init() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.31 pthread_mutex_destroy

Function Prototype:

    #include <pthread.h>
    int pthread_mutex_destroy(pthread_mutex_t *mutex);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_mutex_destroy() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.32 pthread_mutex_lock

Function Prototype:

    #include <pthread.h>
    int pthread_mutex_lock(pthread_mutex_t *mutex);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_mutex_lock() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.33 pthread_mutex_trylock

Function Prototype:

    #include <pthread.h>
    int pthread_mutex_trylock(pthread_mutex_t *mutex);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_mutex_trylock() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.34 pthread_mutex_unlock

Function Prototype:

    #include <pthread.h>
    int pthread_mutex_unlock(pthread_mutex_t *mutex);

Description:

Input Parameters:

  • param.

Returned Values:

If successful, the pthread_mutex_unlock() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.35 pthread_condattr_init

Function Prototype:

    #include <pthread.h>
    int pthread_condattr_init(pthread_condattr_t *attr);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_condattr_init() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.36 pthread_condattr_destroy

Function Prototype:

    #include <pthread.h>
    int pthread_condattr_destroy(pthread_condattr_t *attr);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_condattr_destroy() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.37 pthread_cond_init

Function Prototype:

    #include <pthread.h>
    int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *attr);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_cond_init() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.38 pthread_cond_destroy

Function Prototype:

    #include <pthread.h>
    int pthread_cond_destroy(pthread_cond_t *cond);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_cond_destroy() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.39 pthread_cond_broadcast

Function Prototype:

    #include <pthread.h>
    int pthread_cond_broadcast(pthread_cond_t *cond);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_cond_broadcast() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.40 pthread_cond_signal

Function Prototype:

    #include <pthread.h>
    int pthread_cond_signal(pthread_cond_t *dond);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_cond_signal() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.41 pthread_cond_wait

Function Prototype:

    #include <pthread.h>
    int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_cond_wait() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.
Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.42 pthread_cond_timedwait

Function Prototype:

    #include <pthread.h>
    int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,
				  const struct timespec *abstime);

Description:

Input Parameters:

  • To be provided.

Returned Values:

If successful, the pthread_cond_timedwait() function will return zero (OK). Otherwise, an error number will be returned to indicate the error:

  • To be provided.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.43 pthread_barrierattr_init

Function Prototype:

    #include <pthread.h>
    int pthread_barrierattr_init(FAR pthread_barrierattr_t *attr);

Description: The pthread_barrierattr_init() function will initialize a barrier attribute object attr with the default value for all of the attributes defined by the implementation.

Input Parameters:

  • attr. Barrier attributes to be initialized.

Returned Values: 0 (OK) on success or EINVAL if attr is invalid.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.44 pthread_barrierattr_destroy

Function Prototype:

    #include <pthread.h>
    int pthread_barrierattr_destroy(FAR pthread_barrierattr_t *attr);

Description: The pthread_barrierattr_destroy() function will destroy a barrier attributes object. A destroyed attributes object can be reinitialized using pthread_barrierattr_init(); the results of otherwise referencing the object after it has been destroyed are undefined.

Input Parameters:

  • attr. Barrier attributes to be destroyed.

Returned Values: 0 (OK) on success or EINVAL if attr is invalid.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.45 pthread_barrierattr_setpshared

Function Prototype:

    #include <pthread.h>
    int pthread_barrierattr_setpshared(FAR pthread_barrierattr_t *attr, int pshared);

Description: The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a barrier to be operated upon by any thread that has access to the memory where the barrier is allocated. If the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the barrier can only be operated upon by threads created within the same process as the thread that initialized the barrier. If threads of different processes attempt to operate on such a barrier, the behavior is undefined. The default value of the attribute is PTHREAD_PROCESS_PRIVATE.

Input Parameters:

  • attr. Barrier attributes to be modified.
  • pshared. The new value of the pshared attribute.

Returned Values: 0 (OK) on success or EINVAL if either attr is invalid or pshared is not one of PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.46 pthread_barrierattr_getpshared

Function Prototype:

    #include <pthread.h>
    int pthread_barrierattr_getpshared(FAR const pthread_barrierattr_t *attr, FAR int *pshared);

Description: The pthread_barrierattr_getpshared() function will obtain the value of the process-shared attribute from the attributes object referenced by attr.

Input Parameters:

  • attr. Barrier attributes to be queried.
  • pshared. The location to stored the current value of the pshared attribute.

Returned Values: 0 (OK) on success or EINVAL if either attr or pshared is invalid.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.47 pthread_barrier_init

Function Prototype:

    #include <pthread.h>
    int pthread_barrier_init(FAR pthread_barrier_t *barrier,
                             FAR const pthread_barrierattr_t *attr, unsigned int count);

Description: The pthread_barrier_init() function allocates any resources required to use the barrier referenced by barrier and initialized the barrier with the attributes referenced by attr. If attr is NULL, the default barrier attributes will be used. The results are undefined if pthread_barrier_init() is called when any thread is blocked on the barrier. The results are undefined if a barrier is used without first being initialized. The results are undefined if pthread_barrier_init() is called specifying an already initialized barrier.

Input Parameters:

  • barrier. The barrier to be initialized.
  • attr. Barrier attributes to be used in the initialization.
  • count. The count to be associated with the barrier. The count argument specifies the number of threads that must call pthread_barrier_wait() before any of them successfully return from the call. The value specified by count must be greater than zero.

Returned Values:0 (OK) on success or on of the following error numbers:

  • EAGAIN. The system lacks the necessary resources to initialize another barrier.
  • EINVAL. The barrier reference is invalid, or the values specified by attr are invalid, or the value specified by count is equal to zero.
  • ENOMEM. Insufficient memory exists to initialize the barrier.
  • EBUSY. The implementation has detected an attempt to reinitialize a barrier while it is in use.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.48 pthread_barrier_destroy

Function Prototype:

    #include <pthread.h>
    int pthread_barrier_destroy(FAR pthread_barrier_t *barrier);

Description: The pthread_barrier_destroy() function destroys the barrier referenced by barrie and releases any resources used by the barrier. The effect of subsequent use of the barrier is undefined until the barrier is reinitialized by another call to pthread_barrier_init(). The results are undefined if pthread_barrier_destroy() is called when any thread is blocked on the barrier, or if this function is called with an uninitialized barrier.

Input Parameters:

  • barrier. The barrier to be destroyed.

Returned Values: 0 (OK) on success or on of the following error numbers:

  • EBUSY. The implementation has detected an attempt to destroy a barrier while it is in use.
  • EINVAL. The value specified by barrier is invalid.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.49 pthread_barrier_wait

Function Prototype:

    #include <pthread.h>
    int pthread_barrier_wait(FAR pthread_barrier_t *barrier);

Description: The pthread_barrier_wait() function synchronizse participating threads at the barrier referenced by barrier. The calling thread is blocked until the required number of threads have called pthread_barrier_wait() specifying the same barrier. When the required number of threads have called pthread_barrier_wait() specifying the barrier, the constant PTHREAD_BARRIER_SERIAL_THREAD will be returned to one unspecified thread and zero will be returned to each of the remaining threads. At this point, the barrier will be reset to the state it had as a result of the most recent pthread_barrier_init() function that referenced it.

The constant PTHREAD_BARRIER_SERIAL_THREAD is defined in pthread.h and its value must be distinct from any other value returned by pthread_barrier_wait().

The results are undefined if this function is called with an uninitialized barrier.

If a signal is delivered to a thread blocked on a barrier, upon return from the signal handler the thread will resume waiting at the barrier if the barrier wait has not completed. Otherwise, the thread will continue as normal from the completed barrier wait. Until the thread in the signal handler returns from it, it is unspecified whether other threads may proceed past the barrier once they have all reached it.

A thread that has blocked on a barrier will not prevent any unblocked thread that is eligible to use the same processing resources from eventually making forward progress in its execution. Eligibility for processing resources will be determined by the scheduling policy.

Input Parameters:

  • barrier. The barrier on which to wait.

Returned Values: 0 (OK) on success or EINVAL if the barrier is not valid.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.50 pthread_once

Function Prototype:

    #include <pthread.h>
    int pthread_once(FAR pthread_once_t *once_control, CODE void (*init_routine)(void));

Description: The first call to pthread_once() by any thread with a given once_control, will call the init_routine() with no arguments. Subsequent calls to pthread_once() with the same once_control will have no effect. On return from pthread_once(), init_routine() will have completed.

Input Parameters:

  • once_control. Determines if init_routine() should be called. once_control should be declared and intialized as follows:
      pthread_once_t once_control = PTHREAD_ONCE_INIT;
          
    PTHREAD_ONCE_INIT is defined in pthread.h.
  • init_routine. The initialization routine that will be called once.

Returned Values: 0 (OK) on success or EINVAL if either once_control or init_routine are invalid.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.51 pthread_kill

Function Prototype:

    #include <signal.h>
    #include <pthread.h>
    int pthread_kill(pthread_t thread, int signo)

Description: The pthread_kill() system call can be used to send any signal to a thread. See kill() for further information as this is just a simple wrapper around the kill() function.

Input Parameters:

  • thread. The id of the thread to receive the signal. Only positive, non-zero values of tthreadt are supported.
  • signo. The signal number to send. If signo is zero, no signal is sent, but all error checking is performed.

Returned Values:

On success, the signal was sent and zero is returned. On error one of the following error numbers is returned.

  • EINVAL. An invalid signal was specified.
  • EPERM. The thread does not have permission to send the signal to the target thread.
  • ESRCH. No thread could be found corresponding to that specified by the given thread ID.
  • ENOSYS. Do not support sending signals to process groups.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.

2.9.52 pthread_sigmask

Function Prototype:

    #include <signal.h>
    #include <pthread.h>
    int pthread_sigmask(int how, FAR const sigset_t *set, FAR sigset_t *oset);

Description: This function is a simple wrapper around sigprocmask(). See the sigprocmask() function description for further information.

Input Parameters:

  • how. How the signal mast will be changed:
    • SIG_BLOCK: The resulting set is the union of the current set and the signal set pointed to by set.
    • SIG_UNBLOCK: The resulting set is the intersection of the current set and the complement of the signal set pointed to by set.
    • SIG_SETMASK: The resulting set is the signal set pointed to by set.
  • set. Location of the new signal mask.
  • oset. Location to store the old signal mask.

Returned Values:

0 (OK) on succes or EINVAL if how is invalid.

Assumptions/Limitations:

POSIX Compatibility: Comparable to the POSIX interface of the same name.


3.0 OS Data Structures

3.1 Scalar types

Many of the types used to communicate with NuttX are simple scalar types. These types are used to provide architecture independence of the OS from the application. The scalar types used at the NuttX interface include:

  • pid_t
  • size_t
  • sigset_t
  • STATUS
  • time_t

3.2 Hidden Interface Structures

Several of the types used to interface with NuttX are structures that are intended to be hidden from the application. From the standpoint of the application, these structures (and structure pointers) should be treated as simple handles to reference OS resources. These hidden structures include:

  • _TCB
  • mqd_t
  • sem_t
  • WDOG_ID
  • pthread_key_t

In order to maintain portability, applications should not reference specific elements within these hidden structures. These hidden structures will not be described further in this user's manual.

3.3. Access to the errno Variable

A pointer to the thread-specific errno. value is available through a function call:

Function Prototype:

    int *get_errno_ptr( void )

Description: osGetErrnorPtr() returns a pointer to the thread-specific errno value.

This differs somewhat from the use for errno in a multi-threaded process environment: Each pthread will have its own private copy of errno and the errno will not be shared between pthreads.

Input Parameters: None

Returned Values:

  • A pointer to the thread-specific errno value.

3.4 User Interface Structures

3.4.1 main_t

main_t defines the type of a task entry point. main_t is declared in sys/types.h as:

    typedef int (*main_t)(int argc, char *argv[]);

3.4.2 struct sched_param

This structure is used to pass scheduling priorities to and from NuttX;

    struct sched_param
    {
      int sched_priority;
    };

3.4.3 struct timespec

This structure is used to pass timing information between the NuttX and a user application:

    struct timespec
    {
      time_t tv_sec;  /* Seconds */
      long   tv_nsec; /* Nanoseconds */
    };

3.4.4 struct mq_attr

This structure is used to communicate message queue attributes between NuttX and a MoBY application:

    struct mq_attr {
      size_t       mq_maxmsg;   /* Max number of messages in queue */
      size_t       mq_msgsize;  /* Max message size */
      unsigned     mq_flags;    /* Queue flags */
      size_t       mq_curmsgs;  /* Number of messages currently in queue */
    };

3.4.5 struct sigaction

The following structure defines the action to take for given signal:

    struct sigaction
    {
      union
      {
        void (*_sa_handler)(int);
        void (*_sa_sigaction)(int, siginfo_t *, void *);
      } sa_u;
      sigset_t           sa_mask;
      int                sa_flags;
    };
    #define sa_handler   sa_u._sa_handler
    #define sa_sigaction sa_u._sa_sigaction

3.4.6 struct siginfo/siginfo_t

The following types is used to pass parameters to/from signal handlers:

    typedef struct siginfo
    {
      int          si_signo;
      int          si_code;
      union sigval si_value;
   } siginfo_t;

3.4.7 union sigval

This defines the type of the struct siginfo si_value field and is used to pass parameters with signals.

    union sigval
    {
      int   sival_int;
      void *sival_ptr;
    };

3.4.8 struct sigevent

The following is used to attach a signal to a message queue to notify a task when a message is available on a queue.

    struct sigevent
    {
      int          sigev_signo;
      union sigval sigev_value;
      int          sigev_notify;
    };

3.4.9 Watchdog Data Types

When a watchdog expires, the callback function with this type is called:

    typedef void (*wdentry_t)(int argc, ...);

Where argc is the number of uint32 type arguments that follow.

The arguments are passed as uint32 values. For systems where the sizeof(pointer) < sizeof(uint32), the following union defines the alignment of the pointer within the uint32. For example, the SDCC MCS51 general pointer is 24-bits, but uint32 is 32-bits (of course).

    union wdparm_u
    {
      void   *pvarg;
      uint32 *dwarg;
    };
    typedef union wdparm_u wdparm_t;

For most 32-bit systems, pointers and uint32 are the same size For systems where sizeof(pointer) > sizeof(uint32), we will have to do some redesign.

2.10 Filesystem Interfaces

The NuttX filesystem is very simple; it does not involve any block drivers or particular filesystem (like FAT or EXT2 etc.). The NuttX filesystem simply supports a set a filesystem APIs (open(), close(), read(), write, etc.) and a registration mechanism that allows devices drivers to a associated with nodes in a file-system-like name space.

2.10.1 Driver Operations

      #include <fcntl.h>
      int open(const char *path, int oflag, ...);
    
      #include <unistd.h>
      int   close(int fd);
      int   dup(int fildes);
      int   dup2(int fildes1, int fildes2);
      off_t lseek(int fd, off_t offset, int whence);           /* Prototyped but not implemented */
      int   read(int fd, void *buf, unsigned int nbytes);
      int   unlink(const char *path);
      int   write(int fd, const void *buf, unsigned int nbytes);
    
      #include <sys/ioctl.h>
      int    ioctl(int fd, int req, unsigned long arg);
    

2.10.2 Directory Operations

      #include <dirent.h>
      int        closedir(DIR *dirp);
      FAR DIR   *opendir(const char *path);
      FAR struct dirent *readdir(FAR DIR *dirp);
      int        readdir_r(FAR DIR *dirp, FAR struct dirent *entry, FAR struct dirent **result);
      void       rewinddir(FAR DIR *dirp);
      void       seekdir(FAR DIR *dirp, int loc);
      int        telldir(FAR DIR *dirp);
    

2.10.3 Standard I/O

      #include <stdio.h>
      int    fclose(FILE *stream);
      int    fflush(FILE *stream);
      int    feof(FILE *stream);                               /* Prototyped but not implemented */
      int    ferror(FILE *stream);                             /* Prototyped but not implemented */
      int    fgetc(FILE *stream);
      char  *fgets(char *s, int n, FILE *stream);
      FILE  *fopen(const char *path, const char *type);
      int    fprintf(FILE *stream, const char *format, ...);
      int    fputc(int c, FILE *stream);
      int    fputs(const char *s, FILE *stream);
      size_t fread(void *ptr, size_t size, size_t n_items, FILE *stream);
      int    fseek(FILE *stream, long int offset, int whence); /* Prototyped but not implemented */
      size_t fwrite(const void *ptr, size_t size, size_t n_items, FILE *stream);
      char  *gets(char *s);
    
      int    printf(const char *format, ...);
      int    puts(const char *s);
      int    rename(const char *source, const char *target);   /* Prototyped but not implemented */
      int    sprintf(char *dest, const char *format, ...);
      int    ungetc(int c, FILE *stream);
      int    vprintf(const char *s, va_list ap);
      int    vfprintf(FILE *stream, const char *s, va_list ap);
      int    vsprintf(char *buf, const char *s, va_list ap);
    
      int    chdir(const char *path);                          /* Prototyped but not implemented */
      FILE  *fdopen(int fd, const char *type);
      int    fstat(int fd, FAR struct stat *buf);              /* Prototyped but not implemented */
      char  *getcwd(FAR char *buf, size_t size);               /* Prototyped but not implemented */
      int    mkdir(const char *path, mode_t mode);             /* Prototyped but not implemented */
      int    rmdir(const char *path);                          /* Prototyped but not implemented */
      int    stat(const char *path, FAR struct stat *buf);     /* Prototyped but not implemented */
      int    statfs(const char *path, FAR struct statfs *buf); /* Prototyped but not implemented */
    

Index