/**************************************************************************** * drivers/mtd/gd5f.c * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ /* Configuration ************************************************************/ #ifndef CONFIG_GD5F_SPIMODE # define CONFIG_GD5F_SPIMODE SPIDEV_MODE0 #endif #ifndef CONFIG_GD5F_SPIFREQUENCY # define CONFIG_GD5F_SPIFREQUENCY 20000000 #endif /* GD5F Instructions ********************************************************/ /* Command Value Description Addr Data */ /* Dummy */ #define GD5F_GET_FEATURE 0x0f /* Get features 1 0 1 */ #define GD5F_SET_FEATURE 0x1f /* Set features 1 0 1 */ #define GD5F_PAGE_READ 0x13 /* Array read 3 0 0 */ #define GD5F_READ_FROM_CACHE 0x03 /* Output cache data * on SO 2 1 1-2112 */ #define GD5F_READ_ID 0x9f /* Read device ID 0 1 2 */ #define GD5F_ECC_STATUS_READ 0x7c /* Internal ECC status * output 0 1 1 */ #define GD5F_BLOCK_ERASE 0xd8 /* Block erase 3 0 0 */ #define GD5F_PROGRAM_EXECUTE 0x10 /* Enter block/page * address, execute 3 0 0 */ #define GD5F_PROGRAM_LOAD 0x02 /* Load program data with * cache reset first 2 0 1-2112 */ #define GD5F_PROGRAM_LOAD_RANDOM 0x84 /* Load program data * without cache reset 2 0 1-2112 */ #define GD5F_WRITE_ENABLE 0x06 /* 0 0 0 */ #define GD5F_WRITE_DISABLE 0x04 /* 0 0 0 */ #define GD5F_RESET 0xff /* Reset the device 0 0 0 */ #define GD5F_DUMMY 0x00 /* No Operation 0 0 0 */ /* Feature register *********************************************************/ /* JEDEC Read ID register values */ #define GD5F_MANUFACTURER 0xc8 #define GD5F_GD5F_CAPACITY_MASK 0x0f #define GD5F_CAPACITY_1GBIT 0x01 /* 1 Gb */ #define GD5F_CAPACITY_2GBIT 0x02 /* 2 Gb */ #define GD5F_CAPACITY_4GBIT 0x04 /* 4 Gb */ #define GD5F_NSECTORS_1GBIT 1024 /* 1024x131072 = 1Gbit memory capacity */ #define GD5F_NSECTORS_2GBIT 2048 /* 2048x131072 = 2Gbit memory capacity */ #define GD5F_NSECTORS_4GBIT 4096 /* 4096x131072 = 4Gbit memory capacity */ #define GD5F_SECTOR_SHIFT 17 /* 131072 byte */ #define GD5F_PAGE_SHIFT 11 /* 2048 */ /* Register address */ #define GD5F_SECURE_OTP 0xb0 #define GD5F_STATUS 0xc0 #define GD5F_BLOCK_PROTECTION 0xa0 /* Bit definitions */ /* Secure OTP (On-Time-Programmable) register */ #define GD5F_SOTP_QE (1 << 0) /* Bit 0: Quad Enable */ #define GD5F_SOTP_ECC (1 << 4) /* Bit 4: ECC enabled */ #define GD5F_SOTP_SOTP_EN (1 << 6) /* Bit 6: Secure OTP Enable */ #define GD5F_SOTP_SOTP_PROT (1 << 7) /* Bit 7: Secure OTP Protect */ /* Status register */ #define GD5F_SR_OIP (1 << 0) /* Bit 0: Operation in progress */ #define GD5F_SR_WEL (1 << 1) /* Bit 1: Write enable latch */ #define GD5F_SR_E_FAIL (1 << 2) /* Bit 2: Erase fail */ #define GD5F_SR_P_FAIL (1 << 3) /* Bit 3: Program Fail */ #define GD5F_SR_ECC_S0 (1 << 4) /* Bit 4-5: ECC Status */ #define GD5F_SR_ECC_S1 (1 << 5) /* Block Protection register */ #define GD5F_BP_SP (1 << 0) /* Bit 0: Solid-protection (1Gb only) */ #define GD5F_BP_COMPL (1 << 1) /* Bit 1: Complementary (1Gb only) */ #define GD5F_BP_INV (1 << 2) /* Bit 2: Invert (1Gb only) */ #define GD5F_BP_BP0 (1 << 3) /* Bit 3: Block Protection 0 */ #define GD5F_BP_BP1 (1 << 4) /* Bit 4: Block Protection 1 */ #define GD5F_BP_BP2 (1 << 5) /* Bit 5: Block Protection 2 */ #define GD5F_BP_BPRWD (1 << 7) /* Bit 7: Block Protection Register * Write Disable */ /* ECC Status register */ #define GD5F_FEATURE_ECC_MASK (0x03 << 4) #define GD5F_FEATURE_ECC_ERROR (0x02 << 4) #define GD5F_FEATURE_ECC_OFFSET 4 #define GD5F_ECC_STATUS_MASK 0x0f /**************************************************************************** * Private Types ****************************************************************************/ /* This type represents the state of the MTD device. The struct mtd_dev_s * must appear at the beginning of the definition so that you can freely * cast between pointers to struct mtd_dev_s and struct gd5f_dev_s. */ struct gd5f_dev_s { struct mtd_dev_s mtd; /* MTD interface */ FAR struct spi_dev_s *dev; /* Saved SPI interface instance */ uint32_t spi_devid; /* Chip select inputs */ uint16_t nsectors; /* 1024 or 2048 */ uint8_t sectorshift; /* 17 */ uint8_t pageshift; /* 11 */ uint8_t eccstatus; /* Internal ECC status */ }; /**************************************************************************** * Private Function Prototypes ****************************************************************************/ /* Helpers */ static inline void gd5f_lock(FAR struct spi_dev_s *dev); static inline void gd5f_unlock(FAR struct spi_dev_s *dev); static int gd5f_readid(FAR struct gd5f_dev_s *priv); static bool gd5f_waitstatus(FAR struct gd5f_dev_s *priv, uint8_t mask, bool successif); static inline void gd5f_writeenable(FAR struct gd5f_dev_s *priv); static inline void gd5f_writedisable(FAR struct gd5f_dev_s *priv); static bool gd5f_sectorerase(FAR struct gd5f_dev_s *priv, off_t startsector); static void gd5f_readbuffer(FAR struct gd5f_dev_s *priv, uint32_t address, uint8_t *buffer, size_t length); static bool gd5f_read_page(FAR struct gd5f_dev_s *priv, uint32_t position); static void gd5f_write_to_cache(FAR struct gd5f_dev_s *priv, uint32_t address, const uint8_t *buffer, size_t length); static bool gd5f_execute_write(FAR struct gd5f_dev_s *priv, uint32_t position); static inline void gd5f_eccstatusread(FAR struct gd5f_dev_s *priv); static inline void gd5f_enable_ecc(FAR struct gd5f_dev_s *priv); static inline void gd5f_unlockblocks(FAR struct gd5f_dev_s *priv); /* MTD driver methods */ static ssize_t gd5f_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR uint8_t *buffer); static ssize_t gd5f_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer); static ssize_t gd5f_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buffer); static ssize_t gd5f_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR const uint8_t *buffer); static int gd5f_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg); static int gd5f_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks); /**************************************************************************** * Private Functions ****************************************************************************/ /**************************************************************************** * Name: gd5f_lock ****************************************************************************/ static inline void gd5f_lock(FAR struct spi_dev_s *dev) { SPI_LOCK(dev, true); SPI_SETMODE(dev, CONFIG_GD5F_SPIMODE); SPI_SETBITS(dev, 8); SPI_HWFEATURES(dev, 0); SPI_SETFREQUENCY(dev, CONFIG_GD5F_SPIFREQUENCY); } /**************************************************************************** * Name: gd5f_unlock ****************************************************************************/ static inline void gd5f_unlock(FAR struct spi_dev_s *dev) { SPI_LOCK(dev, false); } /**************************************************************************** * Name: gd5f_readid ****************************************************************************/ static int gd5f_readid(FAR struct gd5f_dev_s *priv) { uint16_t manufacturer; uint16_t deviceid; uint16_t capacity; finfo("priv: %p\n", priv); /* Lock the SPI bus, configure the bus, and select this FLASH part. */ gd5f_lock(priv->dev); SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true); /* Send the "Read ID" command and read two ID bytes */ SPI_SEND(priv->dev, GD5F_READ_ID); SPI_SEND(priv->dev, GD5F_DUMMY); manufacturer = SPI_SEND(priv->dev, GD5F_DUMMY); deviceid = SPI_SEND(priv->dev, GD5F_DUMMY); /* De-select the FLASH and unlock the bus */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false); gd5f_unlock(priv->dev); finfo("manufacturer: %02x deviceid: %02x\n", manufacturer, deviceid); /* Check for a valid manufacturer */ if (manufacturer == GD5F_MANUFACTURER) { capacity = deviceid & GD5F_GD5F_CAPACITY_MASK; if (capacity == GD5F_CAPACITY_1GBIT) { priv->nsectors = GD5F_NSECTORS_1GBIT; } else if (capacity == GD5F_CAPACITY_2GBIT) { priv->nsectors = GD5F_NSECTORS_2GBIT; } else if (capacity == GD5F_CAPACITY_4GBIT) { priv->nsectors = GD5F_NSECTORS_4GBIT; } else { return -ENODEV; } priv->sectorshift = GD5F_SECTOR_SHIFT; priv->pageshift = GD5F_PAGE_SHIFT; return OK; } return -ENODEV; } /**************************************************************************** * Name: gd5f_waitstatus ****************************************************************************/ static bool gd5f_waitstatus(FAR struct gd5f_dev_s *priv, uint8_t mask, bool successif) { uint8_t status; /* Loop as long as the memory is busy with a write cycle */ do { /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true); /* Get feature command */ SPI_SEND(priv->dev, GD5F_GET_FEATURE); SPI_SEND(priv->dev, GD5F_STATUS); status = SPI_SEND(priv->dev, GD5F_DUMMY); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false); nxsig_usleep(1000); } while ((status & GD5F_SR_OIP) != 0); finfo("Complete %02x\n", status); return successif ? ((status & mask) != 0) : ((status & mask) == 0); } /**************************************************************************** * Name: gd5f_writeenable ****************************************************************************/ static inline void gd5f_writeenable(FAR struct gd5f_dev_s *priv) { /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true); /* Send Write Enable command */ SPI_SEND(priv->dev, GD5F_WRITE_ENABLE); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false); } /**************************************************************************** * Name: gd5f_writedisable ****************************************************************************/ static inline void gd5f_writedisable(FAR struct gd5f_dev_s *priv) { /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true); /* Send Write Enable command */ SPI_SEND(priv->dev, GD5F_WRITE_DISABLE); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false); } /**************************************************************************** * Name: gd5f_sectorerase (128K) ****************************************************************************/ static bool gd5f_sectorerase(FAR struct gd5f_dev_s *priv, off_t startsector) { const uint32_t block = startsector << (priv->sectorshift - priv->pageshift); finfo("block sector: %08lx\n", (long)block); /* Send write enable instruction */ gd5f_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true); /* Send the Block Erase instruction */ SPI_SEND(priv->dev, GD5F_BLOCK_ERASE); SPI_SEND(priv->dev, (block >> 16) & 0xff); SPI_SEND(priv->dev, (block >> 8) & 0xff); SPI_SEND(priv->dev, block & 0xff); /* De-select the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false); finfo("Erased\n"); return gd5f_waitstatus(priv, GD5F_SR_E_FAIL, false); } /**************************************************************************** * Name: gd5f_erase ****************************************************************************/ static int gd5f_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks) { FAR struct gd5f_dev_s *priv = (FAR struct gd5f_dev_s *)dev; size_t blocksleft = nblocks; finfo("Erase: startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* Lock access to the SPI bus until we complete the erase */ gd5f_lock(priv->dev); /* Wait all operations complete */ gd5f_waitstatus(priv, GD5F_SR_OIP, false); while (blocksleft > 0) { if (!gd5f_sectorerase(priv, startblock)) { break; } startblock++; blocksleft--; } gd5f_unlock(priv->dev); return nblocks - blocksleft; } /**************************************************************************** * Name: gd5f_readbuffer ****************************************************************************/ static void gd5f_readbuffer(FAR struct gd5f_dev_s *priv, uint32_t address, uint8_t *buffer, size_t length) { const uint16_t offset = address & ((1 << priv->pageshift) - 1); /* Select the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true); SPI_SEND(priv->dev, GD5F_READ_FROM_CACHE); /* Send the address high byte first. */ SPI_SEND(priv->dev, (offset >> 8) & 0xff); SPI_SEND(priv->dev, (offset) & 0xff); /* Send a dummy byte */ SPI_SEND(priv->dev, GD5F_DUMMY); /* Then read all of the requested bytes */ SPI_RECVBLOCK(priv->dev, buffer, length); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false); } /**************************************************************************** * Name: gd5f_read_page ****************************************************************************/ static bool gd5f_read_page(FAR struct gd5f_dev_s *priv, uint32_t pageaddress) { const uint32_t row = pageaddress >> priv->pageshift; /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true); /* Send the Read Page instruction */ SPI_SEND(priv->dev, GD5F_PAGE_READ); SPI_SEND(priv->dev, (row >> 16) & 0xff); SPI_SEND(priv->dev, (row >> 8) & 0xff); SPI_SEND(priv->dev, row & 0xff); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false); /* Wait Page Read Complete */ gd5f_waitstatus(priv, GD5F_SR_OIP, false); /* Check HardWare ECC result */ gd5f_eccstatusread(priv); if ((priv->eccstatus & GD5F_FEATURE_ECC_MASK) == GD5F_FEATURE_ECC_ERROR) { /* ECC report uncorrectable, discard data */ return false; } return true; } /**************************************************************************** * Name: gd5f_read ****************************************************************************/ static ssize_t gd5f_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer) { FAR struct gd5f_dev_s *priv = (FAR struct gd5f_dev_s *)dev; size_t bytesleft = nbytes; uint32_t position = offset; finfo("Read: offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); /* Lock the SPI bus and select this FLASH part */ gd5f_lock(priv->dev); /* Wait all operations complete */ gd5f_waitstatus(priv, GD5F_SR_OIP, false); while (bytesleft) { const uint32_t pageaddress = (position >> priv->pageshift) << priv->pageshift; const uint32_t spaceleft = pageaddress + (1 << priv->pageshift) - position; const size_t chunklength = bytesleft < spaceleft ? bytesleft : spaceleft; if (!gd5f_read_page(priv, pageaddress)) { break; } gd5f_readbuffer(priv, position, buffer, chunklength); position += chunklength; buffer += chunklength; bytesleft -= chunklength; } gd5f_unlock(priv->dev); finfo("return nbytes: %d\n", (int)(nbytes - bytesleft)); return nbytes - bytesleft; } /**************************************************************************** * Name: gd5f_bread ****************************************************************************/ static ssize_t gd5f_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR uint8_t *buffer) { ssize_t nbytes; FAR struct gd5f_dev_s *priv = (FAR struct gd5f_dev_s *)dev; finfo("Bread: startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); nbytes = gd5f_read(dev, startblock << priv->pageshift, nblocks << priv->pageshift, buffer); if (nbytes > 0) { nbytes >>= priv->pageshift; } return nbytes; } /**************************************************************************** * Name: gd5f_write_to_cache ****************************************************************************/ static void gd5f_write_to_cache(FAR struct gd5f_dev_s *priv, uint32_t address, const uint8_t *buffer, size_t length) { const uint16_t offset = address & ((1 << priv->pageshift) - 1); /* Select the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true); /* Send the Program Load command */ SPI_SEND(priv->dev, GD5F_PROGRAM_LOAD); /* Send the address high byte first. */ SPI_SEND(priv->dev, (offset >> 8) & 0xff); SPI_SEND(priv->dev, (offset) & 0xff); /* Send block of bytes */ SPI_SNDBLOCK(priv->dev, buffer, length); /* De-select the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false); } /**************************************************************************** * Name: gd5f_execute_write ****************************************************************************/ static bool gd5f_execute_write(FAR struct gd5f_dev_s *priv, uint32_t pageaddress) { const uint32_t row = pageaddress >> priv->pageshift; /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true); /* Send the Program Execute instruction */ SPI_SEND(priv->dev, GD5F_PROGRAM_EXECUTE); SPI_SEND(priv->dev, (row >> 16) & 0xff); SPI_SEND(priv->dev, (row >> 8) & 0xff); SPI_SEND(priv->dev, row & 0xff); /* De-select the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false); return gd5f_waitstatus(priv, GD5F_SR_P_FAIL, false); } /**************************************************************************** * Name: gd5f_write ****************************************************************************/ static ssize_t gd5f_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR const uint8_t *buffer) { FAR struct gd5f_dev_s *priv = (FAR struct gd5f_dev_s *)dev; size_t bytesleft = nbytes; uint32_t position = offset; finfo("Write: offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); gd5f_lock(priv->dev); /* Wait all operations complete */ gd5f_waitstatus(priv, GD5F_SR_OIP, false); while (bytesleft) { const uint32_t pageaddress = (position >> priv->pageshift) << priv->pageshift; const uint32_t spaceleft = pageaddress + (1 << priv->pageshift) - position; const size_t chunklength = bytesleft < spaceleft ? bytesleft : spaceleft; gd5f_write_to_cache(priv, position, buffer, chunklength); gd5f_writeenable(priv); if (!gd5f_execute_write(priv, pageaddress)) { break; } position += chunklength; buffer += chunklength; bytesleft -= chunklength; } gd5f_unlock(priv->dev); return nbytes - bytesleft; } /**************************************************************************** * Name: gd5f_bwrite ****************************************************************************/ static ssize_t gd5f_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buffer) { ssize_t nbytes; FAR struct gd5f_dev_s *priv = (FAR struct gd5f_dev_s *)dev; finfo("Bwrite: startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* Lock the SPI bus and write all of the pages to FLASH */ nbytes = gd5f_write(dev, startblock << priv->pageshift, nblocks << priv->pageshift, buffer); if (nbytes > 0) { nbytes >>= priv->pageshift; } return nbytes; } /**************************************************************************** * Name: mx25l_ioctl ****************************************************************************/ static int gd5f_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg) { FAR struct gd5f_dev_s *priv = (FAR struct gd5f_dev_s *)dev; int ret = -EINVAL; finfo("cmd: %d\n", cmd); switch (cmd) { case MTDIOC_GEOMETRY: { FAR struct mtd_geometry_s *geo = (FAR struct mtd_geometry_s *)((uintptr_t)arg); if (geo) { memset(geo, 0, sizeof(*geo)); geo->blocksize = (1 << priv->pageshift); geo->erasesize = (1 << priv->sectorshift); geo->neraseblocks = priv->nsectors; ret = OK; finfo("blocksize: %d erasesize: %d neraseblocks: %d\n", geo->blocksize, geo->erasesize, geo->neraseblocks); } } break; case BIOC_PARTINFO: { FAR struct partition_info_s *info = (FAR struct partition_info_s *)arg; if (info != NULL) { info->numsectors = priv->nsectors << (priv->sectorshift - priv->pageshift); info->sectorsize = 1 << priv->pageshift; info->startsector = 0; info->parent[0] = '\0'; ret = OK; } } break; case MTDIOC_BULKERASE: { /* Erase the entire device */ ret = gd5f_erase(dev, 0, priv->nsectors); } break; case MTDIOC_ECCSTATUS: { uint8_t *result = (uint8_t *)arg; *result = (priv->eccstatus & GD5F_FEATURE_ECC_MASK) >> GD5F_FEATURE_ECC_OFFSET; ret = OK; } break; default: ret = -ENOTTY; /* Bad command */ break; } finfo("return %d\n", ret); return ret; } /**************************************************************************** * Name: gd5f_eccstatusread ****************************************************************************/ static inline void gd5f_eccstatusread(FAR struct gd5f_dev_s *priv) { SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true); SPI_SEND(priv->dev, GD5F_GET_FEATURE); SPI_SEND(priv->dev, GD5F_STATUS); priv->eccstatus = SPI_SEND(priv->dev, GD5F_DUMMY); SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false); } /**************************************************************************** * Name: gd5f_enable_ecc ****************************************************************************/ static inline void gd5f_enable_ecc(FAR struct gd5f_dev_s *priv) { uint8_t secure_otp = GD5F_SOTP_ECC; gd5f_lock(priv->dev); gd5f_writeenable(priv); SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true); SPI_SEND(priv->dev, GD5F_SET_FEATURE); SPI_SEND(priv->dev, GD5F_SECURE_OTP); SPI_SEND(priv->dev, secure_otp); SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false); gd5f_writedisable(priv); gd5f_unlock(priv->dev); } /**************************************************************************** * Name: gd5f_unlockblocks ****************************************************************************/ static inline void gd5f_unlockblocks(FAR struct gd5f_dev_s *priv) { uint8_t blockprotection = 0x00; gd5f_lock(priv->dev); gd5f_writeenable(priv); SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true); SPI_SEND(priv->dev, GD5F_SET_FEATURE); SPI_SEND(priv->dev, GD5F_BLOCK_PROTECTION); SPI_SEND(priv->dev, blockprotection); SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false); gd5f_writedisable(priv); gd5f_unlock(priv->dev); } /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Name: gd5f_initialize * * Description: * Create an initialize MTD device instance. * MTD devices are not registered in the file system, but are created * as instances that can be bound to other functions(such as a block * or character driver front end). * ****************************************************************************/ FAR struct mtd_dev_s *gd5f_initialize(FAR struct spi_dev_s *dev, uint32_t spi_devid) { FAR struct gd5f_dev_s *priv; int ret; finfo("dev: %p\n", dev); priv = kmm_zalloc(sizeof(struct gd5f_dev_s)); if (priv) { /* Initialize the allocated structure. (unsupported methods were * nullified by kmm_zalloc). */ priv->mtd.erase = gd5f_erase; priv->mtd.bread = gd5f_bread; priv->mtd.bwrite = gd5f_bwrite; priv->mtd.ioctl = gd5f_ioctl; priv->mtd.name = "gd5f"; priv->dev = dev; priv->spi_devid = spi_devid; /* De-select the FLASH */ SPI_SELECT(dev, SPIDEV_FLASH(priv->spi_devid), false); /* Reset the flash */ SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true); SPI_SEND(priv->dev, GD5F_RESET); SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false); /* Wait reset complete */ gd5f_waitstatus(priv, GD5F_SR_OIP, false); /* Identify the FLASH chip and get its capacity */ ret = gd5f_readid(priv); if (ret != OK) { /* Unrecognized! Discard all of that work we just did and * return NULL */ ferr("ERROR: Unrecognized\n"); kmm_free(priv); return NULL; } gd5f_enable_ecc(priv); gd5f_waitstatus(priv, GD5F_SR_OIP, false); gd5f_unlockblocks(priv); } /* Return the implementation-specific state structure as the MTD device */ finfo("Return %p\n", priv); return (FAR struct mtd_dev_s *)priv; }