/**************************************************************************** * crypto/cryptosoft.c * $OpenBSD: cryptosoft.c,v 1.71 2014/07/13 23:24:47 deraadt Exp $ * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) * * This code was written by Angelos D. Keromytis in Athens, Greece, in * February 2000. Network Security Technologies Inc. (NSTI) kindly * supported the development of this code. * * Copyright (c) 2000, 2001 Angelos D. Keromytis * * Permission to use, copy, and modify this software with or without fee * is hereby granted, provided that this entire notice is included in * all source code copies of any software which is or includes a copy or * modification of this software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR * PURPOSE. ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ #ifndef howmany # define howmany(x, y) (((x) + ((y) - 1)) / (y)) #endif /**************************************************************************** * Private Data ****************************************************************************/ FAR struct swcr_data **swcr_sessions = NULL; uint32_t swcr_sesnum = 0; int swcr_id = -1; /**************************************************************************** * Public Functions ****************************************************************************/ /* Apply a symmetric encryption/decryption algorithm. */ int swcr_encdec(FAR struct cryptop *crp, FAR struct cryptodesc *crd, FAR struct swcr_data *sw, caddr_t buf) { unsigned char blk[EALG_MAX_BLOCK_LEN]; FAR unsigned char *iv; FAR unsigned char *ivp; FAR unsigned char *nivp; unsigned char iv2[EALG_MAX_BLOCK_LEN]; FAR const struct enc_xform *exf; int i; int j; int blks; int ivlen; exf = sw->sw_exf; blks = exf->blocksize; ivlen = exf->ivsize; /* Initialize the IV */ if (crd->crd_flags & CRD_F_ENCRYPT) { /* Do we need to write the IV */ if (!(crd->crd_flags & CRD_F_IV_PRESENT)) { arc4random_buf(crd->crd_iv, ivlen); bcopy(crd->crd_iv, buf + crd->crd_inject, ivlen); } } else { /* Decryption */ /* IV explicitly provided ? */ if (!(crd->crd_flags & CRD_F_IV_EXPLICIT)) { /* Get IV off buf */ bcopy(buf + crd->crd_inject, crd->crd_iv, ivlen); } } iv = crd->crd_iv; ivp = iv; /* xforms that provide a reinit method perform all IV * handling themselves. */ if (exf->reinit) { exf->reinit((caddr_t)sw->sw_kschedule, iv); } i = crd->crd_len; buf = buf + crd->crd_skip; while (i > 0) { bcopy(buf, blk, exf->blocksize); buf += exf->blocksize; if (exf->reinit) { if (crd->crd_flags & CRD_F_ENCRYPT) { exf->encrypt((caddr_t)sw->sw_kschedule, blk); } else { exf->decrypt((caddr_t)sw->sw_kschedule, blk); } } else if (crd->crd_flags & CRD_F_ENCRYPT) { /* XOR with previous block */ for (j = 0; j < blks; j++) blk[j] ^= ivp[j]; exf->encrypt((caddr_t)sw->sw_kschedule, blk); /* Keep encrypted block for XOR'ng * with next block */ bcopy(blk, iv, blks); ivp = iv; } else { /* decrypt */ /* Keep encrypted block for XOR'ing * with next block */ nivp = (ivp == iv) ? iv2 : iv; bcopy(blk, nivp, blks); exf->decrypt((caddr_t)sw->sw_kschedule, blk); /* XOR with previous block */ for (j = 0; j < blks; j++) { blk[j] ^= ivp[j]; } ivp = nivp; } bcopy(blk, crp->crp_dst, exf->blocksize); crp->crp_dst += exf->blocksize; i -= blks; /* Could be done... */ if (i == 0) { break; } } bcopy(ivp, crp->crp_iv, ivlen); return 0; /* Done with encryption/decryption */ } /* Compute keyed-hash authenticator. */ int swcr_authcompute(FAR struct cryptop *crp, FAR struct cryptodesc *crd, FAR struct swcr_data *sw, caddr_t buf) { unsigned char aalg[AALG_MAX_RESULT_LEN]; FAR const struct auth_hash *axf = sw->sw_axf; int err; if (sw->sw_ictx == 0) { return -EINVAL; } err = axf->update(&sw->sw_ctx, (FAR uint8_t *)buf + crd->crd_skip, crd->crd_len); if (err) { return err; } if (crd->crd_flags & CRD_F_ESN) { axf->update(&sw->sw_ctx, crd->crd_esn, 4); } switch (sw->sw_alg) { case CRYPTO_MD5_HMAC: case CRYPTO_SHA1_HMAC: case CRYPTO_RIPEMD160_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: if (sw->sw_octx == NULL) { return -EINVAL; } if (crd->crd_flags & CRD_F_UPDATE) { break; } axf->final(aalg, &sw->sw_ctx); bcopy(sw->sw_octx, &sw->sw_ctx, axf->ctxsize); axf->update(&sw->sw_ctx, aalg, axf->hashsize); axf->final((FAR uint8_t *)crp->crp_mac, &sw->sw_ctx); bcopy(sw->sw_ictx, &sw->sw_ctx, axf->ctxsize); break; } return 0; } int swcr_hash(FAR struct cryptop *crp, FAR struct cryptodesc *crd, FAR struct swcr_data *sw, caddr_t buf) { FAR const struct auth_hash *axf = sw->sw_axf; if (crd->crd_flags & CRD_F_UPDATE) { return axf->update(&sw->sw_ctx, (FAR uint8_t *)buf + crd->crd_skip, crd->crd_len); } else { axf->final((FAR uint8_t *)crp->crp_mac, &sw->sw_ctx); } return 0; } /* Apply a combined encryption-authentication transformation */ int swcr_authenc(FAR struct cryptop *crp) { uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))]; FAR u_char *blk = (u_char *)blkbuf; u_char aalg[AALG_MAX_RESULT_LEN]; u_char iv[EALG_MAX_BLOCK_LEN]; union authctx ctx; FAR struct cryptodesc *crd; FAR struct cryptodesc *crda = NULL; FAR struct cryptodesc *crde = NULL; FAR struct swcr_data *sw; FAR struct swcr_data *swa; FAR struct swcr_data *swe = NULL; FAR const struct auth_hash *axf = NULL; FAR const struct enc_xform *exf = NULL; caddr_t buf = (caddr_t)crp->crp_buf; caddr_t aad = (caddr_t)crp->crp_aad; FAR uint32_t *blkp; int blksz = 0; int ivlen = 0; int iskip = 0; int oskip = 0; int aadlen; int len; int i; for (crd = crp->crp_desc; crd; crd = crd->crd_next) { for (sw = swcr_sessions[crp->crp_sid & 0xffffffff]; sw && sw->sw_alg != crd->crd_alg; sw = sw->sw_next); if (sw == NULL) { return -EINVAL; } switch (sw->sw_alg) { case CRYPTO_AES_GCM_16: case CRYPTO_AES_GMAC: case CRYPTO_AES_CMAC: case CRYPTO_CHACHA20_POLY1305: swe = sw; crde = crd; exf = swe->sw_exf; ivlen = exf->ivsize; break; case CRYPTO_AES_128_GMAC: case CRYPTO_AES_192_GMAC: case CRYPTO_AES_256_GMAC: case CRYPTO_AES_128_CMAC: case CRYPTO_CHACHA20_POLY1305_MAC: swa = sw; crda = crd; axf = swa->sw_axf; if (swa->sw_ictx == 0) { return -EINVAL; } bcopy(swa->sw_ictx, &ctx, axf->ctxsize); blksz = axf->blocksize; break; default: return -EINVAL; } } if (crde == NULL || crda == NULL) { return -EINVAL; } /* Initialize the IV */ if (crde->crd_flags & CRD_F_ENCRYPT) { /* IV explicitly provided ? */ if (crde->crd_flags & CRD_F_IV_EXPLICIT) { bcopy(crde->crd_iv, iv, ivlen); } else { arc4random_buf(iv, ivlen); } if (!((crde->crd_flags) & CRD_F_IV_PRESENT)) { bcopy(iv, buf + crde->crd_inject, ivlen); } } else { /* Decryption */ /* IV explicitly provided ? */ if (crde->crd_flags & CRD_F_IV_EXPLICIT) { bcopy(crde->crd_iv, iv, ivlen); } else { /* Get IV off buf */ bcopy(iv, buf + crde->crd_inject, ivlen); } } /* Supply MAC with IV */ if (axf->reinit) { axf->reinit(&ctx, iv, ivlen); } /* Supply MAC with AAD */ if (aad) { aadlen = crda->crd_len; /* Section 5 of RFC 4106 specifies that AAD construction consists of * {SPI, ESN, SN} whereas the real packet contains only {SPI, SN}. * Unfortunately it doesn't follow a good example set in the Section * 3.3.2.1 of RFC 4303 where upper part of the ESN, located in the * external (to the packet) memory buffer, is processed by the hash * function in the end thus allowing to retain simple programming * interfaces and avoid kludges like the one below. */ if (crda->crd_flags & CRD_F_ESN) { aadlen += 4; /* SPI */ bcopy(buf + crda->crd_skip, blk, 4); iskip = 4; /* loop below will start with an offset of 4 */ /* ESN */ bcopy(crda->crd_esn, blk + 4, 4); oskip = iskip + 4; /* offset output buffer blk by 8 */ } for (i = iskip; i < crda->crd_len; i += axf->hashsize) { len = MIN(crda->crd_len - i, axf->hashsize - oskip); bcopy(buf + crda->crd_skip + i, blk + oskip, len); bzero(blk + len + oskip, axf->hashsize - len - oskip); axf->update(&ctx, blk, axf->hashsize); oskip = 0; /* reset initial output offset */ } } if (exf->reinit) { exf->reinit((caddr_t)swe->sw_kschedule, iv); } /* Do encryption/decryption with MAC */ if (buf) { for (i = 0; i < crde->crd_len; i += blksz) { len = MIN(crde->crd_len - i, blksz); if (len < blksz) { bzero(blk, blksz); } bcopy(buf + i, blk, len); if (crde->crd_flags & CRD_F_ENCRYPT) { exf->encrypt((caddr_t)swe->sw_kschedule, blk); axf->update(&ctx, blk, len); } else { axf->update(&ctx, blk, len); exf->decrypt((caddr_t)swe->sw_kschedule, blk); } if (crp->crp_dst) { bcopy(blk, crp->crp_dst + i, len); } } } /* Do any required special finalization */ if (crp->crp_mac) { switch (crda->crd_alg) { case CRYPTO_AES_128_GMAC: case CRYPTO_AES_192_GMAC: case CRYPTO_AES_256_GMAC: /* length block */ bzero(blk, axf->hashsize); blkp = (uint32_t *)blk + 1; *blkp = htobe32(aadlen * 8); blkp = (uint32_t *)blk + 3; *blkp = htobe32(crde->crd_len * 8); axf->update(&ctx, blk, axf->hashsize); break; case CRYPTO_CHACHA20_POLY1305_MAC: /* length block */ bzero(blk, axf->hashsize); blkp = (uint32_t *)blk; *blkp = htole32(aadlen); blkp = (uint32_t *)blk + 2; *blkp = htole32(crde->crd_len); axf->update(&ctx, blk, axf->hashsize); break; } /* Finalize MAC */ axf->final(aalg, &ctx); /* Inject the authentication data */ bcopy(aalg, crp->crp_mac, axf->authsize); } return 0; } /* Apply a compression/decompression algorithm */ int swcr_compdec(FAR struct cryptodesc *crd, FAR struct swcr_data *sw, caddr_t buf, int outtype) { FAR uint8_t *data; FAR uint8_t *out; FAR const struct comp_algo *cxf; uint32_t result; cxf = sw->sw_cxf; /* We must handle the whole buffer of data in one time * then if there is not all the data in the mbuf, we must * copy in a buffer. */ data = kmm_malloc(crd->crd_len); if (data == NULL) { return -EINVAL; } bcopy(buf + crd->crd_skip, data, crd->crd_len); if (crd->crd_flags & CRD_F_COMP) { result = cxf->compress(data, crd->crd_len, &out); } else { result = cxf->decompress(data, crd->crd_len, &out); } kmm_free(data); if (result == 0) { return -EINVAL; } sw->sw_size = result; /* Check the compressed size when doing compression */ if (crd->crd_flags & CRD_F_COMP) { if (result > crd->crd_len) { /* Compression was useless, we lost time */ kmm_free(out); return 0; } } bcopy(out, buf + crd->crd_skip, result); kmm_free(out); return 0; } /* Generate a new software session. */ int swcr_newsession(FAR uint32_t *sid, FAR struct cryptoini *cri) { FAR struct swcr_data **swd; FAR const struct auth_hash *axf; FAR const struct enc_xform *txf; uint32_t i; int k; if (sid == NULL || cri == NULL) { return -EINVAL; } if (swcr_sessions) { for (i = 1; i < swcr_sesnum; i++) { if (swcr_sessions[i] == NULL) { break; } } } if (swcr_sessions == NULL || i == swcr_sesnum) { if (swcr_sessions == NULL) { i = 1; /* We leave swcr_sessions[0] empty */ swcr_sesnum = CRYPTO_SW_SESSIONS; } else { swcr_sesnum *= 2; } swd = kmm_calloc(swcr_sesnum, sizeof(struct swcr_data *)); if (swd == NULL) { /* Reset session number */ if (swcr_sesnum == CRYPTO_SW_SESSIONS) { swcr_sesnum = 0; } else { swcr_sesnum /= 2; } return -ENOBUFS; } /* Copy existing sessions */ if (swcr_sessions) { bcopy(swcr_sessions, swd, (swcr_sesnum / 2) * sizeof(struct swcr_data *)); kmm_free(swcr_sessions); } swcr_sessions = swd; } swd = &swcr_sessions[i]; *sid = i; while (cri) { *swd = kmm_zalloc(sizeof(struct swcr_data)); if (*swd == NULL) { swcr_freesession(i); return -ENOBUFS; } switch (cri->cri_alg) { case CRYPTO_3DES_CBC: txf = &enc_xform_3des; goto enccommon; case CRYPTO_BLF_CBC: txf = &enc_xform_blf; goto enccommon; case CRYPTO_CAST_CBC: txf = &enc_xform_cast5; goto enccommon; case CRYPTO_AES_CBC: txf = &enc_xform_aes; goto enccommon; case CRYPTO_AES_CTR: txf = &enc_xform_aes_ctr; goto enccommon; case CRYPTO_AES_XTS: txf = &enc_xform_aes_xts; goto enccommon; case CRYPTO_AES_GCM_16: txf = &enc_xform_aes_gcm; goto enccommon; case CRYPTO_AES_GMAC: txf = &enc_xform_aes_gmac; (*swd)->sw_exf = txf; break; case CRYPTO_AES_CMAC: txf = &enc_xform_aes_cmac; (*swd)->sw_exf = txf; break; case CRYPTO_AES_OFB: txf = &enc_xform_aes_ofb; goto enccommon; case CRYPTO_AES_CFB_8: txf = &enc_xform_aes_cfb_8; goto enccommon; case CRYPTO_AES_CFB_128: txf = &enc_xform_aes_cfb_128; goto enccommon; case CRYPTO_CHACHA20_POLY1305: txf = &enc_xform_chacha20_poly1305; goto enccommon; case CRYPTO_NULL: txf = &enc_xform_null; goto enccommon; enccommon: if (txf->ctxsize > 0) { (*swd)->sw_kschedule = kmm_zalloc(txf->ctxsize); if ((*swd)->sw_kschedule == NULL) { swcr_freesession(i); return -EINVAL; } } if (cri->cri_klen / 8 > txf->maxkey || cri->cri_klen / 8 < txf->minkey) { swcr_freesession(i); return -EINVAL; } if (txf->setkey((*swd)->sw_kschedule, (FAR uint8_t *)cri->cri_key, cri->cri_klen / 8) < 0) { swcr_freesession(i); return -EINVAL; } (*swd)->sw_exf = txf; break; case CRYPTO_MD5_HMAC: axf = &auth_hash_hmac_md5_96; goto authcommon; case CRYPTO_SHA1_HMAC: axf = &auth_hash_hmac_sha1_96; goto authcommon; case CRYPTO_RIPEMD160_HMAC: axf = &auth_hash_hmac_ripemd_160_96; goto authcommon; case CRYPTO_SHA2_256_HMAC: axf = &auth_hash_hmac_sha2_256_128; goto authcommon; case CRYPTO_SHA2_384_HMAC: axf = &auth_hash_hmac_sha2_384_192; goto authcommon; case CRYPTO_SHA2_512_HMAC: axf = &auth_hash_hmac_sha2_512_256; authcommon: (*swd)->sw_ictx = kmm_malloc(axf->ctxsize); if ((*swd)->sw_ictx == NULL) { swcr_freesession(i); return -ENOBUFS; } (*swd)->sw_octx = kmm_malloc(axf->ctxsize); if ((*swd)->sw_octx == NULL) { swcr_freesession(i); return -ENOBUFS; } if (cri->cri_klen / 8 > axf->keysize) { swcr_freesession(i); return -EINVAL; } for (k = 0; k < cri->cri_klen / 8; k++) { cri->cri_key[k] ^= HMAC_IPAD_VAL; } axf->init((*swd)->sw_ictx); axf->update((*swd)->sw_ictx, (FAR uint8_t *)cri->cri_key, cri->cri_klen / 8); axf->update((*swd)->sw_ictx, hmac_ipad_buffer, axf->blocksize - (cri->cri_klen / 8)); for (k = 0; k < cri->cri_klen / 8; k++) { cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); } axf->init((*swd)->sw_octx); axf->update((*swd)->sw_octx, (FAR uint8_t *)cri->cri_key, cri->cri_klen / 8); axf->update((*swd)->sw_octx, hmac_opad_buffer, axf->blocksize - (cri->cri_klen / 8)); for (k = 0; k < cri->cri_klen / 8; k++) { cri->cri_key[k] ^= HMAC_OPAD_VAL; } (*swd)->sw_axf = axf; bcopy((*swd)->sw_ictx, &(*swd)->sw_ctx, axf->ctxsize); break; case CRYPTO_MD5: axf = &auth_hash_md5; goto auth3common; case CRYPTO_RIPEMD160: axf = &auth_hash_ripemd_160; goto auth3common; case CRYPTO_SHA1: axf = &auth_hash_sha1; goto auth3common; case CRYPTO_SHA2_224: axf = &auth_hash_sha2_224; goto auth3common; case CRYPTO_SHA2_256: axf = &auth_hash_sha2_256; goto auth3common; case CRYPTO_SHA2_384: axf = &auth_hash_sha2_384; goto auth3common; case CRYPTO_SHA2_512: axf = &auth_hash_sha2_512; auth3common: (*swd)->sw_ictx = kmm_zalloc(axf->ctxsize); if ((*swd)->sw_ictx == NULL) { swcr_freesession(i); return -ENOBUFS; } axf->init((*swd)->sw_ictx); (*swd)->sw_axf = axf; bcopy((*swd)->sw_ictx, &(*swd)->sw_ctx, axf->ctxsize); if (cri->cri_sid != -1) { if (swcr_sessions[cri->cri_sid] == NULL) { swcr_freesession(i); return -EINVAL; } bcopy(&swcr_sessions[cri->cri_sid]->sw_ctx, &(*swd)->sw_ctx, axf->ctxsize); } break; case CRYPTO_AES_128_GMAC: axf = &auth_hash_gmac_aes_128; goto auth4common; case CRYPTO_AES_192_GMAC: axf = &auth_hash_gmac_aes_192; goto auth4common; case CRYPTO_AES_256_GMAC: axf = &auth_hash_gmac_aes_256; goto auth4common; case CRYPTO_AES_128_CMAC: axf = &auth_hash_cmac_aes_128; goto auth4common; case CRYPTO_POLY1305: axf = &auth_hash_poly1305; goto auth4common; case CRYPTO_CRC32: axf = &auth_hash_crc32; goto auth4common; case CRYPTO_CHACHA20_POLY1305_MAC: axf = &auth_hash_chacha20_poly1305; auth4common: (*swd)->sw_ictx = kmm_malloc(axf->ctxsize); if ((*swd)->sw_ictx == NULL) { swcr_freesession(i); return -ENOBUFS; } axf->init((*swd)->sw_ictx); axf->setkey((*swd)->sw_ictx, (FAR uint8_t *)cri->cri_key, cri->cri_klen / 8); bcopy((*swd)->sw_ictx, &(*swd)->sw_ctx, axf->ctxsize); (*swd)->sw_axf = axf; break; case CRYPTO_ESN: /* nothing to do */ break; default: swcr_freesession(i); return -EINVAL; } (*swd)->sw_alg = cri->cri_alg; cri = cri->cri_next; swd = &((*swd)->sw_next); } return 0; } /* Free a session. */ int swcr_freesession(uint64_t tid) { FAR struct swcr_data *swd; FAR const struct enc_xform *txf; FAR const struct auth_hash *axf; uint32_t sid = ((uint32_t) tid) & 0xffffffff; if (sid > swcr_sesnum || swcr_sessions == NULL || swcr_sessions[sid] == NULL) { return -EINVAL; } /* Silently accept and return */ if (sid == 0) { return 0; } while ((swd = swcr_sessions[sid]) != NULL) { swcr_sessions[sid] = swd->sw_next; switch (swd->sw_alg) { case CRYPTO_3DES_CBC: case CRYPTO_BLF_CBC: case CRYPTO_CAST_CBC: case CRYPTO_RIJNDAEL128_CBC: case CRYPTO_AES_CTR: case CRYPTO_AES_XTS: case CRYPTO_AES_GCM_16: case CRYPTO_AES_GMAC: case CRYPTO_AES_CMAC: case CRYPTO_AES_OFB: case CRYPTO_AES_CFB_8: case CRYPTO_AES_CFB_128: case CRYPTO_CHACHA20_POLY1305: case CRYPTO_NULL: txf = swd->sw_exf; if (swd->sw_kschedule) { explicit_bzero(swd->sw_kschedule, txf->ctxsize); kmm_free(swd->sw_kschedule); } break; case CRYPTO_MD5_HMAC: case CRYPTO_SHA1_HMAC: case CRYPTO_RIPEMD160_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: axf = swd->sw_axf; if (swd->sw_ictx) { explicit_bzero(swd->sw_ictx, axf->ctxsize); kmm_free(swd->sw_ictx); } if (swd->sw_octx) { explicit_bzero(swd->sw_octx, axf->ctxsize); kmm_free(swd->sw_octx); } break; case CRYPTO_AES_128_GMAC: case CRYPTO_AES_192_GMAC: case CRYPTO_AES_256_GMAC: case CRYPTO_AES_128_CMAC: case CRYPTO_CHACHA20_POLY1305_MAC: case CRYPTO_MD5: case CRYPTO_POLY1305: case CRYPTO_RIPEMD160: case CRYPTO_SHA1: case CRYPTO_SHA2_224: case CRYPTO_SHA2_256: case CRYPTO_SHA2_384: case CRYPTO_SHA2_512: case CRYPTO_CRC32: axf = swd->sw_axf; if (swd->sw_ictx) { explicit_bzero(swd->sw_ictx, axf->ctxsize); kmm_free(swd->sw_ictx); } break; } kmm_free(swd); } return 0; } /* Process a software request. */ int swcr_process(struct cryptop *crp) { FAR const struct enc_xform *txf; FAR struct cryptodesc *crd; FAR struct swcr_data *sw; uint32_t lid; /* Sanity check */ if (crp == NULL) { return -EINVAL; } if (crp->crp_desc == NULL || crp->crp_buf == NULL) { crp->crp_etype = -EINVAL; goto done; } lid = crp->crp_sid & 0xffffffff; if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) { crp->crp_etype = -ENOENT; goto done; } /* Go through crypto descriptors, processing as we go */ for (crd = crp->crp_desc; crd; crd = crd->crd_next) { /* Find the crypto context. * XXX Note that the logic here prevents us from having * XXX the same algorithm multiple times in a session * XXX (or rather, we can but it won't give us the right * XXX results). To do that, we'd need some way of differentiating * XXX between the various instances of an algorithm (so we can * XXX locate the correct crypto context). */ for (sw = swcr_sessions[lid]; sw && sw->sw_alg != crd->crd_alg; sw = sw->sw_next); /* No such context ? */ if (sw == NULL) { crp->crp_etype = -EINVAL; goto done; } switch (sw->sw_alg) { case CRYPTO_NULL: { break; } case CRYPTO_3DES_CBC: case CRYPTO_BLF_CBC: case CRYPTO_CAST_CBC: case CRYPTO_RIJNDAEL128_CBC: case CRYPTO_AES_CTR: case CRYPTO_AES_XTS: case CRYPTO_AES_OFB: case CRYPTO_AES_CFB_8: case CRYPTO_AES_CFB_128: txf = sw->sw_exf; if (crp->crp_iv) { if (!(crd->crd_flags & CRD_F_IV_EXPLICIT)) { bcopy(crp->crp_iv, crd->crd_iv, txf->ivsize); crd->crd_flags |= CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT; crd->crd_skip = 0; } } else { crd->crd_flags |= CRD_F_IV_PRESENT; crd->crd_skip = txf->blocksize; crd->crd_len -= txf->blocksize; } if ((crp->crp_etype = swcr_encdec(crp, crd, sw, crp->crp_buf)) != 0) { goto done; } break; case CRYPTO_MD5_HMAC: case CRYPTO_SHA1_HMAC: case CRYPTO_RIPEMD160_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: if ((crp->crp_etype = swcr_authcompute(crp, crd, sw, crp->crp_buf)) != 0) { goto done; } break; case CRYPTO_MD5: case CRYPTO_POLY1305: case CRYPTO_RIPEMD160: case CRYPTO_SHA1: case CRYPTO_SHA2_224: case CRYPTO_SHA2_256: case CRYPTO_SHA2_384: case CRYPTO_SHA2_512: case CRYPTO_CRC32: if ((crp->crp_etype = swcr_hash(crp, crd, sw, crp->crp_buf)) != 0) { goto done; } break; case CRYPTO_AES_GCM_16: case CRYPTO_AES_GMAC: case CRYPTO_AES_128_GMAC: case CRYPTO_AES_192_GMAC: case CRYPTO_AES_256_GMAC: case CRYPTO_AES_128_CMAC: case CRYPTO_CHACHA20_POLY1305: case CRYPTO_CHACHA20_POLY1305_MAC: crp->crp_etype = swcr_authenc(crp); goto done; break; default: /* Unknown/unsupported algorithm */ crp->crp_etype = -EINVAL; goto done; } } done: return 0; } int swcr_mod_exp(struct cryptkop *krp) { uint8_t *input = (uint8_t *)krp->krp_param[0].crp_p; uint8_t *exp = (uint8_t *)krp->krp_param[1].crp_p; uint8_t *modulus = (uint8_t *)krp->krp_param[2].crp_p; uint8_t *output = (uint8_t *)krp->krp_param[3].crp_p; int input_len = krp->krp_param[0].crp_nbits / 8; int exp_len = krp->krp_param[1].crp_nbits / 8; int modulus_len = krp->krp_param[2].crp_nbits / 8; int output_len = krp->krp_param[3].crp_nbits / 8; struct bn a; struct bn e; struct bn n; struct bn r; bignum_init(&a); bignum_init(&e); bignum_init(&n); bignum_init(&r); memcpy(e.array, exp, exp_len); memcpy(n.array, modulus, modulus_len); memcpy(a.array, input, input_len); pow_mod_faster(&a, &e, &n, &r); memcpy(output, r.array, output_len); return 0; } static int swcr_dh_make_public(FAR struct cryptkop *krp) { /* Curve25519 is used for testing. In fact, * the four parameters of this interface are p, g, x, gx; * p: used to determine the conic curve; * g: the base point of the curve; * x: the private key produced by random; * gx: the public key generated by the private key, * which could be caculated by gx = g ^ x mod p; * In curve25519, p and g are fixed. */ uint8_t *secret = (uint8_t *)krp->krp_param[2].crp_p; uint8_t *public = (uint8_t *)krp->krp_param[3].crp_p; curve25519_generate_secret(secret); return curve25519_generate_public(public, secret); } static int swcr_dh_make_common(FAR struct cryptkop *krp) { /* Curve25519 is used for testing. In fact, * the four parameters of this interface are: * public key / private key / p (the conic curve) / shared key */ uint8_t *public = (uint8_t *)krp->krp_param[0].crp_p; uint8_t *secret = (uint8_t *)krp->krp_param[1].crp_p; uint8_t *shared = (uint8_t *)krp->krp_param[3].crp_p; return curve25519(shared, secret, public); } int swcr_rsa_verify(struct cryptkop *krp) { uint8_t *exp = (uint8_t *)krp->krp_param[0].crp_p; uint8_t *modulus = (uint8_t *)krp->krp_param[1].crp_p; uint8_t *sig = (uint8_t *)krp->krp_param[2].crp_p; uint8_t *hash = (uint8_t *)krp->krp_param[3].crp_p; uint8_t *padding = (uint8_t *)krp->krp_param[4].crp_p; int exp_len = krp->krp_param[0].crp_nbits / 8; int modulus_len = krp->krp_param[1].crp_nbits / 8; int sig_len = krp->krp_param[2].crp_nbits / 8; int hash_len = krp->krp_param[3].crp_nbits / 8; int padding_len = krp->krp_param[4].crp_nbits / 8; struct bn a; struct bn e; struct bn n; struct bn r; bignum_init(&a); bignum_init(&e); bignum_init(&n); bignum_init(&r); memcpy(e.array, exp, exp_len); memcpy(n.array, modulus, modulus_len); memcpy(a.array, sig, sig_len); pow_mod_faster(&a, &e, &n, &r); return !!memcmp(r.array, hash, hash_len) + !!memcmp(r.array + hash_len, padding, padding_len); } int swcr_kprocess(struct cryptkop *krp) { /* Sanity check */ if (krp == NULL) { return -EINVAL; } /* Go through crypto descriptors, processing as we go */ switch (krp->krp_op) { case CRK_MOD_EXP: if ((krp->krp_status = swcr_mod_exp(krp)) != 0) { goto done; } break; case CRK_DH_MAKE_PUBLIC: if ((krp->krp_status = swcr_dh_make_public(krp) != 0)) { goto done; } break; case CRK_DH_COMPUTE_KEY: if ((krp->krp_status = swcr_dh_make_common(krp)) != 0) { goto done; } break; case CRK_RSA_PKCS15_VERIFY: if ((krp->krp_status = swcr_rsa_verify(krp)) != 0) { goto done; } break; default: /* Unknown/unsupported algorithm */ krp->krp_status = -EINVAL; goto done; } done: return 0; } /* Initialize the driver, called from the kernel main(). */ void swcr_init(void) { int algs[CRYPTO_ALGORITHM_MAX + 1]; int kalgs[CRK_ALGORITHM_MAX + 1]; int flags = CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_ENCRYPT_MAC | CRYPTOCAP_F_MAC_ENCRYPT; swcr_id = crypto_get_driverid(flags); if (swcr_id < 0) { /* This should never happen */ PANIC(); } algs[CRYPTO_3DES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_BLF_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_CAST_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_MD5_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA1_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_RIPEMD160_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_RIJNDAEL128_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_CTR] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_XTS] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_GCM_16] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_NULL] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA2_256_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA2_384_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA2_512_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_128_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_192_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_256_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_OFB] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_CFB_8] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_CFB_128] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_CHACHA20_POLY1305] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_CHACHA20_POLY1305_MAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_MD5] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_POLY1305] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_RIPEMD160] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA1] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA2_224] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA2_256] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA2_384] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA2_512] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_CRC32] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_CMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_128_CMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_ESN] = CRYPTO_ALG_FLAG_SUPPORTED; crypto_register(swcr_id, algs, swcr_newsession, swcr_freesession, swcr_process); kalgs[CRK_MOD_EXP] = CRYPTO_ALG_FLAG_SUPPORTED; kalgs[CRK_DH_MAKE_PUBLIC] = CRYPTO_ALG_FLAG_SUPPORTED; kalgs[CRK_DH_COMPUTE_KEY] = CRYPTO_ALG_FLAG_SUPPORTED; kalgs[CRK_RSA_PKCS15_VERIFY] = CRYPTO_ALG_FLAG_SUPPORTED; crypto_kregister(swcr_id, kalgs, swcr_kprocess); }