/************************************************************************************ * drivers/mtd/w25.c * Driver for SPI-based W25x16, x32, and x64 and W25q16, q32, q64, and q128 FLASH * from Winbond (and work-alike parts from AMIC) * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ************************************************************************************/ /************************************************************************************ * Included Files ************************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /************************************************************************************ * Pre-processor Definitions ************************************************************************************/ /* Configuration ********************************************************************/ /* Per the data sheet, the W25 parts can be driven with either SPI mode 0 (CPOL=0 * and CPHA=0) or mode 3 (CPOL=1 and CPHA=1). But I have heard that other devices * can operate in mode 0 or 1. So you may need to specify CONFIG_W25_SPIMODE to * select the best mode for your device. If CONFIG_W25_SPIMODE is not defined, * mode 0 will be used. */ #ifndef CONFIG_W25_SPIMODE # define CONFIG_W25_SPIMODE SPIDEV_MODE0 #endif /* SPI Frequency. May be up to 25MHz. */ #ifndef CONFIG_W25_SPIFREQUENCY # define CONFIG_W25_SPIFREQUENCY 20000000 #endif /* W25 Instructions *****************************************************************/ #define W25_WREN 0x06 /* Write enable */ #define W25_WRDI 0x04 /* Write Disable */ #define W25_RDSR 0x05 /* Read status register */ #define W25_WRSR 0x01 /* Write Status Register */ #define W25_RDDATA 0x03 /* Read data bytes */ #define W25_FRD 0x0b /* Higher speed read */ #define W25_FRDD 0x3b /* Fast read, dual output */ #define W25_PP 0x02 /* Program page */ #define W25_BE 0xd8 /* Block Erase (64KB) */ #define W25_SE 0x20 /* Sector erase (4KB) */ #define W25_CE 0xc7 /* Chip erase */ #define W25_PD 0xb9 /* Power down */ #define W25_PURDID 0xab /* Release PD, Device ID */ #define W25_RDMFID 0x90 /* Read Manufacturer / Device */ #define W25_JEDEC_ID 0x9f /* JEDEC ID read */ /* W25 Registers ********************************************************************/ /* Read ID (RDID) register values */ #define W25_MANUFACTURER 0xef /* Winbond Serial Flash */ #define W25X16_DEVID 0x14 /* W25X16 device ID (0xab, 0x90) */ #define W25X32_DEVID 0x15 /* W25X16 device ID (0xab, 0x90) */ #define W25X64_DEVID 0x16 /* W25X16 device ID (0xab, 0x90) */ /* JEDEC Read ID register values */ #define W25_JEDEC_WINBOND 0xef /* Winbond manufacturer ID */ #define W25_JEDEC_AMIC 0x37 /* AMIC manufacturer ID */ #define W25X_JEDEC_MEMORY_TYPE 0x30 /* W25X memory type */ #define W25Q_JEDEC_MEMORY_TYPE_A 0x40 /* W25Q memory type */ #define W25Q_JEDEC_MEMORY_TYPE_B 0x60 /* W25Q memory type */ #define W25Q_JEDEC_MEMORY_TYPE_C 0x50 /* W25Q memory type */ #define W25_JEDEC_CAPACITY_8MBIT 0x14 /* 256x4096 = 8Mbit memory capacity */ #define W25_JEDEC_CAPACITY_16MBIT 0x15 /* 512x4096 = 16Mbit memory capacity */ #define W25_JEDEC_CAPACITY_32MBIT 0x16 /* 1024x4096 = 32Mbit memory capacity */ #define W25_JEDEC_CAPACITY_64MBIT 0x17 /* 2048x4096 = 64Mbit memory capacity */ #define W25_JEDEC_CAPACITY_128MBIT 0x18 /* 4096x4096 = 128Mbit memory capacity */ #define NSECTORS_8MBIT 256 /* 256 sectors x 4096 bytes/sector = 1Mb */ #define NSECTORS_16MBIT 512 /* 512 sectors x 4096 bytes/sector = 2Mb */ #define NSECTORS_32MBIT 1024 /* 1024 sectors x 4096 bytes/sector = 4Mb */ #define NSECTORS_64MBIT 2048 /* 2048 sectors x 4096 bytes/sector = 8Mb */ #define NSECTORS_128MBIT 4096 /* 4096 sectors x 4096 bytes/sector = 16Mb */ /* Status register bit definitions */ #define W25_SR_BUSY (1 << 0) /* Bit 0: Write in progress */ #define W25_SR_WEL (1 << 1) /* Bit 1: Write enable latch bit */ #define W25_SR_BP_SHIFT (2) /* Bits 2-5: Block protect bits */ #define W25_SR_BP_MASK (15 << W25_SR_BP_SHIFT) # define W25X16_SR_BP_NONE (0 << W25_SR_BP_SHIFT) /* Unprotected */ # define W25X16_SR_BP_UPPER32nd (1 << W25_SR_BP_SHIFT) /* Upper 32nd */ # define W25X16_SR_BP_UPPER16th (2 << W25_SR_BP_SHIFT) /* Upper 16th */ # define W25X16_SR_BP_UPPER8th (3 << W25_SR_BP_SHIFT) /* Upper 8th */ # define W25X16_SR_BP_UPPERQTR (4 << W25_SR_BP_SHIFT) /* Upper quarter */ # define W25X16_SR_BP_UPPERHALF (5 << W25_SR_BP_SHIFT) /* Upper half */ # define W25X16_SR_BP_ALL (6 << W25_SR_BP_SHIFT) /* All sectors */ # define W25X16_SR_BP_LOWER32nd (9 << W25_SR_BP_SHIFT) /* Lower 32nd */ # define W25X16_SR_BP_LOWER16th (10 << W25_SR_BP_SHIFT) /* Lower 16th */ # define W25X16_SR_BP_LOWER8th (11 << W25_SR_BP_SHIFT) /* Lower 8th */ # define W25X16_SR_BP_LOWERQTR (12 << W25_SR_BP_SHIFT) /* Lower quarter */ # define W25X16_SR_BP_LOWERHALF (13 << W25_SR_BP_SHIFT) /* Lower half */ # define W25X32_SR_BP_NONE (0 << W25_SR_BP_SHIFT) /* Unprotected */ # define W25X32_SR_BP_UPPER64th (1 << W25_SR_BP_SHIFT) /* Upper 64th */ # define W25X32_SR_BP_UPPER32nd (2 << W25_SR_BP_SHIFT) /* Upper 32nd */ # define W25X32_SR_BP_UPPER16th (3 << W25_SR_BP_SHIFT) /* Upper 16th */ # define W25X32_SR_BP_UPPER8th (4 << W25_SR_BP_SHIFT) /* Upper 8th */ # define W25X32_SR_BP_UPPERQTR (5 << W25_SR_BP_SHIFT) /* Upper quarter */ # define W25X32_SR_BP_UPPERHALF (6 << W25_SR_BP_SHIFT) /* Upper half */ # define W25X32_SR_BP_ALL (7 << W25_SR_BP_SHIFT) /* All sectors */ # define W25X32_SR_BP_LOWER64th (9 << W25_SR_BP_SHIFT) /* Lower 64th */ # define W25X32_SR_BP_LOWER32nd (10 << W25_SR_BP_SHIFT) /* Lower 32nd */ # define W25X32_SR_BP_LOWER16th (11 << W25_SR_BP_SHIFT) /* Lower 16th */ # define W25X32_SR_BP_LOWER8th (12 << W25_SR_BP_SHIFT) /* Lower 8th */ # define W25X32_SR_BP_LOWERQTR (13 << W25_SR_BP_SHIFT) /* Lower quarter */ # define W25X32_SR_BP_LOWERHALF (14 << W25_SR_BP_SHIFT) /* Lower half */ # define W25X64_SR_BP_NONE (0 << W25_SR_BP_SHIFT) /* Unprotected */ # define W25X64_SR_BP_UPPER64th (1 << W25_SR_BP_SHIFT) /* Upper 64th */ # define W25X64_SR_BP_UPPER32nd (2 << W25_SR_BP_SHIFT) /* Upper 32nd */ # define W25X64_SR_BP_UPPER16th (3 << W25_SR_BP_SHIFT) /* Upper 16th */ # define W25X64_SR_BP_UPPER8th (4 << W25_SR_BP_SHIFT) /* Upper 8th */ # define W25X64_SR_BP_UPPERQTR (5 << W25_SR_BP_SHIFT) /* Upper quarter */ # define W25X64_SR_BP_UPPERHALF (6 << W25_SR_BP_SHIFT) /* Upper half */ # define W25X46_SR_BP_ALL (7 << W25_SR_BP_SHIFT) /* All sectors */ # define W25X64_SR_BP_LOWER64th (9 << W25_SR_BP_SHIFT) /* Lower 64th */ # define W25X64_SR_BP_LOWER32nd (10 << W25_SR_BP_SHIFT) /* Lower 32nd */ # define W25X64_SR_BP_LOWER16th (11 << W25_SR_BP_SHIFT) /* Lower 16th */ # define W25X64_SR_BP_LOWER8th (12 << W25_SR_BP_SHIFT) /* Lower 8th */ # define W25X64_SR_BP_LOWERQTR (13 << W25_SR_BP_SHIFT) /* Lower quarter */ # define W25X64_SR_BP_LOWERHALF (14 << W25_SR_BP_SHIFT) /* Lower half */ /* Bit 6: Reserved */ #define W25_SR_SRP (1 << 7) /* Bit 7: Status register write protect */ #define W25_DUMMY 0xa5 /* Chip Geometries ******************************************************************/ /* All members of the family support uniform 4K-byte sectors and 256 byte pages */ #define W25_SECTOR_SHIFT 12 /* Sector size 1 << 12 = 4Kb */ #define W25_SECTOR_SIZE (1 << 12) /* Sector size 1 << 12 = 4Kb */ #define W25_PAGE_SHIFT 8 /* Sector size 1 << 8 = 256b */ #define W25_PAGE_SIZE (1 << 8) /* Sector size 1 << 8 = 256b */ #ifdef CONFIG_W25_SECTOR512 /* Simulate a 512 byte sector */ # define W25_SECTOR512_SHIFT 9 /* Sector size 1 << 9 = 512 bytes */ # define W25_SECTOR512_SIZE (1 << 9) /* Sector size 1 << 9 = 512 bytes */ #endif #define W25_ERASED_STATE 0xff /* State of FLASH when erased */ /* Cache flags */ #define W25_CACHE_VALID (1 << 0) /* 1=Cache has valid data */ #define W25_CACHE_DIRTY (1 << 1) /* 1=Cache is dirty */ #define W25_CACHE_ERASED (1 << 2) /* 1=Backing FLASH is erased */ #define IS_VALID(p) ((((p)->flags) & W25_CACHE_VALID) != 0) #define IS_DIRTY(p) ((((p)->flags) & W25_CACHE_DIRTY) != 0) #define IS_ERASED(p) ((((p)->flags) & W25_CACHE_ERASED) != 0) #define SET_VALID(p) do { (p)->flags |= W25_CACHE_VALID; } while (0) #define SET_DIRTY(p) do { (p)->flags |= W25_CACHE_DIRTY; } while (0) #define SET_ERASED(p) do { (p)->flags |= W25_CACHE_ERASED; } while (0) #define CLR_VALID(p) do { (p)->flags &= ~W25_CACHE_VALID; } while (0) #define CLR_DIRTY(p) do { (p)->flags &= ~W25_CACHE_DIRTY; } while (0) #define CLR_ERASED(p) do { (p)->flags &= ~W25_CACHE_ERASED; } while (0) /************************************************************************************ * Private Types ************************************************************************************/ /* This type represents the state of the MTD device. The struct mtd_dev_s must * appear at the beginning of the definition so that you can freely cast between * pointers to struct mtd_dev_s and struct w25_dev_s. */ struct w25_dev_s { struct mtd_dev_s mtd; /* MTD interface */ FAR struct spi_dev_s *spi; /* Saved SPI interface instance */ uint16_t nsectors; /* Number of erase sectors */ uint8_t prev_instr; /* Previous instruction given to W25 device */ #if defined(CONFIG_W25_SECTOR512) && !defined(CONFIG_W25_READONLY) uint8_t flags; /* Buffered sector flags */ uint16_t esectno; /* Erase sector number in the cache*/ FAR uint8_t *sector; /* Allocated sector data */ #endif }; /************************************************************************************ * Private Function Prototypes ************************************************************************************/ /* Helpers */ static void w25_lock(FAR struct spi_dev_s *spi); static inline void w25_unlock(FAR struct spi_dev_s *spi); static inline int w25_readid(FAR struct w25_dev_s *priv); #ifndef CONFIG_W25_READONLY static void w25_unprotect(FAR struct w25_dev_s *priv); #endif static uint8_t w25_waitwritecomplete(FAR struct w25_dev_s *priv); static inline void w25_wren(FAR struct w25_dev_s *priv); static inline void w25_wrdi(FAR struct w25_dev_s *priv); static bool w25_is_erased(struct w25_dev_s *priv, off_t address, off_t size); static void w25_sectorerase(FAR struct w25_dev_s *priv, off_t offset); static inline int w25_chiperase(FAR struct w25_dev_s *priv); static void w25_byteread(FAR struct w25_dev_s *priv, FAR uint8_t *buffer, off_t address, size_t nbytes); #ifndef CONFIG_W25_READONLY static void w25_pagewrite(FAR struct w25_dev_s *priv, FAR const uint8_t *buffer, off_t address, size_t nbytes); #endif #ifdef CONFIG_W25_SECTOR512 static void w25_cacheflush(struct w25_dev_s *priv); static FAR uint8_t *w25_cacheread(struct w25_dev_s *priv, off_t sector); static void w25_cacheerase(struct w25_dev_s *priv, off_t sector); static void w25_cachewrite(FAR struct w25_dev_s *priv, FAR const uint8_t *buffer, off_t sector, size_t nsectors); #endif /* MTD driver methods */ static int w25_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks); static ssize_t w25_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR uint8_t *buf); static ssize_t w25_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buf); static ssize_t w25_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer); static int w25_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg); #if defined(CONFIG_MTD_BYTE_WRITE) && !defined(CONFIG_W25_READONLY) static ssize_t w25_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR const uint8_t *buffer); #endif /************************************************************************************ * Private Data ************************************************************************************/ /************************************************************************************ * Private Functions ************************************************************************************/ /************************************************************************************ * Name: w25_lock ************************************************************************************/ static void w25_lock(FAR struct spi_dev_s *spi) { /* On SPI buses where there are multiple devices, it will be necessary to * lock SPI to have exclusive access to the buses for a sequence of * transfers. The bus should be locked before the chip is selected. * * This is a blocking call and will not return until we have exclusive access to * the SPI bus. We will retain that exclusive access until the bus is unlocked. */ SPI_LOCK(spi, true); /* After locking the SPI bus, the we also need call the setfrequency, setbits, and * setmode methods to make sure that the SPI is properly configured for the device. * If the SPI bus is being shared, then it may have been left in an incompatible * state. */ SPI_SETMODE(spi, CONFIG_W25_SPIMODE); SPI_SETBITS(spi, 8); SPI_HWFEATURES(spi, 0); SPI_SETFREQUENCY(spi, CONFIG_W25_SPIFREQUENCY); } /************************************************************************************ * Name: w25_unlock ************************************************************************************/ static inline void w25_unlock(FAR struct spi_dev_s *spi) { SPI_LOCK(spi, false); } /************************************************************************************ * Name: w25_readid ************************************************************************************/ static inline int w25_readid(struct w25_dev_s *priv) { uint16_t manufacturer; uint16_t memory; uint16_t capacity; finfo("priv: %p\n", priv); /* Lock and configure the SPI bus */ w25_lock(priv->spi); /* Wait for any preceding write or erase operation to complete. */ w25_waitwritecomplete(priv); /* Select this FLASH part. */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true); /* Send the "Read ID (RDID)" command and read the first three ID bytes */ SPI_SEND(priv->spi, W25_JEDEC_ID); manufacturer = SPI_SEND(priv->spi, W25_DUMMY); memory = SPI_SEND(priv->spi, W25_DUMMY); capacity = SPI_SEND(priv->spi, W25_DUMMY); /* Deselect the FLASH and unlock the bus */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false); w25_unlock(priv->spi); finfo("manufacturer: %02x memory: %02x capacity: %02x\n", manufacturer, memory, capacity); /* Check for a valid manufacturer and memory type */ if ((manufacturer == W25_JEDEC_WINBOND || manufacturer == W25_JEDEC_AMIC) && (memory == W25X_JEDEC_MEMORY_TYPE || memory == W25Q_JEDEC_MEMORY_TYPE_A || memory == W25Q_JEDEC_MEMORY_TYPE_B || memory == W25Q_JEDEC_MEMORY_TYPE_C)) { /* Okay.. is it a FLASH capacity that we understand? If so, save * the FLASH capacity. */ /* 8M-bit / 1M-byte * * W25Q80BV */ if (capacity == W25_JEDEC_CAPACITY_8MBIT) { priv->nsectors = NSECTORS_8MBIT; } /* 16M-bit / 2M-byte (2,097,152) * * W24X16, W25Q16BV, W25Q16CL, W25Q16CV, W25Q16DW */ else if (capacity == W25_JEDEC_CAPACITY_16MBIT) { priv->nsectors = NSECTORS_16MBIT; } /* 32M-bit / M-byte (4,194,304) * * W25X32, W25Q32BV, W25Q32DW */ else if (capacity == W25_JEDEC_CAPACITY_32MBIT) { priv->nsectors = NSECTORS_32MBIT; } /* 64M-bit / 8M-byte (8,388,608) * * W25X64, W25Q64BV, W25Q64CV, W25Q64DW */ else if (capacity == W25_JEDEC_CAPACITY_64MBIT) { priv->nsectors = NSECTORS_64MBIT; } /* 128M-bit / 16M-byte (16,777,216) * * W25Q128BV */ else if (capacity == W25_JEDEC_CAPACITY_128MBIT) { priv->nsectors = NSECTORS_128MBIT; } else { /* Nope.. we don't understand this capacity. */ ferr("ERROR: Unsupported capacity: %02x\n", capacity); return -ENODEV; } return OK; } /* We don't understand the manufacturer or the memory type */ ferr("ERROR: Unrecognized manufacturer/memory type: %02x/%02x\n", manufacturer, memory); return -ENODEV; } /************************************************************************************ * Name: w25_unprotect ************************************************************************************/ #ifndef CONFIG_W25_READONLY static void w25_unprotect(FAR struct w25_dev_s *priv) { /* Lock and configure the SPI bus */ w25_lock(priv->spi); /* Wait for any preceding write or erase operation to complete. */ w25_waitwritecomplete(priv); /* Send "Write enable (WREN)" */ w25_wren(priv); /* Select this FLASH part */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true); /* Send "Write enable status (EWSR)" */ SPI_SEND(priv->spi, W25_WRSR); /* Following by the new status value */ SPI_SEND(priv->spi, 0); SPI_SEND(priv->spi, 0); /* Deselect the FLASH and unlock the bus */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false); w25_unlock(priv->spi); } #endif /************************************************************************************ * Name: w25_waitwritecomplete ************************************************************************************/ static uint8_t w25_waitwritecomplete(struct w25_dev_s *priv) { uint8_t status; /* Loop as long as the memory is busy with a write cycle. Device sets BUSY * flag to a 1 state whhen previous write or erase command is still executing * and during this time, device will ignore further instructions except for * "Read Status Register" and "Erase/Program Suspend" instructions. */ do { /* Select this FLASH part */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true); /* Send "Read Status Register (RDSR)" command */ SPI_SEND(priv->spi, W25_RDSR); /* Send a dummy byte to generate the clock needed to shift out the status */ status = SPI_SEND(priv->spi, W25_DUMMY); /* Deselect the FLASH */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false); /* Given that writing could take up to few tens of milliseconds, and erasing * could take more. The following short delay in the "busy" case will allow * other peripherals to access the SPI bus. Delay would slow down writing * too much, so go to sleep only if previous operation was not a page program * operation. */ if (priv->prev_instr != W25_PP && (status & W25_SR_BUSY) != 0) { w25_unlock(priv->spi); nxsig_usleep(1000); w25_lock(priv->spi); } } while ((status & W25_SR_BUSY) != 0); return status; } /************************************************************************************ * Name: w25_wren ************************************************************************************/ static inline void w25_wren(struct w25_dev_s *priv) { /* Select this FLASH part */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true); /* Send "Write Enable (WREN)" command */ SPI_SEND(priv->spi, W25_WREN); /* Deselect the FLASH */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false); } /************************************************************************************ * Name: w25_wrdi ************************************************************************************/ static inline void w25_wrdi(struct w25_dev_s *priv) { /* Select this FLASH part */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true); /* Send "Write Disable (WRDI)" command */ SPI_SEND(priv->spi, W25_WRDI); /* Deselect the FLASH */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false); } /************************************************************************************ * Name: w25_is_erased ************************************************************************************/ static bool w25_is_erased(struct w25_dev_s *priv, off_t address, off_t size) { size_t npages = size >> W25_PAGE_SHIFT; uint32_t erased_32; unsigned int i; uint32_t *buf; DEBUGASSERT((address % W25_PAGE_SIZE) == 0); DEBUGASSERT((size % W25_PAGE_SIZE) == 0); buf = kmm_malloc(W25_PAGE_SIZE); if (!buf) { return false; } memset(&erased_32, W25_ERASED_STATE, sizeof(erased_32)); /* Walk all pages in given area. */ while (npages) { /* Check if all bytes of page is in erased state. */ w25_byteread(priv, (unsigned char *)buf, address, W25_PAGE_SIZE); for (i = 0; i < W25_PAGE_SIZE / sizeof(uint32_t); i++) { if (buf[i] != erased_32) { /* Page not in erased state! */ kmm_free(buf); return false; } } address += W25_PAGE_SIZE; npages--; } kmm_free(buf); return true; } /************************************************************************************ * Name: w25_sectorerase ************************************************************************************/ static void w25_sectorerase(struct w25_dev_s *priv, off_t sector) { off_t address = sector << W25_SECTOR_SHIFT; finfo("sector: %08lx\n", (long)sector); /* Check if sector is already erased. */ if (w25_is_erased(priv, address, W25_SECTOR_SIZE)) { /* Sector already in erased state, so skip erase. */ return; } /* Wait for any preceding write or erase operation to complete. */ w25_waitwritecomplete(priv); /* Send write enable instruction */ w25_wren(priv); /* Select this FLASH part */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true); /* Send the "Sector Erase (SE)" instruction */ SPI_SEND(priv->spi, W25_SE); priv->prev_instr = W25_SE; /* Send the sector address high byte first. Only the most significant bits (those * corresponding to the sector) have any meaning. */ SPI_SEND(priv->spi, (address >> 16) & 0xff); SPI_SEND(priv->spi, (address >> 8) & 0xff); SPI_SEND(priv->spi, address & 0xff); /* Deselect the FLASH */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false); } /************************************************************************************ * Name: w25_chiperase ************************************************************************************/ static inline int w25_chiperase(struct w25_dev_s *priv) { finfo("priv: %p\n", priv); /* Wait for any preceding write or erase operation to complete. */ w25_waitwritecomplete(priv); /* Send write enable instruction */ w25_wren(priv); /* Select this FLASH part */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true); /* Send the "Chip Erase (CE)" instruction */ SPI_SEND(priv->spi, W25_CE); priv->prev_instr = W25_CE; /* Deselect the FLASH */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false); finfo("Return: OK\n"); return OK; } /************************************************************************************ * Name: w25_byteread ************************************************************************************/ static void w25_byteread(FAR struct w25_dev_s *priv, FAR uint8_t *buffer, off_t address, size_t nbytes) { uint8_t status; finfo("address: %08lx nbytes: %d\n", (long)address, (int)nbytes); /* Wait for any preceding write or erase operation to complete. */ status = w25_waitwritecomplete(priv); DEBUGASSERT((status & (W25_SR_WEL | W25_SR_BP_MASK)) == 0); /* Make sure that writing is disabled */ w25_wrdi(priv); /* Select this FLASH part */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true); /* Send "Read from Memory " instruction */ #ifdef CONFIG_W25_SLOWREAD SPI_SEND(priv->spi, W25_RDDATA); priv->prev_instr = W25_RDDATA; #else SPI_SEND(priv->spi, W25_FRD); priv->prev_instr = W25_FRD; #endif /* Send the address high byte first. */ SPI_SEND(priv->spi, (address >> 16) & 0xff); SPI_SEND(priv->spi, (address >> 8) & 0xff); SPI_SEND(priv->spi, address & 0xff); /* Send a dummy byte */ #ifndef CONFIG_W25_SLOWREAD SPI_SEND(priv->spi, W25_DUMMY); #endif /* Then read all of the requested bytes */ SPI_RECVBLOCK(priv->spi, buffer, nbytes); /* Deselect the FLASH */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false); } /************************************************************************************ * Name: w25_pagewrite ************************************************************************************/ #ifndef CONFIG_W25_READONLY static void w25_pagewrite(struct w25_dev_s *priv, FAR const uint8_t *buffer, off_t address, size_t nbytes) { uint8_t status; finfo("address: %08lx nwords: %d\n", (long)address, (int)nbytes); DEBUGASSERT(priv && buffer && (address & 0xff) == 0 && (nbytes & 0xff) == 0); for (; nbytes > 0; nbytes -= W25_PAGE_SIZE) { /* Wait for any preceding write or erase operation to complete. */ status = w25_waitwritecomplete(priv); DEBUGASSERT((status & (W25_SR_WEL | W25_SR_BP_MASK)) == 0); /* Enable write access to the FLASH */ w25_wren(priv); /* Select this FLASH part */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true); /* Send the "Page Program (W25_PP)" Command */ SPI_SEND(priv->spi, W25_PP); priv->prev_instr = W25_PP; /* Send the address high byte first. */ SPI_SEND(priv->spi, (address >> 16) & 0xff); SPI_SEND(priv->spi, (address >> 8) & 0xff); SPI_SEND(priv->spi, address & 0xff); /* Then send the page of data */ SPI_SNDBLOCK(priv->spi, buffer, W25_PAGE_SIZE); /* Deselect the FLASH and setup for the next pass through the loop */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false); /* Update addresses */ address += W25_PAGE_SIZE; buffer += W25_PAGE_SIZE; } /* Disable writing */ w25_wrdi(priv); } #endif /************************************************************************************ * Name: w25_bytewrite ************************************************************************************/ #if defined(CONFIG_MTD_BYTE_WRITE) && !defined(CONFIG_W25_READONLY) static inline void w25_bytewrite(struct w25_dev_s *priv, FAR const uint8_t *buffer, off_t offset, uint16_t count) { finfo("offset: %08lx count:%d\n", (long)offset, count); /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ w25_waitwritecomplete(priv); /* Enable the write access to the FLASH */ w25_wren(priv); /* Select this FLASH part */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true); /* Send "Page Program (PP)" command */ SPI_SEND(priv->spi, W25_PP); priv->prev_instr = W25_PP; /* Send the page offset high byte first. */ SPI_SEND(priv->spi, (offset >> 16) & 0xff); SPI_SEND(priv->spi, (offset >> 8) & 0xff); SPI_SEND(priv->spi, offset & 0xff); /* Then write the specified number of bytes */ SPI_SNDBLOCK(priv->spi, buffer, count); /* Deselect the FLASH: Chip Select high */ SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false); finfo("Written\n"); } #endif /* defined(CONFIG_MTD_BYTE_WRITE) && !defined(CONFIG_W25_READONLY) */ /************************************************************************************ * Name: w25_cacheflush ************************************************************************************/ #if defined(CONFIG_W25_SECTOR512) && !defined(CONFIG_W25_READONLY) static void w25_cacheflush(struct w25_dev_s *priv) { /* If the cached is dirty (meaning that it no longer matches the old FLASH * contents) or was erased (with the cache containing the correct FLASH contents), * then write the cached erase block to FLASH. */ if (IS_DIRTY(priv) || IS_ERASED(priv)) { /* Write entire erase block to FLASH */ w25_pagewrite(priv, priv->sector, (off_t)priv->esectno << W25_SECTOR_SHIFT, W25_SECTOR_SIZE); /* The case is no long dirty and the FLASH is no longer erased */ CLR_DIRTY(priv); CLR_ERASED(priv); } } #endif /************************************************************************************ * Name: w25_cacheread ************************************************************************************/ #if defined(CONFIG_W25_SECTOR512) && !defined(CONFIG_W25_READONLY) static FAR uint8_t *w25_cacheread(struct w25_dev_s *priv, off_t sector) { off_t esectno; int shift; int index; /* Convert from the 512 byte sector to the erase sector size of the device. For * exmample, if the actual erase sector size if 4Kb (1 << 12), then we first * shift to the right by 3 to get the sector number in 4096 increments. */ shift = W25_SECTOR_SHIFT - W25_SECTOR512_SHIFT; esectno = sector >> shift; finfo("sector: %ld esectno: %d shift=%d\n", sector, esectno, shift); /* Check if the requested erase block is already in the cache */ if (!IS_VALID(priv) || esectno != priv->esectno) { /* No.. Flush any dirty erase block currently in the cache */ w25_cacheflush(priv); /* Read the erase block into the cache */ w25_byteread(priv, priv->sector, (esectno << W25_SECTOR_SHIFT), W25_SECTOR_SIZE); /* Mark the sector as cached */ priv->esectno = esectno; SET_VALID(priv); /* The data in the cache is valid */ CLR_DIRTY(priv); /* It should match the FLASH contents */ CLR_ERASED(priv); /* The underlying FLASH has not been erased */ } /* Get the index to the 512 sector in the erase block that holds the argument */ index = sector & ((1 << shift) - 1); /* Return the address in the cache that holds this sector */ return &priv->sector[index << W25_SECTOR512_SHIFT]; } #endif /************************************************************************************ * Name: w25_cacheerase ************************************************************************************/ #if defined(CONFIG_W25_SECTOR512) && !defined(CONFIG_W25_READONLY) static void w25_cacheerase(struct w25_dev_s *priv, off_t sector) { FAR uint8_t *dest; /* First, make sure that the erase block containing the 512 byte sector is in * the cache. */ dest = w25_cacheread(priv, sector); /* Erase the block containing this sector if it is not already erased. * The erased indicated will be cleared when the data from the erase sector * is read into the cache and set here when we erase the block. */ if (!IS_ERASED(priv)) { off_t esectno = sector >> (W25_SECTOR_SHIFT - W25_SECTOR512_SHIFT); finfo("sector: %ld esectno: %d\n", sector, esectno); w25_sectorerase(priv, esectno); SET_ERASED(priv); } /* Put the cached sector data into the erase state and mart the cache as dirty * (but don't update the FLASH yet. The caller will do that at a more optimal * time). */ memset(dest, W25_ERASED_STATE, W25_SECTOR512_SIZE); SET_DIRTY(priv); } #endif /************************************************************************************ * Name: w25_cachewrite ************************************************************************************/ #if defined(CONFIG_W25_SECTOR512) && !defined(CONFIG_W25_READONLY) static void w25_cachewrite(FAR struct w25_dev_s *priv, FAR const uint8_t *buffer, off_t sector, size_t nsectors) { FAR uint8_t *dest; for (; nsectors > 0; nsectors--) { /* First, make sure that the erase block containing 512 byte sector is in * memory. */ dest = w25_cacheread(priv, sector); /* Erase the block containing this sector if it is not already erased. * The erased indicated will be cleared when the data from the erase sector * is read into the cache and set here when we erase the sector. */ if (!IS_ERASED(priv)) { off_t esectno = sector >> (W25_SECTOR_SHIFT - W25_SECTOR512_SHIFT); finfo("sector: %ld esectno: %d\n", sector, esectno); w25_sectorerase(priv, esectno); SET_ERASED(priv); } /* Copy the new sector data into cached erase block */ memcpy(dest, buffer, W25_SECTOR512_SIZE); SET_DIRTY(priv); /* Set up for the next 512 byte sector */ buffer += W25_SECTOR512_SIZE; sector++; } /* Flush the last erase block left in the cache */ w25_cacheflush(priv); } #endif /************************************************************************************ * Name: w25_erase ************************************************************************************/ static int w25_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks) { #ifdef CONFIG_W25_READONLY return -EACESS #else FAR struct w25_dev_s *priv = (FAR struct w25_dev_s *)dev; size_t blocksleft = nblocks; finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* Lock access to the SPI bus until we complete the erase */ w25_lock(priv->spi); while (blocksleft-- > 0) { /* Erase each sector */ #ifdef CONFIG_W25_SECTOR512 w25_cacheerase(priv, startblock); #else w25_sectorerase(priv, startblock); #endif startblock++; } #ifdef CONFIG_W25_SECTOR512 /* Flush the last erase block left in the cache */ w25_cacheflush(priv); #endif w25_unlock(priv->spi); return (int)nblocks; #endif } /************************************************************************************ * Name: w25_bread ************************************************************************************/ static ssize_t w25_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR uint8_t *buffer) { ssize_t nbytes; finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* On this device, we can handle the block read just like the byte-oriented read */ #ifdef CONFIG_W25_SECTOR512 nbytes = w25_read(dev, startblock << W25_SECTOR512_SHIFT, nblocks << W25_SECTOR512_SHIFT, buffer); if (nbytes > 0) { nbytes >>= W25_SECTOR512_SHIFT; } #else nbytes = w25_read(dev, startblock << W25_PAGE_SHIFT, nblocks << W25_PAGE_SHIFT, buffer); if (nbytes > 0) { nbytes >>= W25_PAGE_SHIFT; } #endif return nbytes; } /************************************************************************************ * Name: w25_bwrite ************************************************************************************/ static ssize_t w25_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buffer) { #ifdef CONFIG_W25_READONLY return -EACCESS; #else FAR struct w25_dev_s *priv = (FAR struct w25_dev_s *)dev; finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* Lock the SPI bus and write all of the pages to FLASH */ w25_lock(priv->spi); #if defined(CONFIG_W25_SECTOR512) w25_cachewrite(priv, buffer, startblock, nblocks); #else w25_pagewrite(priv, buffer, startblock << W25_PAGE_SHIFT, nblocks << W25_PAGE_SHIFT); #endif w25_unlock(priv->spi); return nblocks; #endif } /************************************************************************************ * Name: w25_read ************************************************************************************/ static ssize_t w25_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer) { FAR struct w25_dev_s *priv = (FAR struct w25_dev_s *)dev; finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); /* Lock the SPI bus and select this FLASH part */ w25_lock(priv->spi); w25_byteread(priv, buffer, offset, nbytes); w25_unlock(priv->spi); finfo("return nbytes: %d\n", (int)nbytes); return nbytes; } /************************************************************************************ * Name: w25_write ************************************************************************************/ #if defined(CONFIG_MTD_BYTE_WRITE) && !defined(CONFIG_W25_READONLY) static ssize_t w25_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR const uint8_t *buffer) { FAR struct w25_dev_s *priv = (FAR struct w25_dev_s *)dev; int startpage; int endpage; int count; int index; int bytestowrite; finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); /* We must test if the offset + count crosses one or more pages * and perform individual writes. The devices can only write in * page increments. */ startpage = offset / W25_PAGE_SIZE; endpage = (offset + nbytes) / W25_PAGE_SIZE; w25_lock(priv->spi); if (startpage == endpage) { /* All bytes within one programmable page. Just do the write. */ w25_bytewrite(priv, buffer, offset, nbytes); } else { /* Write the 1st partial-page */ count = nbytes; bytestowrite = W25_PAGE_SIZE - (offset & (W25_PAGE_SIZE - 1)); w25_bytewrite(priv, buffer, offset, bytestowrite); /* Update offset and count */ offset += bytestowrite; count -= bytestowrite; index = bytestowrite; /* Write full pages */ while (count >= W25_PAGE_SIZE) { w25_bytewrite(priv, &buffer[index], offset, W25_PAGE_SIZE); /* Update offset and count */ offset += W25_PAGE_SIZE; count -= W25_PAGE_SIZE; index += W25_PAGE_SIZE; } /* Now write any partial page at the end */ if (count > 0) { w25_bytewrite(priv, &buffer[index], offset, count); } } w25_unlock(priv->spi); return nbytes; } #endif /* defined(CONFIG_MTD_BYTE_WRITE) && !defined(CONFIG_W25_READONLY) */ /************************************************************************************ * Name: w25_ioctl ************************************************************************************/ static int w25_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg) { FAR struct w25_dev_s *priv = (FAR struct w25_dev_s *)dev; int ret = -EINVAL; /* Assume good command with bad parameters */ finfo("cmd: %d \n", cmd); switch (cmd) { case MTDIOC_GEOMETRY: { FAR struct mtd_geometry_s *geo = (FAR struct mtd_geometry_s *)((uintptr_t)arg); if (geo) { /* Populate the geometry structure with information need to know * the capacity and how to access the device. * * NOTE: that the device is treated as though it where just an array * of fixed size blocks. That is most likely not true, but the client * will expect the device logic to do whatever is necessary to make it * appear so. */ #ifdef CONFIG_W25_SECTOR512 geo->blocksize = (1 << W25_SECTOR512_SHIFT); geo->erasesize = (1 << W25_SECTOR512_SHIFT); geo->neraseblocks = priv->nsectors << (W25_SECTOR_SHIFT - W25_SECTOR512_SHIFT); #else geo->blocksize = W25_PAGE_SIZE; geo->erasesize = W25_SECTOR_SIZE; geo->neraseblocks = priv->nsectors; #endif ret = OK; finfo("blocksize: %d erasesize: %d neraseblocks: %d\n", geo->blocksize, geo->erasesize, geo->neraseblocks); } } break; case MTDIOC_BULKERASE: { /* Erase the entire device */ w25_lock(priv->spi); ret = w25_chiperase(priv); w25_unlock(priv->spi); } break; case MTDIOC_XIPBASE: default: ret = -ENOTTY; /* Bad command */ break; } finfo("return %d\n", ret); return ret; } /************************************************************************************ * Public Functions ************************************************************************************/ /************************************************************************************ * Name: w25_initialize * * Description: * Create an initialize MTD device instance. MTD devices are not registered * in the file system, but are created as instances that can be bound to * other functions (such as a block or character driver front end). * ************************************************************************************/ FAR struct mtd_dev_s *w25_initialize(FAR struct spi_dev_s *spi) { FAR struct w25_dev_s *priv; int ret; finfo("spi: %p\n", spi); /* Allocate a state structure (we allocate the structure instead of using * a fixed, static allocation so that we can handle multiple FLASH devices. * The current implementation would handle only one FLASH part per SPI * device (only because of the SPIDEV_FLASH(0) definition) and so would have * to be extended to handle multiple FLASH parts on the same SPI bus. */ priv = (FAR struct w25_dev_s *)kmm_zalloc(sizeof(struct w25_dev_s)); if (priv) { /* Initialize the allocated structure (unsupported methods were * nullified by kmm_zalloc). */ priv->mtd.erase = w25_erase; priv->mtd.bread = w25_bread; priv->mtd.bwrite = w25_bwrite; priv->mtd.read = w25_read; priv->mtd.ioctl = w25_ioctl; #if defined(CONFIG_MTD_BYTE_WRITE) && !defined(CONFIG_W25_READONLY) priv->mtd.write = w25_write; #endif priv->mtd.name = "w25"; priv->spi = spi; /* Deselect the FLASH */ SPI_SELECT(spi, SPIDEV_FLASH(0), false); /* Identify the FLASH chip and get its capacity */ ret = w25_readid(priv); if (ret != OK) { /* Unrecognized! Discard all of that work we just did and return NULL */ ferr("ERROR: Unrecognized\n"); kmm_free(priv); return NULL; } else { /* Make sure that the FLASH is unprotected so that we can write into it */ #ifndef CONFIG_W25_READONLY w25_unprotect(priv); #endif #ifdef CONFIG_W25_SECTOR512 /* Simulate a 512 byte sector */ /* Allocate a buffer for the erase block cache */ priv->sector = (FAR uint8_t *)kmm_malloc(W25_SECTOR_SIZE); if (!priv->sector) { /* Allocation failed! Discard all of that work we just did and return NULL */ ferr("ERROR: Allocation failed\n"); kmm_free(priv); return NULL; } #endif } } /* Return the implementation-specific state structure as the MTD device */ finfo("Return %p\n", priv); return (FAR struct mtd_dev_s *)priv; }