/**************************************************************************** * libc/math/lib_sin.c * * This file is a part of NuttX: * * Copyright (C) 2012, 2015-2016 Gregory Nutt. All rights reserved. * Ported by: Darcy Gong * * It derives from the Rhombus OS math library by Nick Johnson which has * a compatibile, MIT-style license: * * Copyright (C) 2009-2011 Nick Johnson * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #ifdef CONFIG_HAVE_DOUBLE /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ #undef DBL_EPSILON #define DBL_EPSILON 1e-12 /**************************************************************************** * Private Functions ****************************************************************************/ /* This lib uses Newton's method to approximate asin(x). Newton's Method * converges very slowly for x close to 1. We can accelerate convergence * with the following identy: asin(x)=Sign(x)*(Pi/2-asin(sqrt(1-x^2))) */ static double asin_aux(double x) { long double y; double y_cos, y_sin; y = 0.0; y_sin = 0.0; while (fabs(y_sin - x) > DBL_EPSILON) { y_cos = cos(y); y -= ((long double)y_sin - (long double)x) / (long double)y_cos; y_sin = sin(y); } return y; } /**************************************************************************** * Public Functions ****************************************************************************/ double asin(double x) { double y; /* Verify that the input value is in the domain of the function */ if (x < -1.0 || x > 1.0 || isnan(x)) { return NAN; } /* if x is > sqrt(2), use identity for faster convergence */ if (fabs(x) > 0.71) { y = M_PI_2 - asin_aux(sqrt(1.0 - x * x)); y = copysign(y, x); } else { y = asin_aux(x); } return y; } #endif /* CONFIG_HAVE_DOUBLE */