/**************************************************************************** * drivers/mmcsd/mmcsd_spi.c * * Copyright (C) 2008-2010, 2011-2013 Gregory Nutt. All rights reserved. * Author: Gregory Nutt * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name NuttX nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #if defined (CONFIG_MMCSD) && defined (CONFIG_MMCSD_SPI) #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmcsd_spi.h" #include "mmcsd_csd.h" #include "mmcsd.h" /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ /* Configuration ************************************************************/ #ifndef CONFIG_MMCSD_NSLOTS # ifdef CONFIG_CPP_HAVE_WARNING # warning "CONFIG_MMCSD_NSLOTS not defined" # endif # define CONFIG_MMCSD_NSLOTS 1 #endif #define MMCSD_IDMODE_CLOCK (400000) #if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY) # define MMCSD_MODE 0666 #else # define MMCSD_MODE 0444 #endif #ifndef CONFIG_MMCSD_SPICLOCK # define CONFIG_MMCSD_SPICLOCK 20000000 #endif #ifndef CONFIG_MMCSD_SPIMODE # define CONFIG_MMCSD_SPIMODE SPIDEV_MODE0 #endif #ifndef CONFIG_MMCSD_SECTOR512 # define CONFIG_MMCSD_SECTOR512 /* Force 512 byte sectors on all cards */ #endif /* Slot struct info *********************************************************/ /* Slot status definitions */ #define MMCSD_SLOTSTATUS_NOTREADY 0x01 /* Card not initialized */ #define MMCSD_SLOTSTATUS_NODISK 0x02 /* No card in the slot */ #define MMCSD_SLOTSTATUS_WRPROTECT 0x04 /* Card is write protected */ #define MMCSD_SLOTSTATUS_MEDIACHGD 0x08 /* Media changed in slot */ /* Values in the MMC/SD command table ***************************************/ /* These define the value returned by the MMC/SD command */ #define MMCSD_CMDRESP_R1 0 #define MMCSD_CMDRESP_R1B 1 #define MMCSD_CMDRESP_R2 2 #define MMCSD_CMDRESP_R3 3 #define MMCSD_CMDRESP_R7 4 #ifdef CONFIG_MMCSD_SECTOR512 # define SECTORSIZE(s) (512) #else # define SECTORSIZE(s) ((s)->sectorsize) #endif /* Time delays in units of the system clock. CLK_TCK is the number of clock * ticks per second. */ #define MMCSD_DELAY_10MS (CLK_TCK/100 + 1) #define MMCSD_DELAY_50MS (CLK_TCK/20 + 1) #define MMCSD_DELAY_100MS (CLK_TCK/10 + 1) #define MMCSD_DELAY_250MS (CLK_TCK/4 + 1) #define MMCSD_DELAY_500MS (CLK_TCK/2 + 1) #define MMCSD_DELAY_1SEC (CLK_TCK + 1) #define MMCSD_DELAY_10SEC (10 * CLK_TCK + 1) #define ELAPSED_TIME(t) (clock_systimer()-(t)) #define START_TIME (clock_systimer()) /* SD read timeout: ~100msec, Write Time out ~250ms. Units of clock ticks */ #define SD_READACCESS MMCSD_DELAY_100MS #define SD_WRITEACCESS MMCSD_DELAY_250MS /**************************************************************************** * Private Types ****************************************************************************/ /* This structure represents the state of one card slot */ struct mmcsd_slot_s { FAR struct spi_dev_s *spi; /* SPI port bound to this slot */ sem_t sem; /* Assures mutually exclusive access to card and SPI */ uint8_t state; /* State of the slot (see MMCSD_SLOTSTATUS_* definitions) */ uint8_t type; /* Disk type */ uint8_t csd[16]; /* Copy of card CSD */ #ifndef CONFIG_MMCSD_SECTOR512 uint16_t sectorsize; /* Media block size (in bytes) */ #endif uint32_t nsectors; /* Number of blocks on the media */ uint32_t taccess; /* Card access time */ uint32_t twrite; /* Card write time */ uint32_t ocr; /* Last 4 bytes of OCR (R3) */ uint32_t r7; /* Last 4 bytes of R7 */ uint32_t spispeed; /* Speed to use for SPI in data mode */ }; struct mmcsd_cmdinfo_s { uint8_t cmd; uint8_t resp; uint8_t chksum; }; /**************************************************************************** * Private Function Prototypes ****************************************************************************/ /* Misc *********************************************************************/ static void mmcsd_semtake(FAR struct mmcsd_slot_s *slot); static void mmcsd_semgive(FAR struct mmcsd_slot_s *slot); /* Card SPI interface *******************************************************/ static int mmcsd_waitready(FAR struct mmcsd_slot_s *slot); static uint32_t mmcsd_sendcmd(FAR struct mmcsd_slot_s *slot, const struct mmcsd_cmdinfo_s *cmd, uint32_t arg); static void mmcsd_setblklen(FAR struct mmcsd_slot_s *slot, uint32_t length); static uint32_t mmcsd_nsac(FAR struct mmcsd_slot_s *slot, uint8_t *csd, uint32_t frequency); static uint32_t mmcsd_taac(FAR struct mmcsd_slot_s *slot, uint8_t *csd); static void mmcsd_decodecsd(FAR struct mmcsd_slot_s *slot, uint8_t *csd); static void mmcsd_checkwrprotect(FAR struct mmcsd_slot_s *slot, uint8_t *csd); static int mmcsd_getcardinfo(FAR struct mmcsd_slot_s *slot, uint8_t *buffer, const struct mmcsd_cmdinfo_s *cmd); #define mmcsd_getcsd(slot, csd) mmcsd_getcardinfo(slot, csd, &g_cmd9); #define mmcsd_getcid(slot, cid) mmcsd_getcardinfo(slot, cid, &g_cmd10); static int mmcsd_recvblock(FAR struct mmcsd_slot_s *slot, uint8_t *buffer, int nbytes); #if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY) static int mmcsd_xmitblock(FAR struct mmcsd_slot_s *slot, const uint8_t *buffer, int nbytes, uint8_t token); #endif /* Block driver interfaces **************************************************/ static int mmcsd_open(FAR struct inode *inode); static int mmcsd_close(FAR struct inode *inode); static ssize_t mmcsd_read(FAR struct inode *inode, unsigned char *buffer, size_t start_sector, unsigned int nsectors); #if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY) static ssize_t mmcsd_write(FAR struct inode *inode, const unsigned char *buffer, size_t start_sector, unsigned int nsectors); #endif static int mmcsd_geometry(FAR struct inode *inode, struct geometry *geometry); /* Initialization ***********************************************************/ static int mmcsd_mediainitialize(FAR struct mmcsd_slot_s *slot); static void mmcsd_mediachanged(void *arg); /**************************************************************************** * Private Data ****************************************************************************/ /* Driver state *************************************************************/ /* These are the lock driver methods supported by this file */ static const struct block_operations g_bops = { mmcsd_open, /* open */ mmcsd_close, /* close */ mmcsd_read, /* read */ #if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY) mmcsd_write, /* write */ #else NULL, /* write */ #endif mmcsd_geometry, /* geometry */ NULL /* ioctl */ }; /* A slot structure allocated for each configured slot */ static struct mmcsd_slot_s g_mmcsdslot[CONFIG_MMCSD_NSLOTS]; /* Timing *******************************************************************/ /* We will use the TRAN_SPEED from the CSD to determine the maximum SPI * clocking (TRAN_SPEED defines the maximum transfer rate per bit per data * line). * * The CSD TRAN_SPEED is provided as a 3 bit rate unit (RU) and a 4 bit time * value (TU). We need the transfer frequency which is: RU*TU bits/sec * * g_transpeedru holds RU/10 and g_transpeedtu holds TU*10 so that the * correct value is returned in the product */ static const uint32_t g_transpeedru[8] = { 10000, /* 0: 10 Kbit/sec / 10 */ 100000, /* 1: 1 Mbit/sec / 10 */ 1000000, /* 2: 10 Mbit/sec / 10 */ 10000000, /* 3: 100 Mbit/sec / 10 */ 0, 0, 0, 0 /* 4-7: Reserved values */ }; static const uint32_t g_transpeedtu[16] = { 0, 10, 12, 13, /* 0-3: Reserved, 1.0, 1.1, 1.2, 1.3 */ 15, 20, 25, 30, /* 4-7: 1.5, 2.0, 2.5, 3.0 */ 35, 40, 45, 50, /* 8-11: 3.5, 4.0, 4.5, 5.0 */ 55, 60, 70, 80, /* 12-15: 5.5, 6.0, 7.0, 8.0 */ }; /* The TAAC defines the asynchronous part of the data access time. The * read access time the sum of the TAAC and the NSAC. These define the * time from the end bit of the read command to start bit of the data block. * * The TAAC consists of a 3-bit time unit (TU) and a 4-bit time value (TV). * TAAC is in units of time; NSAC is in units of SPI clocks. * The access time we need is then given by: * * taccess = TU*TV + NSAC/spifrequency * * g_taactu holds TU in units of nanoseconds and microseconds (you have to * use the index to distinguish). g_taactv holds TV with 8-bits of * fraction. */ #define MAX_USTUNDX 2 static const uint16_t g_taactu[8] = { /* Units of nanoseconds */ 1, /* 0: 1 ns */ 10, /* 1: 10 ns */ 100, /* 2: 100 ns */ /* Units of microseconds */ 1, /* 3: 1 us 1,000 ns */ 10, /* 4: 10 us 10,000 ns */ 100, /* 5: 100 us 100,000 ns */ 1000, /* 6: 1 ms 1,000,000 ns */ 10000, /* 7: 10 ms 10,000,000 ns */ }; static const uint16_t g_taactv[] = { 0x000, 0x100, 0x133, 0x14d, /* 0-3: Reserved, 1.0, 1.2, 1.3 */ 0x180, 0x200, 0x280, 0x300, /* 4-7: 1.5, 2.0, 2.5, 3.0 */ 0x380, 0x400, 0x480, 0x500, /* 8-11: 3.5, 4.0, 4.5, 5.0 */ 0x580, 0x600, 0x700, 0x800 /* 12-15: 5.5, 6.0, 7.0, 8.0 */ }; /* Commands *****************************************************************/ static const struct mmcsd_cmdinfo_s g_cmd0 = {CMD0, MMCSD_CMDRESP_R1, 0x95}; static const struct mmcsd_cmdinfo_s g_cmd1 = {CMD1, MMCSD_CMDRESP_R1, 0xff}; static const struct mmcsd_cmdinfo_s g_cmd8 = {CMD8, MMCSD_CMDRESP_R7, 0x87}; static const struct mmcsd_cmdinfo_s g_cmd9 = {CMD9, MMCSD_CMDRESP_R1, 0xff}; static const struct mmcsd_cmdinfo_s g_cmd10 = {CMD10, MMCSD_CMDRESP_R1, 0xff}; static const struct mmcsd_cmdinfo_s g_cmd12 = {CMD12, MMCSD_CMDRESP_R1, 0xff}; static const struct mmcsd_cmdinfo_s g_cmd16 = {CMD16, MMCSD_CMDRESP_R1, 0xff}; static const struct mmcsd_cmdinfo_s g_cmd17 = {CMD17, MMCSD_CMDRESP_R1, 0xff}; static const struct mmcsd_cmdinfo_s g_cmd18 = {CMD18, MMCSD_CMDRESP_R1, 0xff}; static const struct mmcsd_cmdinfo_s g_cmd24 = {CMD24, MMCSD_CMDRESP_R1, 0xff}; static const struct mmcsd_cmdinfo_s g_cmd25 = {CMD25, MMCSD_CMDRESP_R1, 0xff}; static const struct mmcsd_cmdinfo_s g_cmd55 = {CMD55, MMCSD_CMDRESP_R1, 0xff}; static const struct mmcsd_cmdinfo_s g_cmd58 = {CMD58, MMCSD_CMDRESP_R3, 0xff}; static const struct mmcsd_cmdinfo_s g_acmd23 = {ACMD23, MMCSD_CMDRESP_R1, 0xff}; static const struct mmcsd_cmdinfo_s g_acmd41 = {ACMD41, MMCSD_CMDRESP_R1, 0xff}; /**************************************************************************** * Private Functions ****************************************************************************/ /**************************************************************************** * Name: mmcsd_semtake ****************************************************************************/ static void mmcsd_semtake(FAR struct mmcsd_slot_s *slot) { /* Get exclusive access to the SPI bus (if necessary) */ (void)SPI_LOCK(slot->spi, true); /* Set the frequency, bit width and mode, as some other driver could have * changed those since the last time that we had the SPI bus. */ SPI_SETMODE(slot->spi, CONFIG_MMCSD_SPIMODE); SPI_SETBITS(slot->spi, 8); (void)SPI_HWFEATURES(slot->spi, 0); (void)SPI_SETFREQUENCY(slot->spi, slot->spispeed); /* Get exclusive access to the MMC/SD device (possibly unnecessary if * SPI_LOCK is also implemented as a semaphore). */ while (sem_wait(&slot->sem) != 0) { /* The only case that an error should occur here is if the wait was * awakened by a signal. */ ASSERT(errno == EINTR); } } /**************************************************************************** * Name: mmcsd_semgive ****************************************************************************/ static void mmcsd_semgive(FAR struct mmcsd_slot_s *slot) { /* Relinquish the lock on the MMC/SD device */ sem_post(&slot->sem); /* Relinquish the lock on the SPI bus */ /* The card may need up to 8 SCLK cycles to sample the CS status * and release the MISO line. */ (void)SPI_SEND(slot->spi, 0xff); /* Relinquish exclusive access to the SPI bus */ (void)SPI_LOCK(slot->spi, false); } /**************************************************************************** * Name: mmcsd_waitready * * Description: * Wait until the card is no longer busy * * Assumptions: * MMC/SD card already selected * ****************************************************************************/ static int mmcsd_waitready(FAR struct mmcsd_slot_s *slot) { FAR struct spi_dev_s *spi = slot->spi; uint8_t response; systime_t start; systime_t elapsed; /* Wait until the card is no longer busy (up to 500MS) */ start = START_TIME; do { response = SPI_SEND(spi, 0xff); if (response == 0xff) { return OK; } elapsed = ELAPSED_TIME(start); } while (elapsed < MMCSD_DELAY_500MS); fdbg("Card still busy, last response: %02x\n", response); return -EBUSY; } /**************************************************************************** * Name: mmcsd_sendcmd * * Description: * Send a command to MMC * * Assumptions: * MMC/SD card already selected * ****************************************************************************/ static uint32_t mmcsd_sendcmd(FAR struct mmcsd_slot_s *slot, const struct mmcsd_cmdinfo_s *cmd, uint32_t arg) { FAR struct spi_dev_s *spi = slot->spi; uint32_t result; uint8_t response = 0xff; int ret; int i; /* Wait until the card is not busy. Some SD cards will not enter the IDLE * state until CMD0 is sent for the first time, switching the card to SPI * mode. Having a pull-up resistor on MISO may avoid this problem, but * this check makes it work also without the pull-up. */ ret = mmcsd_waitready(slot); if (ret != OK && cmd != &g_cmd0) { return ret; } /* Send command code */ SPI_SEND(spi, cmd->cmd); /* Send command's arguments (should be zero if there are no arguments) */ SPI_SEND(spi, (arg >> 24) & 0xff); SPI_SEND(spi, (arg >> 16) & 0xff); SPI_SEND(spi, (arg >> 8) & 0xff); SPI_SEND(spi, arg & 0xff); /* Send CRC if needed. The SPI interface is initialized in non-protected * mode. However, the reset command (CMD0) and CMD8 are received by the * card while it is still in SD mode and, therefore, must have a valid * CRC field. */ SPI_SEND(spi, cmd->chksum); /* Skip stuff byte on CMD12 */ if (cmd->cmd == CMD12) { SPI_SEND(spi, 0xff); } /* Get the response to the command. A valid response will have bit7=0. * Usually, the non-response is 0xff, but I have seen 0xc0 too. */ for (i = 0; i < 9 && (response & 0x80) != 0; i++) { response = SPI_SEND(spi, 0xff); } if ((response & 0x80) != 0) { fdbg("Failed: i=%d response=%02x\n", i, response); return (uint32_t)-1; } /* Interpret the response according to the command */ result = response; switch (cmd->resp) { /* The R1B response is two bytes long */ case MMCSD_CMDRESP_R1B: { uint32_t busy = 0; systime_t start; systime_t elapsed; start = START_TIME; do { busy = SPI_SEND(spi, 0xff); elapsed = ELAPSED_TIME(start); } while (elapsed < slot->twrite && busy != 0xff); if (busy != 0xff) { fdbg("Failed: card still busy (%02x)\n", busy); return (uint32_t)-1; } fvdbg("CMD%d[%08x] R1B=%02x\n", cmd->cmd & 0x3f, arg, response); } break; /* The R1 response is a single byte */ case MMCSD_CMDRESP_R1: { fvdbg("CMD%d[%08x] R1=%02x\n", cmd->cmd & 0x3f, arg, response); } break; /* The R2 response is two bytes long */ case MMCSD_CMDRESP_R2: { result = ((uint32_t)(response & 0xff) << 8); result |= SPI_SEND(spi, 0xff) & 0xff; fvdbg("CMD%d[%08x] R2=%04x\n", cmd->cmd & 0x3f, arg, result); } break; /* The R3 response is 5 bytes long. The first byte is identical to R1. */ case MMCSD_CMDRESP_R3: { slot->ocr = ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 24); slot->ocr |= ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 16); slot->ocr |= ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 8); slot->ocr |= SPI_SEND(spi, 0xff) & 0xff; fvdbg("CMD%d[%08x] R1=%02x OCR=%08x\n", cmd->cmd & 0x3f, arg, response, slot->ocr); } break; /* The R7 response is 5 bytes long. The first byte is identical to R1. */ case MMCSD_CMDRESP_R7: default: { slot->r7 = ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 24); slot->r7 |= ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 16); slot->r7 |= ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 8); slot->r7 |= SPI_SEND(spi, 0xff) & 0xff; fvdbg("CMD%d[%08x] R1=%02x R7=%08x\n", cmd->cmd & 0x3f, arg, response, slot->r7); } break; } return result; } /**************************************************************************** * Name: mmcsd_setblklen * * Description: * Set block length * * Assumptions: * MMC/SD card already selected * ****************************************************************************/ static void mmcsd_setblklen(FAR struct mmcsd_slot_s *slot, uint32_t length) { uint32_t response; fvdbg("Set block length to %d\n", length); response = mmcsd_sendcmd(slot, &g_cmd16, length); if (response != MMCSD_SPIR1_OK) { fdbg("Failed to set block length: %02x\n", response); } } /**************************************************************************** * Name: mmcsd_nsac * * Description: Convert the value of the NSAC to microseconds * ****************************************************************************/ static uint32_t mmcsd_nsac(FAR struct mmcsd_slot_s *slot, uint8_t *csd, uint32_t frequency) { /* NSAC is 8-bits wide and is in units of 100 clock cycles. Therefore, * the maximum value is 25.5K clock cycles. */ uint32_t nsac = MMCSD_CSD_NSAC(csd) * ((uint32_t)100*1000); uint32_t fhkz = (frequency + 500) / 1000; return (nsac + (fhkz >> 1)) / fhkz; } /**************************************************************************** * Name: mmcsd_taac * * Description: Convert the value of the TAAC to microseconds * ****************************************************************************/ static uint32_t mmcsd_taac(FAR struct mmcsd_slot_s *slot, uint8_t *csd) { int tundx; /* The TAAC consists of a 3-bit time unit (TU) and a 4-bit time value (TV). * TAAC is in units of time; NSAC is in units of SPI clocks. * The access time we need is then given by: * * taccess = TU*TV + NSAC/spifrequency * * g_taactu holds TU in units of nanoseconds and microseconds (you have to * use the index to distinguish. g_taactv holds TV with 8-bits of fraction. */ tundx = MMCSD_CSD_TAAC_TIMEUNIT(csd); if (tundx <= MAX_USTUNDX) { /* The maximum value of the nanosecond TAAC is 800 ns. The rounded * answer in microseconds will be at most 1. */ return 1; } else { /* Return the answer in microseconds */ return (g_taactu[tundx]*g_taactv[MMCSD_CSD_TAAC_TIMEVALUE(csd)] + 0x80) >> 8; } } /**************************************************************************** * Name: mmcsd_decodecsd * * Description: * ****************************************************************************/ static void mmcsd_decodecsd(FAR struct mmcsd_slot_s *slot, uint8_t *csd) { FAR struct spi_dev_s *spi = slot->spi; uint32_t maxfrequency; uint32_t frequency; uint32_t readbllen; uint32_t csizemult; uint32_t csize; /* Calculate the SPI max clock frequency */ maxfrequency = g_transpeedtu[MMCSD_CSD_TRANSPEED_TIMEVALUE(csd)] * g_transpeedru[MMCSD_CSD_TRANSPEED_TRANSFERRATEUNIT(csd)]; /* Clip the max frequency to account for board limitations */ frequency = maxfrequency; if (frequency > CONFIG_MMCSD_SPICLOCK) { frequency = CONFIG_MMCSD_SPICLOCK; } /* Set the actual SPI frequency as close as possible to the max frequency */ slot->spispeed = frequency; frequency = SPI_SETFREQUENCY(spi, frequency); /* Now determine the delay to access data */ if (slot->type == MMCSD_CARDTYPE_MMC) { /* The TAAC consists of a 3-bit time unit (TU) and a 4-bit time value * (TV). TAAC is in units of time; NSAC is in units of SPI clocks. * The access time we need is then given by: * * taccess = TU*TV + NSAC/spifrequency * * Example: TAAC = 1.5 ms, NSAC = 0, r2wfactor = 4, CLK_TCK=100 * taccessus = 1,500uS * taccess = (1,500 * 100) / 100,000) + 1 = 2 (ideal, 1.5) * twrite = (1,500 * 4 * 100) / 100,000) + 1 = 7 (ideal 6.0) * * First get the access time in microseconds */ uint32_t taccessus = mmcsd_taac(slot, csd) + mmcsd_nsac(slot, csd, frequency); /* Then convert to system clock ticks. The maximum read access is 10 times * the tacc value: taccess = 10 * (taccessus / 1,000,000) * CLK_TCK, or */ slot->taccess = (taccessus * CLK_TCK) / 100000 + 1; /* NOTE that we add one to taccess to assure that we wait at least this * time. The write access time is larger by the R2WFACTOR: */ slot->taccess = (taccessus * MMCSD_CSD_R2WFACTOR(csd) * CLK_TCK) / 100000 + 1; } else { /* For SD, the average is still given by the TAAC+NSAC, but the * maximum are the constants 100 and 250MS */ slot->taccess = SD_READACCESS; slot->twrite = SD_WRITEACCESS; } fvdbg("SPI Frequency\n"); fvdbg(" Maximum: %d Hz\n", maxfrequency); fvdbg(" Actual: %d Hz\n", frequency); fvdbg("Read access time: %d ticks\n", slot->taccess); fvdbg("Write access time: %d ticks\n", slot->twrite); /* Get the physical geometry of the card: sector size and number of * sectors. The card's total capacity is computed from * * capacity = BLOCKNR * BLOCK_LEN * BLOCKNR = (C_SIZE+1)*MULT * MULT = 2**(C_SIZE_MULT+2) (C_SIZE_MULT < 8) * BLOCK_LEN = 2**READ_BL_LEN (READ_BL_LEN < 12) * * Or * * capacity = ((C_SIZE+1) << (READD_BL_LEN + C_SIZE_MULT + 2)) * * In units of the sector size (1 << READ_BL_LEN), then simplifies to * * nsectors = ((C_SIZE+1) << (C_SIZE_MULT + 2)) */ if (MMCSD_CSD_CSDSTRUCT(csd) != 0) { /* SDC structure ver 2.xx */ /* Note: On SD card WRITE_BL_LEN is always the same as READ_BL_LEN */ readbllen = SD20_CSD_READBLLEN(csd); csizemult = SD20_CSD_CSIZEMULT(csd) + 2; csize = SD20_CSD_CSIZE(csd) + 1; } else { /* MMC or SD structure ver 1.xx */ /* Note: On SD card WRITE_BL_LEN is always the same as READ_BL_LEN */ readbllen = MMCSD_CSD_READBLLEN(csd); csizemult = MMCSD_CSD_CSIZEMULT(csd) + 2; csize = MMCSD_CSD_CSIZE(csd) + 1; } /* SDHC ver2.x cards have fixed block transfer size of 512 bytes. SDC * ver1.x cards with capacity less than 1Gb, will have sector size * 512 byes. SDC ver1.x cards with capacity of 2Gb will report readbllen * of 1024 but should use 512 bytes for block transfers. SDC ver1.x 4Gb * cards will report readbllen of 2048 bytes -- are they also 512 bytes? */ #ifdef CONFIG_MMCSD_SECTOR512 if (readbllen > 9) { csizemult += (readbllen - 9); } else { DEBUGASSERT(readbllen == 9); } #else if (IS_SDV2(slot->type)) { if (readbllen > 9) { fdbg("Forcing 512 byte sector size\n"); csizemult += (readbllen - 9); readbllen = 9; } } slot->sectorsize = 1 << readbllen; #endif slot->nsectors = csize << csizemult; fvdbg("Sector size: %d\n", SECTORSIZE(slot)); fvdbg("Number of sectors: %d\n", slot->nsectors); } /**************************************************************************** * Name: mmcsd_checkwrprotect * * Description: * ****************************************************************************/ static void mmcsd_checkwrprotect(FAR struct mmcsd_slot_s *slot, uint8_t *csd) { FAR struct spi_dev_s *spi = slot->spi; /* Check if (1) the slot is reporting that reporting that write protection * is set, (2) the card reports permanent write protect, or (2) the card * reports temporary write protect. */ if ((SPI_STATUS(spi, SPIDEV_MMCSD) & SPI_STATUS_WRPROTECTED) != 0 || MMCSD_CSD_PERMWRITEPROTECT(csd) || MMCSD_CSD_TMPWRITEPROTECT(csd)) { slot->state |= MMCSD_SLOTSTATUS_WRPROTECT; } else { slot->state &= ~MMCSD_SLOTSTATUS_WRPROTECT; } } /**************************************************************************** * Name: mmcsd_getcardinfo * * Description: * Read CSD or CID registers * * Assumptions: * MMC/SD card already selected * ****************************************************************************/ static int mmcsd_getcardinfo(FAR struct mmcsd_slot_s *slot, uint8_t *buffer, const struct mmcsd_cmdinfo_s *cmd) { FAR struct spi_dev_s *spi = slot->spi; uint32_t result; uint8_t response; int i; SPI_SEND(spi, 0xff); /* Send the CMD9 or CMD10 */ result = mmcsd_sendcmd(slot, cmd, 0); if (result != MMCSD_SPIR1_OK) { fdbg("CMD9/10 failed: R1=%02x\n", result); return -EIO; } /* Try up to 8 times to find the start of block (or until an error occurs) */ for (i = 0; i < 8; i++) { response = SPI_SEND(spi, 0xff); fvdbg("%d. SPI send returned %02x\n", i, response); /* If a read operation fails and the card cannot provide the requested * data, it will send a data error token instead. The 4 least * significant bits are the same as those in the R2 response. */ if (response != 0 && (response & MMCSD_SPIDET_UPPER) == 0) { fdbg("%d. Data transfer error: %02x\n", i, response); return -EIO; } else if (response == MMCSD_SPIDT_STARTBLKSNGL) { for (i = 0; i < 16; ++i) { *buffer++ = SPI_SEND(spi, 0xff); } /* CRC receive */ SPI_SEND(spi, 0xff); SPI_SEND(spi, 0xff); return OK; } } fdbg("%d. Did not find start of block\n"); return -EIO; } /**************************************************************************** * Name: mmcsd_recvblock * * Description: Receive a data block from the card * ****************************************************************************/ static int mmcsd_recvblock(FAR struct mmcsd_slot_s *slot, uint8_t *buffer, int nbytes) { FAR struct spi_dev_s *spi = slot->spi; systime_t start; systime_t elapsed; uint8_t token; /* Wait up to the maximum to receive a valid data token. taccess is the * time from when the command is sent until the first byte of data is * received */ start = START_TIME; do { token = SPI_SEND(spi, 0xff); elapsed = ELAPSED_TIME(start); } while (token == 0xff && elapsed < slot->taccess); if (token == MMCSD_SPIDT_STARTBLKSNGL) { /* Receive the block */ SPI_RECVBLOCK(spi, buffer, nbytes); /* Discard the CRC */ SPI_SEND(spi, 0xff); SPI_SEND(spi, 0xff); return OK; } fdbg("Did not receive data token (%02x)\n", token); return ERROR; } /**************************************************************************** * Name: mmcsd_xmitblock * * Description: Transmit a data block to the card * ****************************************************************************/ #if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY) static int mmcsd_xmitblock(FAR struct mmcsd_slot_s *slot, FAR const uint8_t *buffer, int nbytes, uint8_t token) { FAR struct spi_dev_s *spi = slot->spi; uint8_t response; /* Start the block transfer: * 1. 0xff (sync) * 2. 0xfe or 0xfc (start of block token) * 3. Followed by the block of data and 2 byte CRC */ SPI_SEND(spi, 0xff); /* sync */ SPI_SEND(spi, token); /* data token */ /* Transmit the block to the MMC/SD card */ (void)SPI_SNDBLOCK(spi, buffer, nbytes); /* Add the bogus CRC. By default, the SPI interface is initialized in * non-protected mode. However, we still have to send bogus CRC values */ SPI_SEND(spi, 0xff); SPI_SEND(spi, 0xff); /* Now get the data response */ response = SPI_SEND(spi, 0xff); if ((response & MMCSD_SPIDR_MASK) != MMCSD_SPIDR_ACCEPTED) { fdbg("Bad data response: %02x\n", response); return -EIO; } return OK; } #endif /* CONFIG_FS_WRITABLE && !CONFIG_MMCSD_READONLY */ /**************************************************************************** * Block Driver Operations ****************************************************************************/ /**************************************************************************** * Name: mmcsd_open * * Description: Open the block device * ****************************************************************************/ static int mmcsd_open(FAR struct inode *inode) { FAR struct mmcsd_slot_s *slot; FAR struct spi_dev_s *spi; int ret; fvdbg("Entry\n"); #ifdef CONFIG_DEBUG if (!inode || !inode->i_private) { fdbg("Internal confusion\n"); return -EIO; } #endif /* Extract our private data from the inode structure */ slot = (FAR struct mmcsd_slot_s *)inode->i_private; spi = slot->spi; #ifdef CONFIG_DEBUG if (!spi) { fdbg("Internal confusion\n"); return -EIO; } #endif /* Verify that an MMC/SD card has been inserted */ ret = -ENODEV; mmcsd_semtake(slot); if ((SPI_STATUS(spi, SPIDEV_MMCSD) & SPI_STATUS_PRESENT) != 0) { /* Yes.. a card is present. Has it been initialized? */ if (slot->type == MMCSD_CARDTYPE_UNKNOWN) { /* Initialize for the media in the slot */ ret = mmcsd_mediainitialize(slot); if (ret < 0) { fvdbg("Failed to initialize card\n"); goto errout_with_sem; } } /* Make sure that the card is ready */ SPI_SELECT(spi, SPIDEV_MMCSD, true); ret = mmcsd_waitready(slot); SPI_SELECT(spi, SPIDEV_MMCSD, false); } errout_with_sem: mmcsd_semgive(slot); return ret; } /**************************************************************************** * Name: mmcsd_close * * Description: close the block device * ****************************************************************************/ static int mmcsd_close(FAR struct inode *inode) { fvdbg("Entry\n"); return OK; } /**************************************************************************** * Name: mmcsd_read * * Description: Read the specified numer of sectors * ****************************************************************************/ static ssize_t mmcsd_read(FAR struct inode *inode, unsigned char *buffer, size_t start_sector, unsigned int nsectors) { FAR struct mmcsd_slot_s *slot; FAR struct spi_dev_s *spi; size_t nbytes; off_t offset; uint8_t response; int i; fvdbg("start_sector=%d nsectors=%d\n", start_sector, nsectors); #ifdef CONFIG_DEBUG if (!buffer) { fdbg("Invalid parameters\n"); return -EINVAL; } if (!inode || !inode->i_private) { fdbg("Internal confusion\n"); return -EIO; } #endif /* Extract our private data from the inode structure */ slot = (FAR struct mmcsd_slot_s *)inode->i_private; spi = slot->spi; #ifdef CONFIG_DEBUG if (!spi) { fdbg("Internal confusion\n"); return -EIO; } #endif /* Verify that card is available */ if (slot->state & MMCSD_SLOTSTATUS_NOTREADY) { fdbg("Slot not ready\n"); return -ENODEV; } /* Do nothing on zero-length transfer */ if (nsectors < 1) { return 0; } /* Convert sector and nsectors to nbytes and byte offset */ nbytes = nsectors * SECTORSIZE(slot); UNUSED(nbytes); if (IS_BLOCK(slot->type)) { offset = start_sector; fvdbg("nbytes=%d sector offset=%d\n", nbytes, offset); } else { offset = start_sector * SECTORSIZE(slot); fvdbg("nbytes=%d byte offset=%d\n", nbytes, offset); } /* Select the slave */ mmcsd_semtake(slot); SPI_SELECT(spi, SPIDEV_MMCSD, true); /* Single or multiple block read? */ if (nsectors == 1) { /* Send CMD17: Reads a block of the size selected by the SET_BLOCKLEN * command and verify that good R1 status is returned */ response = mmcsd_sendcmd(slot, &g_cmd17, offset); if (response != MMCSD_SPIR1_OK) { fdbg("CMD17 failed: R1=%02x\n", response); goto errout_with_eio; } /* Receive the block */ if (mmcsd_recvblock(slot, buffer, SECTORSIZE(slot)) != 0) { fdbg("Failed: to receive the block\n"); goto errout_with_eio; } } else { /* Send CMD18: Reads a block of the size selected by the SET_BLOCKLEN * command and verify that good R1 status is returned */ response = mmcsd_sendcmd(slot, &g_cmd18, offset); if (response != MMCSD_SPIR1_OK) { fdbg("CMD18 failed: R1=%02x\n", response); goto errout_with_eio; } /* Receive each block */ for (i = 0; i < nsectors; i++) { if (mmcsd_recvblock(slot, buffer, SECTORSIZE(slot)) != 0) { fdbg("Failed: to receive the block\n"); goto errout_with_eio; } buffer += SECTORSIZE(slot); } /* Send CMD12: Stops transmission */ response = mmcsd_sendcmd(slot, &g_cmd12, 0); } /* On success, return the number of sectors transfer */ SPI_SELECT(spi, SPIDEV_MMCSD, false); SPI_SEND(spi, 0xff); mmcsd_semgive(slot); fvdbg("Read %d bytes:\n", nbytes); mmcsd_dumpbuffer("Read buffer", buffer, nbytes); return nsectors; errout_with_eio: SPI_SELECT(spi, SPIDEV_MMCSD, false); mmcsd_semgive(slot); return -EIO; } /**************************************************************************** * Name: mmcsd_write * * Description: * Write the specified number of sectors * ****************************************************************************/ #if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY) static ssize_t mmcsd_write(FAR struct inode *inode, const unsigned char *buffer, size_t start_sector, unsigned int nsectors) { FAR struct mmcsd_slot_s *slot; FAR struct spi_dev_s *spi; size_t nbytes; off_t offset; uint8_t response; int i; fvdbg("start_sector=%d nsectors=%d\n", start_sector, nsectors); #ifdef CONFIG_DEBUG if (!buffer) { fdbg("Invalid parameters\n"); return -EINVAL; } if (!inode || !inode->i_private) { fdbg("Internal confusion\n"); return -EIO; } #endif /* Extract our private data from the inode structure */ slot = (FAR struct mmcsd_slot_s *)inode->i_private; spi = slot->spi; #ifdef CONFIG_DEBUG if (!spi) { fdbg("Internal confusion\n"); return -EIO; } #endif /* Verify that card is available */ if (slot->state & MMCSD_SLOTSTATUS_NOTREADY) { fdbg("Slot not ready\n"); return -ENODEV; } /* Verify that the card is write enabled */ if (slot->state & MMCSD_SLOTSTATUS_WRPROTECT) { fdbg("Not write enabled\n"); return -EACCES; } /* Do nothing on zero-length transfer */ if (nsectors < 1) { return 0; } /* Convert sector and nsectors to nbytes and byte offset */ nbytes = nsectors * SECTORSIZE(slot); UNUSED(nbytes); if (IS_BLOCK(slot->type)) { offset = start_sector; fvdbg("nbytes=%d sector offset=%d\n", nbytes, offset); } else { offset = start_sector * SECTORSIZE(slot); fvdbg("nbytes=%d byte offset=%d\n", nbytes, offset); } mmcsd_dumpbuffer("Write buffer", buffer, nbytes); /* Select the slave */ mmcsd_semtake(slot); SPI_SELECT(spi, SPIDEV_MMCSD, true); /* Single or multiple block transfer? */ if (nsectors == 1) { /* Send CMD24 (WRITE_BLOCK) and verify that good R1 status is returned */ response = mmcsd_sendcmd(slot, &g_cmd24, offset); if (response != MMCSD_SPIR1_OK) { fdbg("CMD24 failed: R1=%02x\n", response); goto errout_with_sem; } /* Then transfer the sector */ if (mmcsd_xmitblock(slot, buffer, SECTORSIZE(slot), 0xfe) != 0) { fdbg("Block transfer failed\n"); goto errout_with_sem; } } else { /* Set the number of blocks to be pre-erased (SD only) */ if (IS_SD(slot->type)) { response = mmcsd_sendcmd(slot, &g_cmd55, 0); if (response != MMCSD_SPIR1_OK) { fdbg("CMD55 failed: R1=%02x\n", response); goto errout_with_sem; } response = mmcsd_sendcmd(slot, &g_acmd23, nsectors); if (response != MMCSD_SPIR1_OK) { fdbg("ACMD23 failed: R1=%02x\n", response); goto errout_with_sem; } } /* Send CMD25: Continuously write blocks of data until the * transmission is stopped. */ response = mmcsd_sendcmd(slot, &g_cmd25, offset); if (response != MMCSD_SPIR1_OK) { fdbg("CMD25 failed: R1=%02x\n", response); goto errout_with_sem; } /* Transmit each block */ for (i = 0; i < nsectors; i++) { if (mmcsd_xmitblock(slot, buffer, SECTORSIZE(slot), 0xfc) != 0) { fdbg("Failed: to receive the block\n"); goto errout_with_sem; } buffer += SECTORSIZE(slot); if (mmcsd_waitready(slot) != OK) { fdbg("Failed: card is busy\n"); goto errout_with_sem; } } /* Send the stop transmission token */ SPI_SEND(spi, MMCSD_SPIDT_STOPTRANS); } /* Wait until the card is no longer busy */ (void)mmcsd_waitready(slot); SPI_SELECT(spi, SPIDEV_MMCSD, false); SPI_SEND(spi, 0xff); mmcsd_semgive(slot); /* The success return value is the number of sectors written */ return nsectors; errout_with_sem: SPI_SELECT(spi, SPIDEV_MMCSD, false); mmcsd_semgive(slot); return -EIO; } #endif /**************************************************************************** * Name: mmcsd_geometry * * Description: * Return device geometry * ****************************************************************************/ static int mmcsd_geometry(FAR struct inode *inode, struct geometry *geometry) { FAR struct mmcsd_slot_s *slot; FAR struct spi_dev_s *spi; uint8_t csd[16]; int ret; #ifdef CONFIG_DEBUG if (!geometry) { fdbg("Invalid parameters\n"); return -EINVAL; } if (!inode || !inode->i_private) { fdbg("Internal confusion\n"); return -EIO; } #endif /* Extract our private data from the inode structure */ slot = (FAR struct mmcsd_slot_s *)inode->i_private; spi = slot->spi; #ifdef CONFIG_DEBUG if (!spi) { fdbg("Internal confusion\n"); return -EIO; } #endif /* Re-sample the CSD */ mmcsd_semtake(slot); SPI_SELECT(spi, SPIDEV_MMCSD, true); ret = mmcsd_getcsd(slot, csd); SPI_SELECT(spi, SPIDEV_MMCSD, false); if (ret < 0) { mmcsd_semgive(slot); fdbg("mmcsd_getcsd returned %d\n", ret); return ret; } /* Check for changes related to write protection */ mmcsd_checkwrprotect(slot, csd); /* Then return the card geometry */ geometry->geo_available = ((slot->state & (MMCSD_SLOTSTATUS_NOTREADY | MMCSD_SLOTSTATUS_NODISK)) == 0); geometry->geo_mediachanged = ((slot->state & MMCSD_SLOTSTATUS_MEDIACHGD) != 0); #if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY) geometry->geo_writeenabled = ((slot->state & MMCSD_SLOTSTATUS_WRPROTECT) == 0); #else geometry->geo_writeenabled = false; #endif geometry->geo_nsectors = slot->nsectors; geometry->geo_sectorsize = SECTORSIZE(slot); /* After reporting mediachanged, clear the indication so that it is not * reported again. */ slot->state &= ~MMCSD_SLOTSTATUS_MEDIACHGD; mmcsd_semgive(slot); fvdbg("geo_available: %d\n", geometry->geo_available); fvdbg("geo_mediachanged: %d\n", geometry->geo_mediachanged); fvdbg("geo_writeenabled: %d\n", geometry->geo_writeenabled); fvdbg("geo_nsectors: %d\n", geometry->geo_nsectors); fvdbg("geo_sectorsize: %d\n", geometry->geo_sectorsize); return OK; } /**************************************************************************** * Initialization ****************************************************************************/ /**************************************************************************** * Name: mmcsd_mediainitialize * * Description: * Detect media and initialize * * Precondition: * Semaphore has been taken. ****************************************************************************/ static int mmcsd_mediainitialize(FAR struct mmcsd_slot_s *slot) { FAR struct spi_dev_s *spi = slot->spi; uint8_t csd[16]; uint32_t result = MMCSD_SPIR1_IDLESTATE; systime_t start; systime_t elapsed; int i; int j; /* Assume that the card is not ready (we'll clear this on successful card * initialization. */ slot->state |= MMCSD_SLOTSTATUS_NOTREADY; /* Check if there is a card present in the slot. This is normally a matter is * of GPIO sensing and does not really involve SPI, but by putting this * functionality in the SPI interface, we encapsulate the SPI MMC/SD * interface */ if ((SPI_STATUS(spi, SPIDEV_MMCSD) & SPI_STATUS_PRESENT) == 0) { fdbg("No card present\n"); slot->state |= MMCSD_SLOTSTATUS_NODISK; return -ENODEV; } /* Clock Freq. Identification Mode < 400kHz */ slot->spispeed = MMCSD_IDMODE_CLOCK; (void)SPI_SETFREQUENCY(spi, MMCSD_IDMODE_CLOCK); /* Set the maximum access time out */ slot->taccess = SD_READACCESS; /* The SD card wakes up in SD mode. It will enter SPI mode if the chip * select signal is asserted (negative) during the reception of the reset * command (CMD0) and the card is in IDLE state. */ for (i = 0; i < 2; i++) { /* After power up at least 74 clock cycles are required prior to * starting bus communication */ for (j = 10; j; j--) { SPI_SEND(spi, 0xff); } /* Send CMD0 (GO_TO_IDLE) with CS asserted to put MMC/SD in * IDLE/SPI mode. Return from CMD0 is R1 which should now * show IDLE STATE */ fvdbg("Send CMD0\n"); SPI_SELECT(spi, SPIDEV_MMCSD, true); result = mmcsd_sendcmd(slot, &g_cmd0, 0); if (result == MMCSD_SPIR1_IDLESTATE) { /* Break out of the loop with card selected */ fvdbg("Card is in IDLE state\n"); break; } /* De-select card and try again */ SPI_SELECT(spi, SPIDEV_MMCSD, false); } /* Verify that we exit the above loop with the card reporting IDLE state */ if (result != MMCSD_SPIR1_IDLESTATE) { fdbg("Send CMD0 failed: R1=%02x\n", result); SPI_SELECT(spi, SPIDEV_MMCSD, false); mmcsd_semgive(slot); return -EIO; } slot->type = MMCSD_CARDTYPE_UNKNOWN; /* Check for SDHC Version 2.x. CMD 8 is reserved on SD version 1.0 and * MMC. */ fvdbg("Send CMD8\n"); result = mmcsd_sendcmd(slot, &g_cmd8, 0x1aa); if (result == MMCSD_SPIR1_IDLESTATE) { /* Verify the operating voltage and that the 0xaa was correctly echoed */ if (((slot->r7 & MMCSD_SPIR7_VOLTAGE_MASK) == MMCSD_SPIR7_VOLTAGE_27) && ((slot->r7 & MMCSD_SPIR7_ECHO_MASK) == 0xaa)) { /* Try CMD55/ACMD41 for up to 1 second or until the card exits * the IDLE state */ start = START_TIME; elapsed = 0; do { fvdbg("%d. Send CMD55/ACMD41\n", elapsed); result = mmcsd_sendcmd(slot, &g_cmd55, 0); if (result == MMCSD_SPIR1_IDLESTATE || result == MMCSD_SPIR1_OK) { result = mmcsd_sendcmd(slot, &g_acmd41, (uint32_t)1 << 30); if (result == MMCSD_SPIR1_OK) { break; } } elapsed = ELAPSED_TIME(start); } while (elapsed < MMCSD_DELAY_1SEC); /* Check if ACMD41 was sent successfully */ if (elapsed < MMCSD_DELAY_1SEC) { fvdbg("Send CMD58\n"); SPI_SEND(spi, 0xff); result = mmcsd_sendcmd(slot, &g_cmd58, 0); if (result == MMCSD_SPIR1_OK) { fvdbg("OCR: %08x\n", slot->ocr); if ((slot->ocr & MMCSD_OCR_CCS) != 0) { fdbg("Identified SD ver2 card/with block access\n"); slot->type = MMCSD_CARDTYPE_SDV2 | MMCSD_CARDTYPE_BLOCK; } else { fdbg("Identified SD ver2 card\n"); slot->type = MMCSD_CARDTYPE_SDV2; } } } } } /* Check for SDC version 1.x or MMC */ else { /* Both the MMC card and the SD card support CMD55 */ fvdbg("Send CMD55/ACMD41\n"); result = mmcsd_sendcmd(slot, &g_cmd55, 0); if (result == MMCSD_SPIR1_IDLESTATE || result == MMCSD_SPIR1_OK) { /* But ACMD41 is supported only on SD */ result = mmcsd_sendcmd(slot, &g_acmd41, 0); if (result == MMCSD_SPIR1_IDLESTATE || result == MMCSD_SPIR1_OK) { fdbg("Identified SD ver1 card\n"); slot->type = MMCSD_CARDTYPE_SDV1; } } /* Make sure that we are out of the Idle state */ start = START_TIME; elapsed = 0; do { if (IS_SD(slot->type)) { fvdbg("%d. Send CMD55/ACMD41\n", elapsed); result = mmcsd_sendcmd(slot, &g_cmd55, 0); if (result == MMCSD_SPIR1_IDLESTATE || result == MMCSD_SPIR1_OK) { result = mmcsd_sendcmd(slot, &g_acmd41, 0); if (result == MMCSD_SPIR1_OK) { break; } } } else { fvdbg("%d. Send CMD1\n", i); result = mmcsd_sendcmd(slot, &g_cmd1, 0); if (result == MMCSD_SPIR1_OK) { fdbg("%d. Identified MMC card\n", i); slot->type = MMCSD_CARDTYPE_MMC; break; } } elapsed = ELAPSED_TIME(start); } while (elapsed < MMCSD_DELAY_1SEC); if (elapsed >= MMCSD_DELAY_1SEC) { fdbg("Failed to exit IDLE state\n"); SPI_SELECT(spi, SPIDEV_MMCSD, false); mmcsd_semgive(slot); return -EIO; } } if (slot->type == MMCSD_CARDTYPE_UNKNOWN) { fdbg("Failed to identify card\n"); SPI_SELECT(spi, SPIDEV_MMCSD, false); mmcsd_semgive(slot); return -EIO; } /* Read CSD. CSD must always be valid */ fvdbg("Get CSD\n"); result = mmcsd_getcsd(slot, csd); if (result != OK) { fdbg("mmcsd_getcsd(CMD9) failed: %d\n", result); SPI_SELECT(spi, SPIDEV_MMCSD, false); mmcsd_semgive(slot); return -EIO; } mmcsd_dmpcsd(csd, slot->type); /* CSD data and set block size */ mmcsd_decodecsd(slot, csd); mmcsd_checkwrprotect(slot, csd); /* SDHC ver2.x cards have fixed block transfer size of 512 bytes. SDC * ver1.x cards with capacity less than 1Gb, will have sector size * 512 byes. SDC ver1.x cards with capacity of 2Gb will report readbllen * of 1024 but should use 512 bytes for block transfers. SDC ver1.x 4Gb * cards will report readbllen of 2048 bytes -- are they also 512 bytes? * I think that none of these high capacity cards support setting the * block length?? */ #ifdef CONFIG_MMCSD_SECTOR512 /* Using 512 byte sectors, the maximum ver1.x capacity is 4096 x 512 blocks. * The saved slot->nsectors is converted to 512 byte blocks, so if slot->nsectors * exceeds 4096 x 512, then we must be dealing with a card with read_bl_len * of 1024 or 2048. */ if (!IS_SDV2(slot->type) && slot->nsectors <= ((uint32_t)4096*12)) { /* Don't set the block len on high capacity cards (ver1.x or ver2.x) */ mmcsd_setblklen(slot, SECTORSIZE(slot)); } #else if (!IS_SDV2(slot->type)) { /* Don't set the block len on ver2.x cards */ mmcsd_setblklen(slot, SECTORSIZE(slot)); } #endif slot->state &= ~MMCSD_SLOTSTATUS_NOTREADY; SPI_SELECT(spi, SPIDEV_MMCSD, false); return OK; } /**************************************************************************** * Name: mmcsd_mediachanged * * Description: * Handle initialization/media change events * ****************************************************************************/ static void mmcsd_mediachanged(void *arg) { FAR struct mmcsd_slot_s *slot = (FAR struct mmcsd_slot_s *)arg; FAR struct spi_dev_s *spi; uint8_t oldstate; int ret; #ifdef CONFIG_DEBUG if (!slot || !slot->spi) { fdbg("Internal confusion\n"); return; } #endif spi = slot->spi; /* Save the current slot state and reassess the new state */ mmcsd_semtake(slot); oldstate = slot->state; /* Check if media was removed or inserted */ slot->state &= ~(MMCSD_SLOTSTATUS_NODISK | MMCSD_SLOTSTATUS_NOTREADY | MMCSD_SLOTSTATUS_MEDIACHGD); if ((SPI_STATUS(spi, SPIDEV_MMCSD) & SPI_STATUS_PRESENT) == 0) { /* Media is not present */ fdbg("No card present\n"); slot->state |= (MMCSD_SLOTSTATUS_NODISK | MMCSD_SLOTSTATUS_NOTREADY); /* Was media removed? */ if ((oldstate & MMCSD_SLOTSTATUS_NODISK) == 0) { slot->state |= MMCSD_SLOTSTATUS_MEDIACHGD; } } /* Media is present, was it just inserted? Or, if it was previously not * ready, then try re-initializing it */ else if ((oldstate & (MMCSD_SLOTSTATUS_NODISK | MMCSD_SLOTSTATUS_NOTREADY)) != 0) { /* (Re-)initialize for the media in the slot */ ret = mmcsd_mediainitialize(slot); if (ret == 0) { fvdbg("mmcsd_mediainitialize returned OK\n"); slot->state |= MMCSD_SLOTSTATUS_MEDIACHGD; } } mmcsd_semgive(slot); } /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Name: mmcsd_spislotinitialize * * Description: * Initialize one slot for operation using the SPI MMC/SD interface * * Input Parameters: * minor - The MMC/SD minor device number. The MMC/SD device will be * registered as /dev/mmcsdN where N is the minor number * slotno - The slot number to use. This is only meaningful for * architectures that support multiple MMC/SD slots. This value must be * in the range {0, ..., CONFIG_MMCSD_NSLOTS}. * spi - And instance of an SPI interface obtained by called the * approprite xyz_spibus_initialize() function for the MCU "xyz" with * the appropriate port number. * ****************************************************************************/ int mmcsd_spislotinitialize(int minor, int slotno, FAR struct spi_dev_s *spi) { struct mmcsd_slot_s *slot; char devname[16]; int ret; #ifdef CONFIG_DEBUG if ((unsigned)slotno >= CONFIG_MMCSD_NSLOTS || (unsigned)minor > 255 || !spi) { fdbg("Invalid arguments\n"); return -EINVAL; } #endif /* Select the slot structure */ slot = &g_mmcsdslot[slotno]; memset(slot, 0, sizeof(struct mmcsd_slot_s)); sem_init(&slot->sem, 0, 1); #ifdef CONFIG_DEBUG if (slot->spi) { fdbg("Already registered\n"); return -EBUSY; } #endif /* Bind the SPI port to the slot */ slot->spi = spi; slot->spispeed = MMCSD_IDMODE_CLOCK; /* Get exclusive access to the SPI bus and make sure that SPI is properly * configured for the MMC/SD card */ mmcsd_semtake(slot); /* Initialize for the media in the slot (if any) */ ret = mmcsd_mediainitialize(slot); mmcsd_semgive(slot); if (ret == 0) { fvdbg("mmcsd_mediainitialize returned OK\n"); slot->state |= MMCSD_SLOTSTATUS_MEDIACHGD; } /* Create a MMC/SD device name */ snprintf(devname, 16, "/dev/mmcsd%d", minor); /* Register the driver, even on a failure condition. A * card may be inserted later, for example. */ ret = register_blockdriver(devname, &g_bops, MMCSD_MODE, slot); if (ret < 0) { fdbg("register_blockdriver failed: %d\n", -ret); slot->spi = NULL; return ret; } /* Register a media change callback to handle insertion and * removal of cards. */ (void)SPI_REGISTERCALLBACK(spi, mmcsd_mediachanged, (FAR void *)slot); return OK; } #endif /* defined (CONFIG_MMCSD) && defined (CONFIG_MMCSD_SPI) */