/**************************************************************************** * arch/mips/src/kl/kl_serial.c * * Copyright (C) 2013-2012 Gregory Nutt. All rights reserved. * Author: Gregory Nutt * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name NuttX nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "up_arch.h" #include "up_internal.h" #include "os_internal.h" #include "kl_config.h" #include "kl_lowputc.h" #include "chip.h" #include "chip/kl_uart.h" #include "kl_internal.h" /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ /* Some sanity checks *******************************************************/ /* Is there at least one UART enabled and configured as a RS-232 device? */ #ifndef HAVE_UART_DEVICE # warning "No UARTs enabled" #endif /* If we are not using the serial driver for the console, then we still must * provide some minimal implementation of up_putc. */ #ifdef USE_SERIALDRIVER /* Which UART with be tty0/console and which tty1-4? The console will always * be ttyS0. If there is no console then will use the lowest numbered UART. */ /* First pick the console and ttys0. This could be any of UART0-5 */ #if defined(CONFIG_UART0_SERIAL_CONSOLE) # define CONSOLE_DEV g_uart0port /* UART0 is console */ # define TTYS0_DEV g_uart0port /* UART0 is ttyS0 */ # define UART0_ASSIGNED 1 #elif defined(CONFIG_UART1_SERIAL_CONSOLE) # define CONSOLE_DEV g_uart1port /* UART1 is console */ # define TTYS0_DEV g_uart1port /* UART1 is ttyS0 */ # define UART1_ASSIGNED 1 #elif defined(CONFIG_UART2_SERIAL_CONSOLE) # define CONSOLE_DEV g_uart2port /* UART2 is console */ # define TTYS0_DEV g_uart2port /* UART2 is ttyS0 */ # define UART2_ASSIGNED 1 #else # undef CONSOLE_DEV /* No console */ # if defined(CONFIG_KL_UART0) # define TTYS0_DEV g_uart0port /* UART0 is ttyS0 */ # define UART0_ASSIGNED 1 # elif defined(CONFIG_KL_UART1) # define TTYS0_DEV g_uart1port /* UART1 is ttyS0 */ # define UART1_ASSIGNED 1 # elif defined(CONFIG_KL_UART2) # define TTYS0_DEV g_uart2port /* UART2 is ttyS0 */ # define UART2_ASSIGNED 1 # endif #endif /* Pick ttys1. This could be any of UART0-5 excluding the console UART. */ #if defined(CONFIG_KL_UART0) && !defined(UART0_ASSIGNED) # define TTYS1_DEV g_uart0port /* UART0 is ttyS1 */ # define UART0_ASSIGNED 1 #elif defined(CONFIG_KL_UART1) && !defined(UART1_ASSIGNED) # define TTYS1_DEV g_uart1port /* UART1 is ttyS1 */ # define UART1_ASSIGNED 1 #elif defined(CONFIG_KL_UART2) && !defined(UART2_ASSIGNED) # define TTYS1_DEV g_uart2port /* UART2 is ttyS1 */ # define UART2_ASSIGNED 1 #endif /* Pick ttys2. This could be one of UART1-5. It can't be UART0 because that * was either assigned as ttyS0 or ttys1. One of UART 1-5 could also be the * console. */ #if defined(CONFIG_KL_UART1) && !defined(UART1_ASSIGNED) # define TTYS2_DEV g_uart1port /* UART1 is ttyS2 */ # define UART1_ASSIGNED 1 #elif defined(CONFIG_KL_UART2) && !defined(UART2_ASSIGNED) # define TTYS2_DEV g_uart2port /* UART2 is ttyS2 */ # define UART2_ASSIGNED 1 #endif /* Pick ttys3. This could be one of UART2-5. It can't be UART0-1 because * those have already been assigned to ttsyS0, 1, or 2. One of * UART 2-5 could also be the console. */ #if defined(CONFIG_KL_UART2) && !defined(UART2_ASSIGNED) # define TTYS3_DEV g_uart2port /* UART2 is ttyS3 */ # define UART2_ASSIGNED 1 #endif /**************************************************************************** * Private Types ****************************************************************************/ struct up_dev_s { uintptr_t uartbase; /* Base address of UART registers */ uint32_t baud; /* Configured baud */ uint32_t clock; /* Clocking frequency of the UART module */ #ifdef CONFIG_DEBUG uint8_t irqe; /* Error IRQ associated with this UART (for enable) */ #endif uint8_t irqs; /* Status IRQ associated with this UART (for enable) */ uint8_t irqprio; /* Interrupt priority */ uint8_t ie; /* Interrupts enabled */ uint8_t parity; /* 0=none, 1=odd, 2=even */ uint8_t bits; /* Number of bits (8 or 9) */ }; /**************************************************************************** * Private Function Prototypes ****************************************************************************/ static int up_setup(struct uart_dev_s *dev); static void up_shutdown(struct uart_dev_s *dev); static int up_attach(struct uart_dev_s *dev); static void up_detach(struct uart_dev_s *dev); #ifdef CONFIG_DEBUG static int up_interrupte(int irq, void *context); #endif static int up_interrupts(int irq, void *context); static int up_ioctl(struct file *filep, int cmd, unsigned long arg); static int up_receive(struct uart_dev_s *dev, uint32_t *status); static void up_rxint(struct uart_dev_s *dev, bool enable); static bool up_rxavailable(struct uart_dev_s *dev); static void up_send(struct uart_dev_s *dev, int ch); static void up_txint(struct uart_dev_s *dev, bool enable); static bool up_txready(struct uart_dev_s *dev); #ifdef CONFIG_KL_UARTFIFOS static bool up_txempty(struct uart_dev_s *dev); #endif /**************************************************************************** * Private Variables ****************************************************************************/ static const struct uart_ops_s g_uart_ops = { .setup = up_setup, .shutdown = up_shutdown, .attach = up_attach, .detach = up_detach, .ioctl = up_ioctl, .receive = up_receive, .rxint = up_rxint, .rxavailable = up_rxavailable, .send = up_send, .txint = up_txint, .txready = up_txready, #ifdef CONFIG_KL_UARTFIFOS .txempty = up_txempty, #else .txempty = up_txready, #endif }; /* I/O buffers */ #ifdef CONFIG_KL_UART0 static char g_uart0rxbuffer[CONFIG_UART0_RXBUFSIZE]; static char g_uart0txbuffer[CONFIG_UART0_TXBUFSIZE]; #endif #ifdef CONFIG_KL_UART1 static char g_uart1rxbuffer[CONFIG_UART1_RXBUFSIZE]; static char g_uart1txbuffer[CONFIG_UART1_TXBUFSIZE]; #endif #ifdef CONFIG_KL_UART2 static char g_uart2rxbuffer[CONFIG_UART2_RXBUFSIZE]; static char g_uart2txbuffer[CONFIG_UART2_TXBUFSIZE]; #endif /* This describes the state of the Kinetis UART0 port. */ #ifdef CONFIG_KL_UART0 static struct up_dev_s g_uart0priv = { .uartbase = KL_UART0_BASE, .clock = BOARD_CORECLK_FREQ, .baud = CONFIG_UART0_BAUD, .irqprio = CONFIG_KL_UART0PRIO, .parity = CONFIG_UART0_PARITY, .bits = CONFIG_UART0_BITS, }; static uart_dev_t g_uart0port = { .recv = { .size = CONFIG_UART0_RXBUFSIZE, .buffer = g_uart0rxbuffer, }, .xmit = { .size = CONFIG_UART0_TXBUFSIZE, .buffer = g_uart0txbuffer, }, .ops = &g_uart_ops, .priv = &g_uart0priv, }; #endif /* This describes the state of the Kinetis UART1 port. */ #ifdef CONFIG_KL_UART1 static struct up_dev_s g_uart1priv = { .uartbase = KL_UART1_BASE, .clock = BOARD_BUSCLK_FREQ, .baud = CONFIG_UART1_BAUD, #ifdef CONFIG_DEBUG .irqe = KL_IRQ_UART1E, #endif .irqs = KL_IRQ_UART1S, .irqprio = CONFIG_KL_UART1PRIO, .parity = CONFIG_UART1_PARITY, .bits = CONFIG_UART1_BITS, }; static uart_dev_t g_uart1port = { .recv = { .size = CONFIG_UART1_RXBUFSIZE, .buffer = g_uart1rxbuffer, }, .xmit = { .size = CONFIG_UART1_TXBUFSIZE, .buffer = g_uart1txbuffer, }, .ops = &g_uart_ops, .priv = &g_uart1priv, }; #endif /* This describes the state of the Kinetis UART2 port. */ #ifdef CONFIG_KL_UART2 static struct up_dev_s g_uart2priv = { .uartbase = KL_UART2_BASE, .clock = BOARD_BUSCLK_FREQ, .baud = CONFIG_UART2_BAUD, #ifdef CONFIG_DEBUG .irqe = KL_IRQ_UART2E, #endif .irqs = KL_IRQ_UART2S, .irqprio = CONFIG_KL_UART2PRIO, .parity = CONFIG_UART2_PARITY, .bits = CONFIG_UART2_BITS, }; static uart_dev_t g_uart2port = { .recv = { .size = CONFIG_UART2_RXBUFSIZE, .buffer = g_uart2rxbuffer, }, .xmit = { .size = CONFIG_UART2_TXBUFSIZE, .buffer = g_uart2txbuffer, }, .ops = &g_uart_ops, .priv = &g_uart2priv, }; #endif /**************************************************************************** * Private Functions ****************************************************************************/ /**************************************************************************** * Name: up_serialin ****************************************************************************/ static inline uint8_t up_serialin(struct up_dev_s *priv, int offset) { return getreg8(priv->uartbase + offset); } /**************************************************************************** * Name: up_serialout ****************************************************************************/ static inline void up_serialout(struct up_dev_s *priv, int offset, uint8_t value) { putreg8(value, priv->uartbase + offset); } /**************************************************************************** * Name: up_setuartint ****************************************************************************/ static void up_setuartint(struct up_dev_s *priv) { irqstate_t flags; uint8_t regval; /* Re-enable/re-disable interrupts corresponding to the state of bits in ie */ flags = irqsave(); regval = up_serialin(priv, KL_UART_C2_OFFSET); regval &= ~UART_C2_ALLINTS; regval |= priv->ie; up_serialout(priv, KL_UART_C2_OFFSET, regval); irqrestore(flags); } /**************************************************************************** * Name: up_restoreuartint ****************************************************************************/ static void up_restoreuartint(struct up_dev_s *priv, uint8_t ie) { irqstate_t flags; /* Re-enable/re-disable interrupts corresponding to the state of bits in ie */ flags = irqsave(); priv->ie = ie & UART_C2_ALLINTS; up_setuartint(priv); irqrestore(flags); } /**************************************************************************** * Name: up_disableuartint ****************************************************************************/ static void up_disableuartint(struct up_dev_s *priv, uint8_t *ie) { irqstate_t flags; flags = irqsave(); if (ie) { *ie = priv->ie; } up_restoreuartint(priv, 0); irqrestore(flags); } /**************************************************************************** * Name: up_setup * * Description: * Configure the UART baud, bits, parity, etc. This method is called the * first time that the serial port is opened. * ****************************************************************************/ static int up_setup(struct uart_dev_s *dev) { #ifndef CONFIG_SUPPRESS_UART_CONFIG struct up_dev_s *priv = (struct up_dev_s*)dev->priv; /* Configure the UART as an RS-232 UART */ kl_uartconfigure(priv->uartbase, priv->baud, priv->clock, priv->parity, priv->bits); #endif /* Make sure that all interrupts are disabled */ up_restoreuartint(priv, 0); /* Set up the interrupt priority */ up_prioritize_irq(priv->irqs, priv->irqprio); #ifdef CONFIG_DEBUG up_prioritize_irq(priv->irqe, priv->irqprio); #endif return OK; } /**************************************************************************** * Name: up_shutdown * * Description: * Disable the UART. This method is called when the serial * port is closed * ****************************************************************************/ static void up_shutdown(struct uart_dev_s *dev) { struct up_dev_s *priv = (struct up_dev_s*)dev->priv; /* Disable interrupts */ up_restoreuartint(priv, 0); /* Reset hardware and disable Rx and Tx */ kl_uartreset(priv->uartbase); } /**************************************************************************** * Name: up_attach * * Description: * Configure the UART to operation in interrupt driven mode. This method is * called when the serial port is opened. Normally, this is just after the * the setup() method is called, however, the serial console may operate in * a non-interrupt driven mode during the boot phase. * * RX and TX interrupts are not enabled when by the attach method (unless the * hardware supports multiple levels of interrupt enabling). The RX and TX * interrupts are not enabled until the txint() and rxint() methods are called. * ****************************************************************************/ static int up_attach(struct uart_dev_s *dev) { struct up_dev_s *priv = (struct up_dev_s*)dev->priv; int ret; /* Attach and enable the IRQ(s). The interrupts are (probably) still * disabled in the C2 register. */ ret = irq_attach(priv->irqs, up_interrupts); #ifdef CONFIG_DEBUG if (ret == OK) { ret = irq_attach(priv->irqe, up_interrupte); } #endif if (ret == OK) { #ifdef CONFIG_DEBUG up_enable_irq(priv->irqe); #endif up_enable_irq(priv->irqs); } return ret; } /**************************************************************************** * Name: up_detach * * Description: * Detach UART interrupts. This method is called when the serial port is * closed normally just before the shutdown method is called. The exception * is the serial console which is never shutdown. * ****************************************************************************/ static void up_detach(struct uart_dev_s *dev) { struct up_dev_s *priv = (struct up_dev_s*)dev->priv; /* Disable interrupts */ up_restoreuartint(priv, 0); #ifdef CONFIG_DEBUG up_disable_irq(priv->irqe); #endif up_disable_irq(priv->irqs); /* Detach from the interrupt(s) */ irq_detach(priv->irqs); #ifdef CONFIG_DEBUG irq_detach(priv->irqe); #endif } /**************************************************************************** * Name: up_interrupte * * Description: * This is the UART error interrupt handler. It will be invoked when an * interrupt received on the 'irq' * ****************************************************************************/ #ifdef CONFIG_DEBUG static int up_interrupte(int irq, void *context) { struct uart_dev_s *dev = NULL; struct up_dev_s *priv; uint8_t regval; #ifdef CONFIG_KL_UART0 if (g_uart0priv.irqe == irq) { dev = &g_uart0port; } else #endif #ifdef CONFIG_KL_UART1 if (g_uart1priv.irqe == irq) { dev = &g_uart1port; } else #endif #ifdef CONFIG_KL_UART2 if (g_uart2priv.irqe == irq) { dev = &g_uart2port; } else #endif { PANIC(OSERR_INTERNAL); } priv = (struct up_dev_s*)dev->priv; DEBUGASSERT(priv); /* Handle error interrupts. This interrupt may be caused by: * * FE: Framing error. To clear FE, read S1 with FE set and then read the * UART data register (D). * NF: Noise flag. To clear NF, read S1 and then read the UART data * register (D). * PF: Parity error flag. To clear PF, read S1 and then read the UART data * register (D). */ regval = up_serialin(priv, KL_UART_S1_OFFSET); lldbg("S1: %02x\n", regval); regval = up_serialin(priv, KL_UART_D_OFFSET); return OK; } #endif /* CONFIG_DEBUG */ /**************************************************************************** * Name: up_interrupts * * Description: * This is the UART status interrupt handler. It will be invoked when an * interrupt received on the 'irq' It should call uart_transmitchars or * uart_receivechar to perform the appropriate data transfers. The * interrupt handling logic must be able to map the 'irq' number into the * approprite uart_dev_s structure in order to call these functions. * ****************************************************************************/ static int up_interrupts(int irq, void *context) { struct uart_dev_s *dev = NULL; struct up_dev_s *priv; int passes; #ifdef CONFIG_KL_UARTFIFOS unsigned int count; #else uint8_t s1; #endif bool handled; #ifdef CONFIG_KL_UART0 if (g_uart0priv.irqs == irq) { dev = &g_uart0port; } else #endif #ifdef CONFIG_KL_UART1 if (g_uart1priv.irqs == irq) { dev = &g_uart1port; } else #endif #ifdef CONFIG_KL_UART2 if (g_uart2priv.irqs == irq) { dev = &g_uart2port; } else #endif { PANIC(OSERR_INTERNAL); } priv = (struct up_dev_s*)dev->priv; DEBUGASSERT(priv); /* Loop until there are no characters to be transferred or, * until we have been looping for a long time. */ handled = true; for (passes = 0; passes < 256 && handled; passes++) { handled = false; /* Read status register 1 */ #ifndef CONFIG_KL_UARTFIFOS s1 = up_serialin(priv, KL_UART_S1_OFFSET); #endif /* Handle incoming, receive bytes */ #ifdef CONFIG_KL_UARTFIFOS /* Check the count of bytes in the RX FIFO */ count = up_serialin(priv, KL_UART_RCFIFO_OFFSET); if (count > 0) #else /* Check if the receive data register is full (RDRF). NOTE: If * FIFOS are enabled, this does not mean that the the FIFO is full, * rather, it means that the the number of bytes in the RX FIFO has * exceeded the watermark setting. There may actually be RX data * available! * * The RDRF status indication is cleared when the data is read from * the RX data register. */ if ((s1 & UART_S1_RDRF) != 0) #endif { /* Process incoming bytes */ uart_recvchars(dev); handled = true; } /* Handle outgoing, transmit bytes */ #ifdef CONFIG_KL_UARTFIFOS /* Read the number of bytes currently in the FIFO and compare that to * the size of the FIFO. If there are fewer bytes in the FIFO than * the size of the FIFO, then we are able to transmit. */ # error "Missing logic" #else /* Check if the transmit data register is "empty." NOTE: If FIFOS * are enabled, this does not mean that the the FIFO is empty, rather, * it means that the the number of bytes in the TX FIFO is below the * watermark setting. There could actually be space for additional TX * data. * * The TDRE status indication is cleared when the data is written to * the TX data register. */ if ((s1 & UART_S1_TDRE) != 0) #endif { /* Process outgoing bytes */ uart_xmitchars(dev); handled = true; } } return OK; } /**************************************************************************** * Name: up_ioctl * * Description: * All ioctl calls will be routed through this method * ****************************************************************************/ static int up_ioctl(struct file *filep, int cmd, unsigned long arg) { #if 0 /* Reserved for future growth */ struct inode *inode; struct uart_dev_s *dev; struct up_dev_s *priv; int ret = OK; DEBUGASSERT(filep, filep->f_inode); inode = filep->f_inode; dev = inode->i_private; DEBUGASSERT(dev, dev->priv) priv = (struct up_dev_s*)dev->priv; switch (cmd) { case xxx: /* Add commands here */ break; default: ret = -ENOTTY; break; } return ret; #else return -ENOTTY; #endif } /**************************************************************************** * Name: up_receive * * Description: * Called (usually) from the interrupt level to receive one * character from the UART. Error bits associated with the * receipt are provided in the return 'status'. * ****************************************************************************/ static int up_receive(struct uart_dev_s *dev, uint32_t *status) { struct up_dev_s *priv = (struct up_dev_s*)dev->priv; uint8_t s1; /* Get error status information: * * FE: Framing error. To clear FE, read S1 with FE set and then read * read UART data register (D). * NF: Noise flag. To clear NF, read S1 and then read the UART data * register (D). * PF: Parity error flag. To clear PF, read S1 and then read the UART * data register (D). */ s1 = up_serialin(priv, KL_UART_S1_OFFSET); /* Return status information */ if (status) { *status = (uint32_t)s1; } /* Then return the actual received byte. Reading S1 then D clears all * RX errors. */ return (int)up_serialin(priv, KL_UART_D_OFFSET); } /**************************************************************************** * Name: up_rxint * * Description: * Call to enable or disable RX interrupts * ****************************************************************************/ static void up_rxint(struct uart_dev_s *dev, bool enable) { struct up_dev_s *priv = (struct up_dev_s*)dev->priv; irqstate_t flags; flags = irqsave(); if (enable) { /* Receive an interrupt when their is anything in the Rx data register (or an Rx * timeout occurs). */ #ifndef CONFIG_SUPPRESS_SERIAL_INTS priv->ie |= UART_C2_RIE; up_setuartint(priv); #endif } else { #ifdef CONFIG_DEBUG # warning "Revisit: How are errors enabled?" priv->ie |= UART_C2_RIE; #else priv->ie |= UART_C2_RIE; #endif up_setuartint(priv); } irqrestore(flags); } /**************************************************************************** * Name: up_rxavailable * * Description: * Return true if the receive register is not empty * ****************************************************************************/ static bool up_rxavailable(struct uart_dev_s *dev) { struct up_dev_s *priv = (struct up_dev_s*)dev->priv; #ifdef CONFIG_KL_UARTFIFOS unsigned int count; /* Return true if there are any bytes in the RX FIFO */ count = up_serialin(priv, KL_UART_RCFIFO_OFFSET); return count > 0; #else /* Return true if the receive data register is full (RDRF). NOTE: If * FIFOS are enabled, this does not mean that the the FIFO is full, * rather, it means that the the number of bytes in the RX FIFO has * exceeded the watermark setting. There may actually be RX data * available! */ return (up_serialin(priv, KL_UART_S1_OFFSET) & UART_S1_RDRF) != 0; #endif } /**************************************************************************** * Name: up_send * * Description: * This method will send one byte on the UART. * ****************************************************************************/ static void up_send(struct uart_dev_s *dev, int ch) { struct up_dev_s *priv = (struct up_dev_s*)dev->priv; up_serialout(priv, KL_UART_D_OFFSET, (uint8_t)ch); } /**************************************************************************** * Name: up_txint * * Description: * Call to enable or disable TX interrupts * ****************************************************************************/ static void up_txint(struct uart_dev_s *dev, bool enable) { struct up_dev_s *priv = (struct up_dev_s*)dev->priv; irqstate_t flags; flags = irqsave(); if (enable) { /* Enable the TX interrupt */ #ifndef CONFIG_SUPPRESS_SERIAL_INTS priv->ie |= UART_C2_TIE; up_setuartint(priv); /* Fake a TX interrupt here by just calling uart_xmitchars() with * interrupts disabled (note this may recurse). */ uart_xmitchars(dev); #endif } else { /* Disable the TX interrupt */ priv->ie &= ~UART_C2_TIE; up_setuartint(priv); } irqrestore(flags); } /**************************************************************************** * Name: up_txready * * Description: * Return true if the tranmsit data register is empty * ****************************************************************************/ static bool up_txready(struct uart_dev_s *dev) { struct up_dev_s *priv = (struct up_dev_s*)dev->priv; #ifdef CONFIG_KL_UARTFIFOS /* Read the number of bytes currently in the FIFO and compare that to the * size of the FIFO. If there are fewer bytes in the FIFO than the size * of the FIFO, then we are able to transmit. */ # error "Missing logic" #else /* Return true if the transmit data register is "empty." NOTE: If * FIFOS are enabled, this does not mean that the the FIFO is empty, * rather, it means that the the number of bytes in the TX FIFO is * below the watermark setting. There may actually be space for * additional TX data. */ return (up_serialin(priv, KL_UART_S1_OFFSET) & UART_S1_TDRE) != 0; #endif } /**************************************************************************** * Name: up_txempty * * Description: * Return true if the tranmsit data register is empty * ****************************************************************************/ #ifdef CONFIG_KL_UARTFIFOS static bool up_txempty(struct uart_dev_s *dev) { struct up_dev_s *priv = (struct up_dev_s*)dev->priv; /* Return true if the transmit buffer/fifo is "empty." */ return (up_serialin(priv, KL_UART_SFIFO_OFFSET) & UART_SFIFO_TXEMPT) != 0; } #endif /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Name: up_earlyserialinit * * Description: * Performs the low level UART initialization early in debug so that the * serial console will be available during bootup. This must be called * before up_serialinit. NOTE: This function depends on GPIO pin * configuration performed in up_consoleinit() and main clock iniialization * performed in up_clkinitialize(). * ****************************************************************************/ void up_earlyserialinit(void) { /* Disable interrupts from all UARTS. The console is enabled in * pic32mx_consoleinit() */ up_restoreuartint(TTYS0_DEV.priv, 0); #ifdef TTYS1_DEV up_restoreuartint(TTYS1_DEV.priv, 0); #endif #ifdef TTYS2_DEV up_restoreuartint(TTYS2_DEV.priv, 0); #endif #ifdef TTYS3_DEV up_restoreuartint(TTYS3_DEV.priv, 0); #endif #ifdef TTYS4_DEV up_restoreuartint(TTYS4_DEV.priv, 0); #endif #ifdef TTYS5_DEV up_restoreuartint(TTYS5_DEV.priv, 0); #endif /* Configuration whichever one is the console */ #ifdef HAVE_SERIAL_CONSOLE CONSOLE_DEV.isconsole = true; up_setup(&CONSOLE_DEV); #endif } /**************************************************************************** * Name: up_serialinit * * Description: * Register serial console and serial ports. This assumes * that up_earlyserialinit was called previously. * ****************************************************************************/ void up_serialinit(void) { /* Register the console */ #ifdef HAVE_SERIAL_CONSOLE (void)uart_register("/dev/console", &CONSOLE_DEV); #endif /* Register all UARTs */ (void)uart_register("/dev/ttyS0", &TTYS0_DEV); #ifdef TTYS1_DEV (void)uart_register("/dev/ttyS1", &TTYS1_DEV); #endif #ifdef TTYS2_DEV (void)uart_register("/dev/ttyS2", &TTYS2_DEV); #endif #ifdef TTYS3_DEV (void)uart_register("/dev/ttyS3", &TTYS3_DEV); #endif #ifdef TTYS4_DEV (void)uart_register("/dev/ttyS4", &TTYS4_DEV); #endif #ifdef TTYS5_DEV (void)uart_register("/dev/ttyS5", &TTYS5_DEV); #endif } /**************************************************************************** * Name: up_putc * * Description: * Provide priority, low-level access to support OS debug writes * ****************************************************************************/ int up_putc(int ch) { #ifdef HAVE_SERIAL_CONSOLE struct up_dev_s *priv = (struct up_dev_s*)CONSOLE_DEV.priv; uint8_t ie; up_disableuartint(priv, &ie); /* Check for LF */ if (ch == '\n') { /* Add CR */ kl_lowputc('\r'); } kl_lowputc(ch); up_restoreuartint(priv, ie); #endif return ch; } #else /* USE_SERIALDRIVER */ /**************************************************************************** * Name: up_putc * * Description: * Provide priority, low-level access to support OS debug writes * ****************************************************************************/ int up_putc(int ch) { #ifdef HAVE_SERIAL_CONSOLE /* Check for LF */ if (ch == '\n') { /* Add CR */ kl_lowputc('\r'); } kl_lowputc(ch); #endif return ch; } #endif /* USE_SERIALDRIVER */