/**************************************************************************** * mm/mm_heap/mm_malloc.c * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include "mm_heap/mm.h" /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ #ifndef NULL # define NULL ((void *)0) #endif /**************************************************************************** * Private Functions ****************************************************************************/ static void mm_free_delaylist(FAR struct mm_heap_s *heap) { #if defined(CONFIG_BUILD_FLAT) || defined(__KERNEL__) FAR struct mm_heap_impl_s *heap_impl; FAR struct mm_delaynode_s *tmp; irqstate_t flags; DEBUGASSERT(MM_IS_VALID(heap)); heap_impl = heap->mm_impl; /* Move the delay list to local */ flags = enter_critical_section(); tmp = heap_impl->mm_delaylist; heap_impl->mm_delaylist = NULL; leave_critical_section(flags); /* Test if the delayed is empty */ while (tmp) { FAR void *address; /* Get the first delayed deallocation */ address = tmp; tmp = tmp->flink; /* The address should always be non-NULL since that was checked in the * 'while' condition above. */ mm_free(heap, address); } #endif } /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Name: mm_malloc * * Description: * Find the smallest chunk that satisfies the request. Take the memory from * that chunk, save the remaining, smaller chunk (if any). * * 8-byte alignment of the allocated data is assured. * ****************************************************************************/ FAR void *mm_malloc(FAR struct mm_heap_s *heap, size_t size) { FAR struct mm_heap_impl_s *heap_impl; FAR struct mm_freenode_s *node; size_t alignsize; void *ret = NULL; int ndx; DEBUGASSERT(MM_IS_VALID(heap)); heap_impl = heap->mm_impl; /* Firstly, free mm_delaylist */ mm_free_delaylist(heap); /* Ignore zero-length allocations */ if (size < 1) { return NULL; } /* Adjust the size to account for (1) the size of the allocated node and * (2) to make sure that it is an even multiple of our granule size. */ alignsize = MM_ALIGN_UP(size + SIZEOF_MM_ALLOCNODE); DEBUGASSERT(alignsize >= size); /* Check for integer overflow */ DEBUGASSERT(alignsize >= MM_MIN_CHUNK); DEBUGASSERT(alignsize >= SIZEOF_MM_FREENODE); /* We need to hold the MM semaphore while we muck with the nodelist. */ mm_takesemaphore(heap); /* Get the location in the node list to start the search. Special case * really big allocations */ if (alignsize >= MM_MAX_CHUNK) { ndx = MM_NNODES - 1; } else { /* Convert the request size into a nodelist index */ ndx = mm_size2ndx(alignsize); } /* Search for a large enough chunk in the list of nodes. This list is * ordered by size, but will have occasional zero sized nodes as we visit * other mm_nodelist[] entries. */ for (node = heap_impl->mm_nodelist[ndx].flink; node && node->size < alignsize; node = node->flink) { DEBUGASSERT(node->blink->flink == node); } /* If we found a node with non-zero size, then this is one to use. Since * the list is ordered, we know that is must be best fitting chunk * available. */ if (node) { FAR struct mm_freenode_s *remainder; FAR struct mm_freenode_s *next; size_t remaining; /* Remove the node. There must be a predecessor, but there may not be * a successor node. */ DEBUGASSERT(node->blink); node->blink->flink = node->flink; if (node->flink) { node->flink->blink = node->blink; } /* Check if we have to split the free node into one of the allocated * size and another smaller freenode. In some cases, the remaining * bytes can be smaller (they may be SIZEOF_MM_ALLOCNODE). In that * case, we will just carry the few wasted bytes at the end of the * allocation. */ remaining = node->size - alignsize; if (remaining >= SIZEOF_MM_FREENODE) { /* Get a pointer to the next node in physical memory */ next = (FAR struct mm_freenode_s *) (((FAR char *)node) + node->size); /* Create the remainder node */ remainder = (FAR struct mm_freenode_s *) (((FAR char *)node) + alignsize); remainder->size = remaining; remainder->preceding = alignsize; /* Adjust the size of the node under consideration */ node->size = alignsize; /* Adjust the 'preceding' size of the (old) next node, preserving * the allocated flag. */ next->preceding = remaining | (next->preceding & MM_ALLOC_BIT); /* Add the remainder back into the nodelist */ mm_addfreechunk(heap, remainder); } /* Handle the case of an exact size match */ node->preceding |= MM_ALLOC_BIT; ret = (void *)((FAR char *)node + SIZEOF_MM_ALLOCNODE); } DEBUGASSERT(ret == NULL || mm_heapmember(heap, ret)); mm_givesemaphore(heap); #ifdef CONFIG_MM_FILL_ALLOCATIONS if (ret) { memset(ret, 0xaa, alignsize - SIZEOF_MM_ALLOCNODE); } #endif /* If CONFIG_DEBUG_MM is defined, then output the result of the allocation * to the SYSLOG. */ #ifdef CONFIG_DEBUG_MM if (!ret) { mwarn("WARNING: Allocation failed, size %zu\n", alignsize); } else { minfo("Allocated %p, size %zu\n", ret, alignsize); } #endif return ret; }