/**************************************************************************** * drivers/power/bq769x0.c * Lower half driver for BQ769x0 battery monitor * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /* The bq76920/bq76930/bq76940 battery monitor ICs provide voltage, current, * and temperature monitoring of up to 15-series cells. These ICs also * provide Coulomb counting for state-of-charge measurement, balance drivers * for all cells, and drivers for external cell protection switches. */ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* This driver requires: * * CONFIG_BATTERY_MONITOR- Upper half battery driver support * CONFIG_I2C - I2C support * CONFIG_I2C_BQ769X0 - And the driver must be explicitly selected. */ #if defined(CONFIG_BATTERY_MONITOR) && defined(CONFIG_I2C) && \ defined(CONFIG_I2C_BQ769X0) /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ /* Helpers ******************************************************************/ #ifndef MIN # define MIN(a,b) (a < b ? a : b) #endif #ifndef MAX # define MAX(a,b) (a > b ? a : b) #endif /* The CRC function expects to see address bytes as they appear on the wire */ #define WR_ADDR(a) ((a) << 1) #define RD_ADDR(a) (((a) << 1) | 1) /* Debug ********************************************************************/ #ifdef CONFIG_DEBUG_BQ769X0 # define baterr _err # define batreg _err # define batinfo _info #else # ifdef CONFIG_CPP_HAVE_VARARGS # define baterr(x...) # define batreg(x...) # define batinfo(x...) # else # define baterr(void) # define batreg(void) # define batinfo(void) # endif #endif /**************************************************************************** * Private ****************************************************************************/ struct bq769x0_dev_s { /* The common part of the battery driver visible to the upper-half driver */ FAR const struct battery_monitor_operations_s *ops; /* Battery operations */ sem_t batsem; /* Enforce mutually exclusive access */ /* Data fields specific to the lower half BQ769x0 driver follow */ FAR struct i2c_master_s *i2c; /* I2C interface */ uint8_t addr; /* I2C address */ uint8_t chip; /* Chip Type (e.g. CHIP_76920) */ uint8_t cellcount; /* Number of cells attached to chip */ uint8_t fault_cache; /* Cache of last-read fault bits */ uint32_t frequency; /* I2C frequency */ uint32_t gain; /* ADC gain value in uV */ uint32_t offset; /* ADC offset value in uV */ uint32_t sense_r; /* Current sense resistor, in uOhm */ const uint8_t *mapping; /* Pointer to cell mapping table */ bool crc; /* True if the device has CRC enabled */ }; /* Cell mapping tables * Some channels are not used depending on how many cells are connected * to the BQ769X0. These tables map cell number (array index) to physical * cell channel (array value). See TI datasheet for cell connections table. */ static const uint8_t bq76920_3cell_mapping[] = { 0, 1, 4 }; static const uint8_t bq76920_4cell_mapping[] = { 0, 1, 2, 4 }; static const uint8_t bq76920_5cell_mapping[] = { 0, 1, 2, 3, 4 }; static const uint8_t *bq76920_cell_mapping[] = { bq76920_3cell_mapping, bq76920_4cell_mapping, bq76920_5cell_mapping }; static const uint8_t bq76930_6cell_mapping[] = { 0, 1, 4, 5, 6, 9 }; static const uint8_t bq76930_7cell_mapping[] = { 0, 1, 2, 4, 5, 6, 9 }; static const uint8_t bq76930_8cell_mapping[] = { 0, 1, 2, 4, 5, 6, 7, 9 }; static const uint8_t bq76930_9cell_mapping[] = { 0, 1, 2, 3, 4, 5, 6, 7, 9 }; static const uint8_t bq76930_10cell_mapping[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; static const uint8_t *bq76930_cell_mapping[] = { bq76930_6cell_mapping, bq76930_7cell_mapping, bq76930_8cell_mapping, bq76930_9cell_mapping, bq76930_10cell_mapping }; static const uint8_t bq76940_9cell_mapping[] = { 0, 1, 4, 5, 6, 9, 10, 11, 14 }; static const uint8_t bq76940_10cell_mapping[] = { 0, 1, 2, 4, 5, 6, 9, 10, 11, 14 }; static const uint8_t bq76940_11cell_mapping[] = { 0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 14 }; static const uint8_t bq76940_12cell_mapping[] = { 0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14 }; static const uint8_t bq76940_13cell_mapping[] = { 0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14 }; static const uint8_t bq76940_14cell_mapping[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14 }; static const uint8_t bq76940_15cell_mapping[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; static const uint8_t *bq76940_cell_mapping[] = { bq76940_9cell_mapping, bq76940_10cell_mapping, bq76940_11cell_mapping, bq76940_12cell_mapping, bq76940_13cell_mapping, bq76940_14cell_mapping, bq76940_15cell_mapping, }; /* Current sense limit mapping tables * Maps a voltage threshold (in mV, array value) * to a register field value (array index) * The last values in each list are somewhat arbitrary upper bounds - * The algorithm rounds down when selecting a register value */ static const uint8_t ocd_t_rsns_0_limits[] = { 8, 11, 14, 17, 19, 22, 25, 28, 31, 33, 36, 39, 42, 44, 47, 50, 53 }; static const uint8_t ocd_t_rsns_1_limits[] = { 17, 22, 28, 33, 39, 44, 50, 56, 61, 67, 72, 78, 83, 89, 94, 100, 106 }; static const uint8_t scd_t_rsns_0_limits[] = { 22, 33, 44, 56, 67, 78, 89, 100, 105 }; static const uint8_t scd_t_rsns_1_limits[] = { 44, 67, 89, 111, 133, 155, 178, 200, 210 }; /**************************************************************************** * Private Function Prototypes ****************************************************************************/ /* I2C support functions */ static int bq769x0_getreg8(FAR struct bq769x0_dev_s *priv, uint8_t regaddr, FAR uint8_t *regval); static int bq769x0_putreg8(FAR struct bq769x0_dev_s *priv, uint8_t regaddr, uint8_t regval); static int bq769x0_getreg16(FAR struct bq769x0_dev_s *priv, uint8_t regaddr, FAR uint16_t *regval); static int bq769x0_getnreg16(FAR struct bq769x0_dev_s *priv, uint8_t regaddr, FAR uint16_t *regvals, unsigned int count); /* Device functions */ static inline int bq769x0_getreport(FAR struct bq769x0_dev_s *priv, FAR uint8_t *report); static inline int bq769x0_getvolt(FAR struct bq769x0_dev_s *priv, FAR int *volts); static inline int bq769x0_getcurrent(FAR struct bq769x0_dev_s *priv, FAR struct battery_monitor_current_s *current); static inline int bq769x0_getcellvolt(FAR struct bq769x0_dev_s *priv, FAR struct battery_monitor_voltage_s *voltages); static inline int bq769x0_gettemperature(FAR struct bq769x0_dev_s *priv, FAR struct battery_monitor_temperature_s *temps); static inline int bq769x0_setbalance(FAR struct bq769x0_dev_s *priv, FAR struct battery_monitor_balance_s *bal); static inline int bq769x0_doshutdown(FAR struct bq769x0_dev_s *priv); static inline int bq769x0_setlimits(FAR struct bq769x0_dev_s *priv, FAR struct battery_monitor_limits_s *limits); static inline int bq769x0_setchgdsg(FAR struct bq769x0_dev_s *priv, FAR struct battery_monitor_switches_s *sw); static inline int bq769x0_clear_chipfaults(FAR struct bq769x0_dev_s *priv, uint8_t faults); static inline int bq769x0_updategain(FAR struct bq769x0_dev_s *priv); static int bq769x0_chip_cellcount(FAR struct bq769x0_dev_s *priv); /* Battery driver lower half methods */ static int bq769x0_state(struct battery_monitor_dev_s *dev, int *status); static int bq769x0_health(struct battery_monitor_dev_s *dev, int *health); static int bq769x0_online(struct battery_monitor_dev_s *dev, bool *status); static int bq769x0_voltage(struct battery_monitor_dev_s *dev, int *value); static int bq769x0_cellvoltage(struct battery_monitor_dev_s *dev, struct battery_monitor_voltage_s *cellv); static int bq769x0_current(struct battery_monitor_dev_s *dev, struct battery_monitor_current_s *current); static int bq769x0_soc(struct battery_monitor_dev_s *dev, b16_t *value); static int bq769x0_coulombs(struct battery_monitor_dev_s *dev, int *coulombs); static int bq769x0_temp(struct battery_monitor_dev_s *dev, struct battery_monitor_temperature_s *temps); static int bq769x0_balance(struct battery_monitor_dev_s *dev, struct battery_monitor_balance_s *bal); static int bq769x0_shutdown(struct battery_monitor_dev_s *dev, uintptr_t param); static int bq769x0_limits(struct battery_monitor_dev_s *dev, struct battery_monitor_limits_s *limits); static int bq769x0_chgdsg(struct battery_monitor_dev_s *dev, struct battery_monitor_switches_s *sw); static int bq769x0_clearfaults(struct battery_monitor_dev_s *dev, uintptr_t param); static int bq769x0_operate(struct battery_monitor_dev_s *dev, uintptr_t param); /**************************************************************************** * Private Data ****************************************************************************/ static const struct battery_monitor_operations_s g_bq769x0ops = { bq769x0_state, bq769x0_health, bq769x0_online, bq769x0_voltage, bq769x0_cellvoltage, bq769x0_current, bq769x0_soc, bq769x0_coulombs, bq769x0_temp, bq769x0_balance, bq769x0_shutdown, bq769x0_limits, bq769x0_chgdsg, bq769x0_clearfaults, bq769x0_operate, }; /**************************************************************************** * Private Functions ****************************************************************************/ /**************************************************************************** * Name: bq769x0_getreg8 * * Description: * Read a 8-bit value from a BQ769x0 register. * * START ACK ACK * REPEATED-START ACK Data0 NO-ACK STOP * ****************************************************************************/ static int bq769x0_getreg8(FAR struct bq769x0_dev_s *priv, uint8_t regaddr, FAR uint8_t *regval) { struct i2c_config_s config; uint8_t val[2]; int ret; int datalen; uint8_t sl_addr; uint8_t crc; /* Set up the I2C configuration */ config.frequency = priv->frequency; config.address = priv->addr; config.addrlen = 7; /* Write the register address */ ret = i2c_write(priv->i2c, &config, ®addr, 1); if (ret < 0) { baterr("ERROR: i2c_write failed: %d\n", ret); return ret; } /* Our expected data length varies depending on whether or not a CRC is used */ if (priv->crc) { datalen = 2; } else { datalen = 1; } /* Restart and read 8-bits from the register */ ret = i2c_read(priv->i2c, &config, val, datalen); if (ret < 0) { baterr("ERROR: i2c_read failed: %d\n", ret); return ret; } /* If CRC is used, verify that it is correct */ if (priv->crc) { sl_addr = RD_ADDR(priv->addr); crc = crc8ccittpart(&sl_addr, 1, 0); crc = crc8ccittpart(val, 1, crc); if (crc != val[1]) { baterr("ERROR: CRC mismatch: Got %02x, Expected %02x\n", val[1], crc); return ERROR; } } /* Copy 8-bit value to be returned */ *regval = val[0]; return OK; } /**************************************************************************** * Name: bq769x0_putreg8 * * Description: * Write a 8-bit value to a BQ769x0 register. * * START ACK ACK Data0 ACK STOP * ****************************************************************************/ static int bq769x0_putreg8(FAR struct bq769x0_dev_s *priv, uint8_t regaddr, uint8_t regval) { struct i2c_config_s config; uint8_t buffer[3]; int datalen; uint8_t sl_addr; uint8_t crc; /* Set up the I2C configuration */ config.frequency = priv->frequency; config.address = priv->addr; config.addrlen = 7; batreg("addr: %02x regval: %02x\n", regaddr, regval); /* Set up a 3 byte message to send */ buffer[0] = regaddr; buffer[1] = regval; /* Our expected data length varies depending on whether or not a CRC is used */ if (priv->crc) { datalen = 3; sl_addr = WR_ADDR(priv->addr); crc = crc8ccittpart(&sl_addr, 1, 0); crc = crc8ccittpart(buffer, 2, crc); buffer[2] = crc; batreg("write crc: %02x\n", crc); } else { datalen = 2; } /* Write the register address followed by the data (no RESTART) */ return i2c_write(priv->i2c, &config, buffer, datalen); } /**************************************************************************** * Name: bq769x0_getreg16 * * Description: * Read a 16-bit value from a BQ769x0 register pair. * * START ACK ACK * REPEATED-START ACK Data0 ACK Data1 NO-ACK STOP * ****************************************************************************/ static int bq769x0_getreg16(FAR struct bq769x0_dev_s *priv, uint8_t regaddr, FAR uint16_t *regval) { return bq769x0_getnreg16(priv, regaddr, regval, 1); } /**************************************************************************** * Name: bq769x0_getnreg16 * * Description: * Read an array of 16-bit values from BQ769x0 register pairs. * * START ACK ACK * REPEATED-START ACK Data0 ACK Data1 NO-ACK STOP * * count is number of 16-bit words to read * ****************************************************************************/ static int bq769x0_getnreg16(FAR struct bq769x0_dev_s *priv, uint8_t regaddr, FAR uint16_t *regvals, unsigned int count) { struct i2c_config_s config; uint8_t tmp_val[(4 * 22)]; /* Maximum of 22 registers per read with CRC */ int ret; int datalen; int byte_count; uint8_t sl_addr; uint8_t crc; int i; /* Make sure specified number of registers will fit in our buffer. * If not, limit read to the available buffer size */ if (priv->crc) { if (count >= (sizeof(tmp_val) / 4)) { count = sizeof(tmp_val) / 4; } } else { if (count >= (sizeof(tmp_val) / 2)) { count = sizeof(tmp_val) / 2; } } /* Set up the I2C configuration */ config.frequency = priv->frequency; config.address = priv->addr; config.addrlen = 7; /* Write the register address */ ret = i2c_write(priv->i2c, &config, ®addr, 1); if (ret < 0) { baterr("ERROR: i2c_write failed: %d\n", ret); return ret; } byte_count = 2 * count; /* Our expected I2C data length varies depending on whether or not a CRC is used */ if (priv->crc) { /* When reading multiple bytes, there is 1 CRC byte per data byte */ datalen = (4 * count); } else { datalen = byte_count; } /* Restart and read 16-bits from the register */ ret = i2c_read(priv->i2c, &config, tmp_val, datalen); if (ret < 0) { baterr("ERROR: i2c_read failed: %d\n", ret); return ret; } /* If CRC is used, verify that it is correct * We only include the address with the first data byte. * After that, we compare the CRC of each byte with its following byte */ if (priv->crc) { sl_addr = RD_ADDR(priv->addr); crc = crc8ccittpart(&sl_addr, 1, 0); for (i = 0; i < byte_count; i += 2) { crc = crc8ccittpart(&tmp_val[i], 1, crc); if (crc != tmp_val[i + 1]) { baterr("ERROR: CRC mismatch: Got %02x, Expected %02x\n", tmp_val[2], crc); return ERROR; } crc = 0; } /* Copy 16-bit values to be returned, skipping CRC bytes*/ for (i = 0; i < datalen; i += 4) { *regvals = (uint16_t)tmp_val[i] << 8 | (uint16_t)tmp_val[i + 2]; regvals += 1; } } else { /* Copy 16-bit values to be returned */ for (i = 0; i < datalen; i += 2) { *regvals = (uint16_t)tmp_val[i] << 8 | (uint16_t)tmp_val[i + 1]; regvals += 1; } } return OK; } /**************************************************************************** * Name: bq769x0_getreport * * Description: * Read the BQ769X0 SYS_STAT register * ****************************************************************************/ static inline int bq769x0_getreport(FAR struct bq769x0_dev_s *priv, uint8_t *report) { uint8_t regval = 0; int ret; ret = bq769x0_getreg8(priv, BQ769X0_REG_SYS_STAT, ®val); if (ret == OK) { *report = regval; } return ret; } /**************************************************************************** * Name: bq769x0_updategain * * Description: * Updates the local copies of the BQ769x0 ADC gain registers. * These are used when converting ADC values to actual voltages. * ****************************************************************************/ static inline int bq769x0_updategain(FAR struct bq769x0_dev_s *priv) { int ret; uint8_t gainreg1; uint8_t gainreg2; uint8_t gain; int8_t offset; /* Read current register values */ ret = bq769x0_getreg8(priv, BQ769X0_REG_ADCGAIN1, &gainreg1); if (ret < 0) { baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret); return ret; } ret = bq769x0_getreg8(priv, BQ769X0_REG_ADCGAIN2, &gainreg2); if (ret < 0) { baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret); return ret; } ret = bq769x0_getreg8(priv, BQ769X0_REG_ADCOFFSET, (uint8_t *)&offset); if (ret < 0) { baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret); return ret; } /* Calculate actual gain & offset values * gainreg1 contains gain bits 4-3 * gainreg2 contains gain bits 2-0 */ gainreg1 &= BQ769X0_ADCGAIN1_MASK; gainreg2 &= BQ769X0_ADCGAIN2_MASK; gain = (gainreg1 << 1) | (gainreg2 >> 5); priv->gain = gain + BQ769X0_BASE_GAIN; priv->offset = offset * 1000; /* Convert mV to uV */ batinfo("Battery monitor gain: %d uV/LSB, offset: %d uV.\n", priv->gain, priv->offset); return OK; } /**************************************************************************** * Name: bq769x0_do_shutdown * * Description: * Put the device into a low-power SHIP mode. * External hardware may be required to wake the device up from this state. * ****************************************************************************/ static inline int bq769x0_doshutdown(FAR struct bq769x0_dev_s *priv) { int ret; uint8_t regval; /* Read current register value */ ret = bq769x0_getreg8(priv, BQ769X0_REG_SYS_CTRL1, ®val); if (ret < 0) { baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret); return ret; } /* Mask off the writeable bits */ regval &= BQ769X0_SYS_CTRL1_WRITE_MASK; /* Set SHUT_A and SHUT_B to 0 */ regval &= ~BQ769X0_SYS_CTRL1_SHUTDOWN_MASK; /* Write the shutdown sequence */ ret = bq769x0_putreg8(priv, BQ769X0_REG_SYS_CTRL1, regval); if (ret < 0) { baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret); return ret; } /* Set SHUT_A to 0 and SHUT_B to 1 */ regval |= BQ769X0_SHUT_B; ret = bq769x0_putreg8(priv, BQ769X0_REG_SYS_CTRL1, regval); if (ret < 0) { baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret); return ret; } /* Set SHUT_A to 1 and SHUT_B to 0 */ regval &= ~BQ769X0_SYS_CTRL1_SHUTDOWN_MASK; regval |= BQ769X0_SHUT_A; ret = bq769x0_putreg8(priv, BQ769X0_REG_SYS_CTRL1, regval); if (ret < 0) { baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret); return ret; } batinfo("Device should now be in ship mode\n"); return OK; } /**************************************************************************** * Name: bq769x0_setlimits * * Description: * Set the safety cutoff limits of the device. * ****************************************************************************/ static inline int bq769x0_setlimits(FAR struct bq769x0_dev_s *priv, struct battery_monitor_limits_s *limits) { int ret; int i; uint8_t regval; uint32_t tripval; bool rsns_0_scd_found; bool rsns_1_scd_found; bool rsns_0_ocd_found; bool rsns_1_ocd_found; uint8_t rsns_0_scd_idx; uint8_t rsns_1_scd_idx; uint8_t rsns_0_ocd_idx; uint8_t rsns_1_ocd_idx; regval = 0; /* The OCD (Over current in discharge) and SCD * (Short circuit in discharge) registers are both * affected by the RSNS bit. We ideally want to find * a mapping that satisfies both registers for the provided values * using only a single RSNS value. */ /* Compute overcurrent voltage trip point based on provided * current trip point. */ tripval = limits->overcurrent_limit * priv->sense_r; /* result is in milli-amps * micro-ohms * e.g. 20A * 5 milli-ohms = 20000 * 5000 = 100000000 * Divide by 1000000 to get millivolts */ tripval /= 1000000UL; batinfo("Overcurrent trip voltage is %d mV\n", tripval); /* Now look up overcurrent limit value in the OCD_T * lookup tables. Check both RSNS = 0 and RSNS = 1 * so we can make a decision about which one to use. * Note that limits lower than the minimum will be set to the * minimum value. */ rsns_0_ocd_found = false; rsns_1_ocd_found = false; rsns_0_ocd_idx = 0; rsns_1_ocd_idx = 0; for (i = 1; i < sizeof(ocd_t_rsns_0_limits) / sizeof(ocd_t_rsns_0_limits[0]); i += 1) { if (tripval <= ocd_t_rsns_0_limits[i]) { rsns_0_ocd_idx = i - 1; /* round down */ rsns_0_ocd_found = true; break; } } for (i = 1; i < sizeof(ocd_t_rsns_1_limits) / sizeof(ocd_t_rsns_1_limits[0]); i += 1) { if (tripval <= ocd_t_rsns_1_limits[i]) { rsns_1_ocd_idx = i - 1; /* round down */ rsns_1_ocd_found = true; break; } } if (!rsns_0_ocd_found && !rsns_1_ocd_found) { baterr("ERROR: Failed to find suitable value for OCD_T\n"); return -EINVAL; } /* Compute short circuit voltage trip point based on provided * current trip point */ tripval = limits->shortcircuit_limit * priv->sense_r; /* result is in milli-amps * micro-ohms * e.g. 20A * 5 milli-ohms = 20000 * 5000 = 100000000 * Divide by 1000000 to get millivolts */ tripval /= 1000000UL; batinfo("Short circuit trip voltage is %d mV\n", tripval); /* Now look up the short circuit limit value in the SCD_T * lookup tables. Check both RSNS = 0 and RSNS = 1 * so we can make a decision about which one to use. * Note that limits lower than the minimum will be set to the * minimum value. */ rsns_0_scd_found = false; rsns_1_scd_found = false; rsns_0_scd_idx = 0; rsns_1_scd_idx = 0; /* Don't look at the first element since we're rounding down anyway */ for (i = 1; i < sizeof(scd_t_rsns_0_limits) / sizeof(scd_t_rsns_0_limits[0]); i += 1) { if (tripval < scd_t_rsns_0_limits[i]) { rsns_0_scd_idx = i - 1; /* round down */ rsns_0_scd_found = true; break; } } for (i = 1; i < sizeof(scd_t_rsns_1_limits) / sizeof(scd_t_rsns_1_limits[0]); i += 1) { if (tripval < scd_t_rsns_1_limits[i]) { rsns_1_scd_idx = i - 1; /* round down */ rsns_1_scd_found = true; break; } } if (!rsns_0_scd_found && !rsns_1_scd_found) { baterr("ERROR: Failed to find suitable value for SCD_T\n"); return -EINVAL; } /* Now let's figure out RSNS. * We prefer RSNS = 0 if available, because it gives us finer-grained * control over the actual trip voltage */ if (rsns_0_ocd_found && rsns_0_scd_found) { batinfo("Using RSNS = 0\n"); batinfo("Using SCD_T %x\n", rsns_0_scd_idx); regval |= (rsns_0_scd_idx << BQ769X0_SCD_THRESH_SHIFT) & BQ769X0_SCD_THRESH_MASK; } else if (rsns_1_ocd_found && rsns_1_scd_found) { batinfo("Using RSNS = 1\n"); batinfo("Using SCD_T %x\n", rsns_1_scd_idx); regval |= BQ769X0_RSNS; regval |= (rsns_1_scd_idx << BQ769X0_SCD_THRESH_SHIFT) & BQ769X0_SCD_THRESH_MASK; } else { /* Not possible to meet both trip points with a single RSNS value * For now, let's call that an error. */ limits->overcurrent_limit = 0; limits->shortcircuit_limit = 0; baterr("ERROR: OCD_T and SCD_T could not agree on RSNS.\n"); return -EINVAL; } /* Configure short circuit delay and threshold. * Always round down if we are less than the * next highest value. * Throw an error if we are out of bounds * (+/- an arbitrarily-chosen buffer) */ if (limits->shortcircuit_delay < 68) { limits->shortcircuit_delay = 0; baterr("ERROR: Short circuit delay is too short\n"); return -EINVAL; } else if (limits->shortcircuit_delay < 100) { limits->shortcircuit_delay = 70; regval |= BQ769X0_SCD_DELAY_70US; batinfo("Short circuit delay set to 70uS\n"); } else if (limits->shortcircuit_delay < 200) { limits->shortcircuit_delay = 100; regval |= BQ769X0_SCD_DELAY_100US; batinfo("Short circuit delay set to 100uS\n"); } else if (limits->shortcircuit_delay < 400) { limits->shortcircuit_delay = 200; regval |= BQ769X0_SCD_DELAY_200US; batinfo("Short circuit delay set to 200uS\n"); } else if (limits->shortcircuit_delay < 410) { limits->shortcircuit_delay = 400; regval |= BQ769X0_SCD_DELAY_400US; batinfo("Short circuit delay set to 400uS\n"); } else { limits->shortcircuit_delay = 0; baterr("ERROR: Short circuit delay is too long\n"); return -EINVAL; } ret = bq769x0_putreg8(priv, BQ769X0_REG_PROTECT1, regval); if (ret < 0) { baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret); return ret; } /* Configure overcurrent delay and threshold * Always round down if we are less than the * next highest value. * Throw an error if we are out of bounds * (+/- an arbitrarily-chosen buffer) */ regval = 0; if (limits->overcurrent_delay < (7 * USEC_PER_MSEC)) { limits->overcurrent_delay = 0; baterr("ERROR: Overcurrent delay is too short\n"); return -EINVAL; } else if (limits->overcurrent_delay < (20 * USEC_PER_MSEC)) { limits->overcurrent_delay = 8 * USEC_PER_MSEC; regval |= BQ769X0_OCD_DELAY_8MS; batinfo("Overcurrent delay set to 8mS\n"); } else if (limits->overcurrent_delay < (40 * USEC_PER_MSEC)) { limits->overcurrent_delay = 20 * USEC_PER_MSEC; regval |= BQ769X0_OCD_DELAY_20MS; batinfo("Overcurrent delay set to 20mS\n"); } else if (limits->overcurrent_delay < (80 * USEC_PER_MSEC)) { limits->overcurrent_delay = 40 * USEC_PER_MSEC; regval |= BQ769X0_OCD_DELAY_40MS; batinfo("Overcurrent delay set to 40mS\n"); } else if (limits->overcurrent_delay < (160 * USEC_PER_MSEC)) { limits->overcurrent_delay = 80 * USEC_PER_MSEC; regval |= BQ769X0_OCD_DELAY_80MS; batinfo("Overcurrent delay set to 80mS\n"); } else if (limits->overcurrent_delay < (320 * USEC_PER_MSEC)) { limits->overcurrent_delay = 160 * USEC_PER_MSEC; regval |= BQ769X0_OCD_DELAY_160MS; batinfo("Overcurrent delay set to 160mS\n"); } else if (limits->overcurrent_delay < (640 * USEC_PER_MSEC)) { limits->overcurrent_delay = 320 * USEC_PER_MSEC; regval |= BQ769X0_OCD_DELAY_320MS; batinfo("Overcurrent delay set to 320mS\n"); } else if (limits->overcurrent_delay < (1280 * USEC_PER_MSEC)) { limits->overcurrent_delay = 640 * USEC_PER_MSEC; regval |= BQ769X0_OCD_DELAY_640MS; batinfo("Overcurrent delay set to 640mS\n"); } else if (limits->overcurrent_delay < 1300 * USEC_PER_MSEC) { limits->overcurrent_delay = 1280 * USEC_PER_MSEC; regval |= BQ769X0_OCD_DELAY_1280MS; batinfo("Overcurrent delay set to 1280mS\n"); } else { limits->overcurrent_delay = 0; baterr("ERROR: Overcurrent delay is too long\n"); return -EINVAL; } /* If neither rsns_0 or rsns_1 work, we would have * errored out before this point. */ if (rsns_0_ocd_found) { batinfo("Using OCD_T %x\n", rsns_0_ocd_idx); regval |= (rsns_0_ocd_idx << BQ769X0_OCD_THRESH_SHIFT) & BQ769X0_OCD_THRESH_MASK; } else if (rsns_1_ocd_found) { batinfo("Using OCD_T %x\n", rsns_1_ocd_idx); regval |= (rsns_1_ocd_idx << BQ769X0_OCD_THRESH_SHIFT) & BQ769X0_OCD_THRESH_MASK; } ret = bq769x0_putreg8(priv, BQ769X0_REG_PROTECT2, regval); if (ret < 0) { baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret); return ret; } /* Configure overvoltage and undervoltage delays * Throw an error if we are out of bounds * (+/- an arbitrarily-chosen buffer) */ regval = 0; if (limits->overvoltage_delay < (1 * USEC_PER_SEC)) { limits->overvoltage_delay = 0; baterr("ERROR: overvoltage delay is too short\n"); return -EINVAL; } else if (limits->overvoltage_delay < (2 * USEC_PER_SEC)) { limits->overvoltage_delay = 1 * USEC_PER_SEC; regval |= BQ769X0_OV_DELAY_1S; batinfo("Overvoltage delay set to 1S\n"); } else if (limits->overvoltage_delay < (4 * USEC_PER_SEC)) { limits->overvoltage_delay = 2 * USEC_PER_SEC; regval |= BQ769X0_OV_DELAY_2S; batinfo("Overvoltage delay set to 2S\n"); } else if (limits->overvoltage_delay < (8 * USEC_PER_SEC)) { limits->overvoltage_delay = 4 * USEC_PER_SEC; regval |= BQ769X0_OV_DELAY_4S; batinfo("Overvoltage delay set to 4S\n"); } else if (limits->overvoltage_delay < (10 * USEC_PER_SEC)) { limits->overvoltage_delay = 8 * USEC_PER_SEC; regval |= BQ769X0_OV_DELAY_8S; batinfo("Overvoltage delay set to 8S\n"); } else { limits->overvoltage_delay = 0; baterr("ERROR: overvoltage delay is too long\n"); return -EINVAL; } if (limits->undervoltage_delay < (1 * USEC_PER_SEC)) { limits->undervoltage_delay = 0; baterr("ERROR: undervoltage delay is too short\n"); return -EINVAL; } else if (limits->undervoltage_delay < (4 * USEC_PER_SEC)) { limits->undervoltage_delay = 1 * USEC_PER_SEC; regval |= BQ769X0_UV_DELAY_1S; batinfo("Undervoltage delay set to 1S\n"); } else if (limits->undervoltage_delay < (8 * USEC_PER_SEC)) { limits->undervoltage_delay = 4 * USEC_PER_SEC; regval |= BQ769X0_UV_DELAY_4S; batinfo("Undervoltage delay set to 4S\n"); } else if (limits->undervoltage_delay < (16 * USEC_PER_SEC)) { limits->undervoltage_delay = 8 * USEC_PER_SEC; regval |= BQ769X0_UV_DELAY_8S; batinfo("Undervoltage delay set to 8S\n"); } else if (limits->undervoltage_delay < (20 * USEC_PER_SEC)) { limits->undervoltage_delay = 16 * USEC_PER_SEC; regval |= BQ769X0_UV_DELAY_16S; batinfo("Undervoltage delay set to 16S\n"); } else { limits->undervoltage_delay = 0; baterr("ERROR: undervoltage delay is too long\n"); return -EINVAL; } ret = bq769x0_putreg8(priv, BQ769X0_REG_PROTECT3, regval); if (ret < 0) { baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret); return ret; } /* Calculate OV_TRIP register value based on provided limit. * Note that the register format limits the trip range to * approximately 3.15V to 4.7V */ tripval = (limits->overvoltage_limit - priv->offset) / priv->gain; tripval >>= 4; regval = (uint8_t)(tripval & 0xff); ret = bq769x0_putreg8(priv, BQ769X0_REG_OV_TRIP, regval); if (ret < 0) { baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret); return ret; } /* Calculate UV_TRIP register value based on provided limit. * Note that the register format limits the trip range to * approximately 1.58V to 3.1V */ tripval = (limits->undervoltage_limit - priv->offset) / priv->gain; tripval >>= 4; regval = (uint8_t)(tripval & 0xff); ret = bq769x0_putreg8(priv, BQ769X0_REG_UV_TRIP, regval); if (ret < 0) { baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret); return ret; } return OK; } /**************************************************************************** * Name: bq769x0_setlimits * * Description: * Set the device's charge/discharge switches * ****************************************************************************/ static inline int bq769x0_setchgdsg(FAR struct bq769x0_dev_s *priv, struct battery_monitor_switches_s *sw) { int ret; uint8_t regval; /* Read current register value */ ret = bq769x0_getreg8(priv, BQ769X0_REG_SYS_CTRL2, ®val); if (ret < 0) { baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret); return ret; } /* Mask off the writeable bits */ regval &= BQ769X0_SYS_CTRL2_WRITE_MASK; /* Set CHG_ON and DSG_ON */ regval &= ~BQ769X0_SYS_CTRL2_CHGDSG_MASK; if (sw->charge) { regval |= BQ769X0_CHG_ON; batinfo("Turned on charge switch\n"); } if (sw->discharge) { regval |= BQ769X0_DSG_ON; batinfo("Turned on discharge switch\n"); } /* Write the new register value */ ret = bq769x0_putreg8(priv, BQ769X0_REG_SYS_CTRL2, regval); if (ret < 0) { baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret); return ret; } return OK; } /**************************************************************************** * Name: bq769x0_clear_chip_faults * * Description: * Clear the specified chip faults * ****************************************************************************/ static inline int bq769x0_clear_chipfaults(FAR struct bq769x0_dev_s *priv, uint8_t faults) { int ret; batinfo("Clearing battery faults: %02x\n", faults); /* Write the new register value */ ret = bq769x0_putreg8(priv, BQ769X0_REG_SYS_STAT, faults); if (ret < 0) { baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret); return ret; } return OK; } /**************************************************************************** * Name: bq769x0_state * * Description: * Return the current battery state * ****************************************************************************/ static int bq769x0_state(struct battery_monitor_dev_s *dev, int *status) { FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev; uint8_t regval = 0; int ret; ret = bq769x0_getreport(priv, ®val); if (ret < 0) { *status = BATTERY_UNKNOWN; return ret; } if (regval & BQ769X0_FAULT_MASK) { *status = BATTERY_FAULT; } else { *status = BATTERY_IDLE; } return OK; } /**************************************************************************** * Name: bq769x0_health * * Description: * Return the current battery health state * * Note: if more than one fault happened the user will need to * clear the fault and call this ioctl again to read a new fault, * repeat until receive a BATTERY_HEALTH_GOOD. * ****************************************************************************/ static int bq769x0_health(struct battery_monitor_dev_s *dev, int *health) { FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev; uint8_t regval = 0; int ret; ret = bq769x0_getreport(priv, ®val); if (ret < 0) { *health = BATTERY_HEALTH_UNKNOWN; return ret; } priv->fault_cache = regval; if (regval & BQ769X0_DEVICE_XREADY) { *health = BATTERY_HEALTH_WD_TMR_EXP; } else if (regval & BQ769X0_SCD) { *health = BATTERY_HEALTH_SHORT_CIRCUIT; } else if (regval & BQ769X0_OCD) { *health = BATTERY_HEALTH_OVERCURRENT; } else if (regval & BQ769X0_OV) { *health = BATTERY_HEALTH_OVERVOLTAGE; } else if (regval & BQ769X0_UV) { *health = BATTERY_HEALTH_UNDERVOLTAGE; } else if (regval & BQ769X0_OVRD_ALERT) { *health = BATTERY_HEALTH_UNSPEC_FAIL; } else { *health = BATTERY_HEALTH_GOOD; } return OK; } /**************************************************************************** * Name: bq769x0_online * * Description: * Return true if the battery is online * ****************************************************************************/ static int bq769x0_online(struct battery_monitor_dev_s *dev, bool *status) { /* There is no concept of online/offline in this driver */ *status = true; return OK; } /**************************************************************************** * Name: bq769x0_getvolt * * Description: * Gets the battery stack voltage in uV. * ****************************************************************************/ static inline int bq769x0_getvolt(FAR struct bq769x0_dev_s *priv, int *volts) { uint16_t regval; int ret; ret = bq769x0_getreg16(priv, BQ769X0_REG_BAT_HI, ®val); if (ret < 0) { baterr("ERROR: Error reading voltage from BQ769X0! Error = %d\n", ret); return ret; } /* Voltage is returned from the chip in units of uV/LSB * An offset also needs to be added. * Reading the two bytes in a single operation guarantees atomic access. * The pack voltage is divided by 4 in order to fit in a 16-bit register * Multiply gain by 4, and offset by number of channels on the chip, since * it is cumulative. See TI appnote SLUUB41. */ *volts = ((uint32_t) regval * priv->gain * 4) + (priv->offset * bq769x0_chip_cellcount(priv)); return OK; } /**************************************************************************** * Name: bq769x0_getvolt * * Description: * Gets one or more battery cell voltages from the monitor. * ****************************************************************************/ static inline int bq769x0_getcellvolt(FAR struct bq769x0_dev_s *priv, struct battery_monitor_voltage_s *voltages) { uint16_t regvals[BQ769X0_MAX_CELLS]; int ret; int i; int cellsread; if (voltages) { /* Check how many cells were requested. If more than available, * overwrite with the number available. */ if (voltages->cell_count > priv->cellcount) { voltages->cell_count = priv->cellcount; } } /* Due to gaps in cell voltages when the whole stack is not filled, * We'll read the maximum number of cells supported by the chip * and discard what we don't need. */ cellsread = bq769x0_chip_cellcount(priv); ret = bq769x0_getnreg16(priv, BQ769X0_REG_VC1_HI, regvals, cellsread); if (ret < 0) { baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret); return ret; } for (i = 0; i < voltages->cell_count; i += 1) { /* Voltage is returned from the chip in units of uV/LSB * An offset also needs to be added. * We use the mapping table to determine mapping between cell number * and ADC channel */ voltages->cell_voltages[i] = ((uint32_t) regvals[priv->mapping[i]] * priv->gain) + priv->offset; } return OK; } /**************************************************************************** * Name: bq769x0_gettemperature * * Description: * Gets the voltage(s) at the temperature sensor input(s) of the chip * It is up to the user to convert these voltage values into temperature * values, as many types of temperature sensors exist. * ****************************************************************************/ static inline int bq769x0_gettemperature(FAR struct bq769x0_dev_s *priv, struct battery_monitor_temperature_s *temps) { int chip_sensors; int ret; int i; uint16_t regvals[3]; /* The number of temperature registers varies depending on the * chip variant */ switch (priv->chip) { case CHIP_BQ76920: chip_sensors = BQ76920_TEMP_COUNT; break; case CHIP_BQ76930: chip_sensors = BQ76930_TEMP_COUNT; break; default: case CHIP_BQ76940: chip_sensors = BQ76940_TEMP_COUNT; break; } /* Read the number of sensors requested or available, whichever is smaller * We replace the requested count with the number of channels actually read */ temps->sensor_count = MIN(chip_sensors, temps->sensor_count); ret = bq769x0_getnreg16(priv, BQ769X0_REG_TS1_HI, regvals, temps->sensor_count); if (ret < 0) { baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret); return ret; } /* Convert temp sensor ADC values to microvolts */ for (i = 0; i < temps->sensor_count; i += 1) { temps->temperatures[i] = ((uint32_t) regvals[i] * priv->gain) + priv->offset; } return OK; } /**************************************************************************** * Name: bq769x0_chip_cellcount * * Description: * Returns the number of cell channels on the specified device * ****************************************************************************/ static int bq769x0_chip_cellcount(FAR struct bq769x0_dev_s *priv) { switch (priv->chip) { case CHIP_BQ76920: return BQ76920_MAX_CELL_COUNT; break; case CHIP_BQ76930: return BQ76930_MAX_CELL_COUNT; break; default: case CHIP_BQ76940: return BQ76940_MAX_CELL_COUNT; break; } } /**************************************************************************** * Name: bq769x0_getcurrent * * Description: * Gets the value of the battery current as measured by the BQ769X0 * ****************************************************************************/ static inline int bq769x0_getcurrent(FAR struct bq769x0_dev_s *priv, FAR struct battery_monitor_current_s *current) { /* The BQ769X0's "coulomb counter" reports average current over a 250ms * period. This can be integrated by the user application to measure * amp-hours. */ int i; uint8_t regval; int16_t ccval; int32_t ccvolts; int32_t ccamps; int ret; /* Poll SYS_STAT register until a new Coulomb counter value is ready * or until we time out */ for (i = 0; i < 6; i += 1) { ret = bq769x0_getreg8(priv, BQ769X0_REG_SYS_STAT, ®val); if (ret < 0) { baterr("ERROR: Failed to read BQ769X0 Status! Error = %d\n", ret); return ret; } if (regval & BQ769X0_CC_READY) { /* Clear the CC_ready flag */ ret = bq769x0_putreg8(priv, BQ769X0_REG_SYS_STAT, BQ769X0_CC_READY); if (ret < 0) { baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret); return ret; } /* Get the CC register data (a signed value) */ ret = bq769x0_getreg16(priv, BQ769X0_REG_CC_HI, (uint16_t *)&ccval); if (ret < 0) { baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret); return ret; } batinfo("Coulomb counter raw value: %d\n", ccval); /* Convert coulomb counter to real units * Multiply by 4 for some extra resolution */ ccvolts = (int32_t)ccval * (int32_t)BQ769X0_CC_SCALE * (int32_t)4; /* ccvolts is nV, sense_r is uOhm. Result is in mA * convert to uA, and don't forget to divide the 4 back out */ ccamps = ccvolts / ((int32_t)priv->sense_r); ccamps *= (int32_t)1000; ccamps /= (int32_t)4; current->current = ccamps; /* Acquisition time is constant with this device */ current->time = (BQ769X0_CC_TIME * USEC_PER_MSEC); return OK; } /* Sample is not complete, wait and try again */ usleep(BQ769X0_CC_POLL_INTERVAL * USEC_PER_MSEC); } /* CC value didn't become available in the expected amount of time */ return -ETIMEDOUT; } /**************************************************************************** * Name: bq769x0_setbalance * * Description: * Sets the values of the BQ769X0 balance switches * ****************************************************************************/ static inline int bq769x0_setbalance(FAR struct bq769x0_dev_s *priv, struct battery_monitor_balance_s *bal) { int i; int j; int ret; uint8_t regval; uint16_t balancebits; bool currentbit; bool lastbit; int currentindex; /* Check how many balance switches were requested. If more than available, * overwrite with the number available. */ if (bal->balance_count > priv->cellcount) { bal->balance_count = priv->cellcount; } /* Scan through the input and look for adjacent cells in each group. * This is not allowed by the chip, so we will remove them. * At the same time, copy the balance inputs into a single bit field. * This allows us to get cell remapping out of the way. * We will never have more than 15 cells, so we can store the * result in a 16-bit int. */ balancebits = 0; for (i = 0; i < BQ769X0_BAL_REG_COUNT; i += 1) { lastbit = false; for (j = 0; j < BQ769X0_BAL_BITS_PER_REG; j += 1) { currentindex = i * BQ769X0_BAL_BITS_PER_REG + j; if (currentindex >= bal->balance_count) { break; } currentbit = bal->balance[currentindex]; if (currentbit && lastbit) { bal->balance[currentindex] = false; batinfo("Skipping cell %d because balance is set and previous " "cell balance is set\n", currentindex); } else { balancebits |= (currentbit ? 1 : 0) << priv->mapping[currentindex]; batinfo("Setting cell balance %d to %d\n", currentindex, currentbit); batinfo("Balance bits are %02x\n", balancebits); } lastbit = currentbit; } } /* Now split the result into 3 groups of 5 and send*/ for (i = 0; i < BQ769X0_BAL_REG_COUNT; i += 1) { regval = (balancebits >> (i * 5)) & BQ769X0_CELLBAL_MASK; ret = bq769x0_putreg8(priv, BQ769X0_REG_CELLBAL1 + i, regval); if (ret < 0) { baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret); return ret; } } return OK; } /**************************************************************************** * Name: bq769x0_voltage * * Description: * Get the pack voltage * ****************************************************************************/ static int bq769x0_voltage(struct battery_monitor_dev_s *dev, int *value) { FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev; int ret; /* Get pack voltage from battery monitor */ ret = bq769x0_getvolt(priv, value); if (ret < 0) { baterr("ERROR: Error getting voltage from BQ769X0! Error = %d\n", ret); return ret; } return OK; } /**************************************************************************** * Name: bq769x0_voltage * * Description: * Get 1 or more cell voltages * ****************************************************************************/ static int bq769x0_cellvoltage(struct battery_monitor_dev_s *dev, struct battery_monitor_voltage_s *cellv) { FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev; int ret; /* Get cell voltages from battery monitor */ ret = bq769x0_getcellvolt(priv, cellv); if (ret < 0) { baterr("ERROR: Error getting voltage from BQ769X0! Error = %d\n", ret); return ret; } return OK; } /**************************************************************************** * Name: bq769x0_current * * Description: * Get the pack current * ****************************************************************************/ static int bq769x0_current(struct battery_monitor_dev_s *dev, struct battery_monitor_current_s *current) { FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev; int ret; /* Get current from battery monitor */ ret = bq769x0_getcurrent(priv, current); if (ret < 0) { baterr("ERROR: Error getting current from BQ769X0! Error = %d\n", ret); return ret; } return OK; } /**************************************************************************** * Name: bq769x0_soc * * Description: * Get the pack state of charge (in percent) * ****************************************************************************/ static int bq769x0_soc(struct battery_monitor_dev_s *dev, b16_t *value) { /* The BQ769X0 does not support directly reporting pack state of charge. * You should be able to come up with a state-of-charge value by knowing an * initial value and looking at the Coulomb counter. This is out of scope * for this driver, though. */ return -ENOSYS; } /**************************************************************************** * Name: bq769x0_coulombs * * Description: * Get the raw value of the coulomb counter * ****************************************************************************/ static int bq769x0_coulombs(struct battery_monitor_dev_s *dev, int *coulombs) { /* The data from the coulomb counter on this part can be accessed via * the "get current" command. */ return -ENOSYS; } /**************************************************************************** * Name: bq769x0_temp * * Description: * Get the pack temperature(s) * ****************************************************************************/ static int bq769x0_temp(struct battery_monitor_dev_s *dev, struct battery_monitor_temperature_s *temps) { FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev; int ret; ret = bq769x0_gettemperature(priv, temps); if (ret < 0) { baterr("ERROR: Error getting temperature from BQ769X0! Error = %d\n", ret); return ret; } return OK; } /**************************************************************************** * Name: bq769x0_balance * * Description: * Set the specified cell balance switches * ****************************************************************************/ static int bq769x0_balance(struct battery_monitor_dev_s *dev, struct battery_monitor_balance_s *bal) { FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev; int ret; ret = bq769x0_setbalance(priv, bal); if (ret < 0) { baterr("ERROR: Error getting temperature from BQ769X0! Error = %d\n", ret); return ret; } return OK; } /**************************************************************************** * Name: bq769x0_shutdown * * Description: * Put the battery in a low-power state * ****************************************************************************/ static int bq769x0_shutdown(struct battery_monitor_dev_s *dev, uintptr_t param) { FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev; int ret; ret = bq769x0_doshutdown(priv); if (ret < 0) { baterr("ERROR: Error putting BQ769X0 into low-power state! Error = %d\n", ret); return ret; } return OK; } /**************************************************************************** * Name: bq769x0_limits * * Description: * Set the built-in safety limit values for the battery * ****************************************************************************/ static int bq769x0_limits(struct battery_monitor_dev_s *dev, struct battery_monitor_limits_s *limits) { FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev; int ret; ret = bq769x0_setlimits(priv, limits); if (ret < 0) { baterr("ERROR: Error updating BQ769X0 safety limits! Error = %d\n", ret); return ret; } return OK; } /**************************************************************************** * Name: bq769x0_chgdsg * * Description: * Set the battery charge/discharge switches in order to * accept/provide current * ****************************************************************************/ static int bq769x0_chgdsg(struct battery_monitor_dev_s *dev, struct battery_monitor_switches_s *sw) { FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev; int ret; ret = bq769x0_setchgdsg(priv, sw); if (ret < 0) { baterr("ERROR: Error setting BQ769X0 switches! Error = %d\n", ret); return ret; } return OK; } /**************************************************************************** * Name: bq769x0_clearfaults * * Description: * Clear the battery monitor faults one at a time in order of priority * Uses the most recent fault register read in order to avoid * race conditions. * ****************************************************************************/ static int bq769x0_clearfaults(struct battery_monitor_dev_s *dev, uintptr_t param) { FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev; int ret; uint8_t faults = priv->fault_cache; uint8_t to_clear = 0; if (faults & BQ769X0_DEVICE_XREADY) { to_clear = BQ769X0_DEVICE_XREADY; } else if (faults & BQ769X0_SCD) { to_clear = BQ769X0_SCD; } else if (faults & BQ769X0_OCD) { to_clear = BQ769X0_OCD; } else if (faults & BQ769X0_OV) { to_clear = BQ769X0_OV; } else if (faults & BQ769X0_UV) { to_clear = BQ769X0_UV; } else if (faults & BQ769X0_OVRD_ALERT) { to_clear = BQ769X0_OVRD_ALERT; } if (to_clear) { ret = bq769x0_clear_chipfaults(priv, to_clear); if (ret < 0) { baterr("ERROR: Error clearing faults! Error = %d\n", ret); return ret; } } return OK; } /**************************************************************************** * Name: bq769x0_operate * * Description: * Do miscellaneous battery ioctl() * ****************************************************************************/ static int bq769x0_operate(struct battery_monitor_dev_s *dev, uintptr_t param) { return -ENOSYS; } /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Name: bq769x0_initialize * * Description: * Initialize the BQ769x0 battery driver and return an instance of the * lower_half interface that may be used with battery_monitor_register(); * * This driver requires: * * CONFIG_BATTERY_MONITOR - Upper half battery driver support * CONFIG_I2C - I2C support * CONFIG_I2C_BQ769X0 - And the driver must be explictly selected. * * Input Parameters: * i2c - An instance of the I2C interface to use to communicate with * the BQ769x0 * addr - The I2C address of the BQ769X0 (Can be 0x08 or 0x18). * frequency - The I2C frequency * crc - True if the device has CRC enabled (see TI datasheet) * cellcount - The number of battery cells attached to the BQ769X0. The * mapping of the cells changes based on count - see datasheet. * chip - The chip type (either CHIP_BQ76920, CHIP_BQ76930, or * CHIP_BQ76940). This is used to map cell numbers when the * full capacity of the chip is not used. See the TI datasheet * for cell wiring information. * sense_r - The value of the current sense resistor, in micro ohms. * This value is used to calculate reported current, and when * setting overcurrent thresholds. * * Returned Value: * A pointer to the initialized lower-half driver instance. A NULL pointer * is returned on a failure to initialize the BQ769x0 lower half. * ****************************************************************************/ FAR struct battery_monitor_dev_s * bq769x0_initialize(FAR struct i2c_master_s *i2c, uint8_t addr, uint32_t frequency, bool crc, uint8_t cellcount, uint8_t chip, uint32_t sense_r) { FAR struct bq769x0_dev_s *priv; int ret; uint8_t regval; /* Initialize the BQ769x0 device structure */ priv = (FAR struct bq769x0_dev_s *)kmm_zalloc(sizeof(struct bq769x0_dev_s)); if (priv) { /* Initialize the BQ769x0 device structure */ nxsem_init(&priv->batsem, 0, 1); priv->ops = &g_bq769x0ops; priv->i2c = i2c; priv->addr = addr; priv->frequency = frequency; priv->crc = crc; priv->chip = chip; priv->cellcount = cellcount; priv->sense_r = sense_r; priv->fault_cache = 0; /* Sanity check the device setup and assign cell mapping table */ switch (chip) { case CHIP_BQ76920: if (cellcount < BQ76920_MIN_CELL_COUNT || cellcount > BQ76920_MAX_CELL_COUNT) { berr("ERROR: Invalid number of cells (%d) for BQ76920\n", cellcount); kmm_free(priv); return NULL; } else { priv->mapping = bq76920_cell_mapping[cellcount - BQ76920_MIN_CELL_COUNT]; } break; case CHIP_BQ76930: if (cellcount < BQ76930_MIN_CELL_COUNT || cellcount > BQ76930_MAX_CELL_COUNT) { berr("ERROR: Invalid number of cells (%d) for BQ76930\n", cellcount); kmm_free(priv); return NULL; } else { priv->mapping = bq76930_cell_mapping[cellcount - BQ76930_MIN_CELL_COUNT]; } break; case CHIP_BQ76940: if (cellcount < BQ76940_MIN_CELL_COUNT || cellcount > BQ76940_MAX_CELL_COUNT) { berr("ERROR: Invalid number of cells (%d) for BQ76940\n", cellcount); kmm_free(priv); return NULL; } else { priv->mapping = bq76940_cell_mapping[cellcount - BQ76940_MIN_CELL_COUNT]; } break; default: berr("ERROR: Unrecognized chip type: %d\n", chip); kmm_free(priv); return NULL; break; } /* Configure the BQ769x0 * Set default CC_CFG register (required per datasheet) */ ret = bq769x0_putreg8(priv, BQ769X0_REG_CC_CFG, BQ769X0_CC_CFG_DEFAULT_VAL); if (ret < 0) { baterr("ERROR: Failed to configure the BQ769x0: %d\n", ret); kmm_free(priv); return NULL; } /* Set up DELAY_DIS, CC_EN, and CC_ONESHOT bits, * making sure not to modify existing DSG_ON/CHG_ON state */ ret = bq769x0_getreg8(priv, BQ769X0_REG_SYS_CTRL2, ®val); if (ret < 0) { baterr("ERROR: Failed to configure the BQ769x0: %d\n", ret); kmm_free(priv); return NULL; } /* Keep the existing DSG_ON/CHG_ON bits and set CC_EN */ regval &= BQ769X0_SYS_CTRL2_CHGDSG_MASK; regval |= BQ769X0_CC_EN; ret = bq769x0_putreg8(priv, BQ769X0_REG_SYS_CTRL2, regval); if (ret < 0) { baterr("ERROR: Failed to configure the BQ769x0: %d\n", ret); kmm_free(priv); return NULL; } /* Set ADC_EN and TEMP_SEL bit */ regval = BQ769X0_ADC_EN; #ifndef CONFIG_BQ769X0_USE_INTERNAL_TS regval |= BQ769X0_TEMP_SEL; #endif ret = bq769x0_putreg8(priv, BQ769X0_REG_SYS_CTRL1, regval); if (ret < 0) { baterr("ERROR: Failed to configure the BQ769x0: %d\n", ret); kmm_free(priv); return NULL; } /* Pull the factory-calibrated gain and offset values from the chip. */ ret = bq769x0_updategain(priv); if (ret < 0) { baterr("ERROR: Failed to get gain/offset values from the BQ769x0: " "%d\n", ret); kmm_free(priv); return NULL; } } return (FAR struct battery_monitor_dev_s *)priv; } #endif /* CONFIG_BATTERY_MONITOR && CONFIG_I2C && CONFIG_I2C_BQ769X0 */