/**************************************************************************** * libc/math/lib_sqrtl.c * * This file is a part of NuttX: * * Copyright (C) 2012 Gregory Nutt. All rights reserved. * Ported by: Darcy Gong * * It derives from the Rhombs OS math library by Nick Johnson which has * a compatibile, MIT-style license: * * Copyright (C) 2009-2011 Nick Johnson * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include "lib_internal.h" /**************************************************************************** * Public Functions ****************************************************************************/ #ifdef CONFIG_HAVE_LONG_DOUBLE long double sqrtl(long double x) { long double y, y1; /* Filter out invalid/trivial inputs */ if (x < 0.0) { set_errno(EDOM); return NAN; } if (isnan(x)) { return NAN; } if (isinf(x)) { return INFINITY; } if (x == 0.0) { return 0.0; } /* Guess square root (using bit manipulation) */ y = lib_sqrtapprox(x); /* Perform four iterations of approximation. This number (4) is * definitely optimal */ y = 0.5 * (y + x / y); y = 0.5 * (y + x / y); y = 0.5 * (y + x / y); y = 0.5 * (y + x / y); /* If guess was terribe (out of range of float). Repeat approximation * until convergence */ if (y * y < x - 1.0 || y * y > x + 1.0) { y1 = -1.0; while (y != y1) { y1 = y; y = 0.5 * (y + x / y); } } return y; } #endif