/**************************************************************************** * boards/arm/kinetis/freedom-k28f/include/board.h * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ #ifndef __BOARDS_ARM_KINETIS_FREEDOM_K28F_INCLUDE_BOARD_H #define __BOARDS_ARM_KINETIS_FREEDOM_K28F_INCLUDE_BOARD_H /**************************************************************************** * Included Files ****************************************************************************/ #include #ifndef __ASSEMBLY__ # include # include # include #endif /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ /* Clocking *****************************************************************/ /* The Freedom K28F uses a 12MHz external Oscillator. * The Kinetis MCU startup from an internal digitally-controlled oscillator * (DCO). NuttX will enable the main external oscillator (EXTAL0/XTAL0). * The external oscillator/resonator can range from 32.768 KHz up to 50 MHz. * The default external source for the MCG oscillator inputs is 12 MHz * oscillator * * X501 a High-frequency, low-power Xtal */ #define BOARD_EXTAL_LP 1 #define BOARD_EXTAL_FREQ 12000000 /* 12MHz Oscillator */ #define BOARD_XTAL32_FREQ 32768 /* 32KHz RTC Oscillator */ /* PLL Configuration. * Either the external clock or crystal frequency is used to select the * PRDIV value. Only reference clock frequencies are supported that will * produce a KINETIS_MCG_PLL_REF_MIN >= PLLIN <=KINETIS_MCG_PLL_REF_MAX * reference clock to the PLL. * * PLL Input frequency: PLLIN = REFCLK / PRDIV = 12 MHz / 1 = 12 MHz * PLL Output frequency: PLLOUT = PLLIN * VDIV = 12 MHz * 24 = 288 MHz * MCG Frequency: PLLOUT = 144 MHz = 288 MHz / * KINETIS_MCG_PLL_INTERNAL_DIVBY * PRDIV register value is the divider minus KINETIS_MCG_C5_PRDIV_BASE. * VDIV register value is offset by KINETIS_MCG_C6_VDIV_BASE. */ #define BOARD_PRDIV 1 /* PLL External Reference Divider */ #define BOARD_VDIV 24 /* PLL VCO Divider (frequency multiplier) */ /* Define additional MCG_C2 Setting */ #define BOARD_MCG_C2_FCFTRIM 0 /* Do not enable FCFTRIM */ #define BOARD_MCG_C2_LOCRE0 MCG_C2_LOCRE0 /* Enable reset on loss of clock */ #define BOARD_PLLIN_FREQ (BOARD_EXTAL_FREQ / BOARD_PRDIV) #define BOARD_PLLOUT_FREQ (BOARD_PLLIN_FREQ * BOARD_VDIV) #define BOARD_MCG_FREQ (BOARD_PLLOUT_FREQ / KINETIS_MCG_PLL_INTERNAL_DIVBY) /* SIM CLKDIV1 dividers */ #define BOARD_OUTDIV1 1 /* Core = MCG, 144 MHz */ #define BOARD_OUTDIV2 2 /* Bus = MCG / 2, 72 MHz */ #define BOARD_OUTDIV3 2 /* FlexBus = MCG / 2, 72 MHz */ #define BOARD_OUTDIV4 6 /* Flash clock = MCG / 6, 24 MHz */ #define BOARD_CORECLK_FREQ (BOARD_MCG_FREQ / BOARD_OUTDIV1) #define BOARD_BUS_FREQ (BOARD_MCG_FREQ / BOARD_OUTDIV2) #define BOARD_FLEXBUS_FREQ (BOARD_MCG_FREQ / BOARD_OUTDIV3) #define BOARD_FLASHCLK_FREQ (BOARD_MCG_FREQ / BOARD_OUTDIV4) /* Use BOARD_MCG_FREQ as the output SIM_SOPT2 MUX selected by * SIM_SOPT2[PLLFLLSEL] */ #define BOARD_SOPT2_PLLFLLSEL SIM_SOPT2_PLLFLLSEL_MCGPLLCLK #define BOARD_SOPT2_FREQ BOARD_MCG_FREQ /* N.B. The above BOARD_SOPT2_FREQ precludes use of USB with a 12 MHz Xtal * Divider output clock = Divider input clock * ((USBFRAC+1) / (USBDIV+1)) * SIM_CLKDIV2_FREQ = BOARD_SOPT2_FREQ * ((USBFRAC+1) / (USBDIV+1)) * SIM_CLKDIV2_FREQ = BOARD_SOPT2_FREQ / (USBDIV+1)* (USBFRAC+1) * 48MHz = 144MHz / (2 + 1) * (1 + 0) */ #if (BOARD_SOPT2_FREQ == 144000000L) # define BOARD_SIM_CLKDIV2_USBFRAC 1 # define BOARD_SIM_CLKDIV2_USBDIV 3 # define BOARD_SIM_CLKDIV2_FREQ (BOARD_SOPT2_FREQ / \ BOARD_SIM_CLKDIV2_USBDIV * \ BOARD_SIM_CLKDIV2_USBFRAC) #endif /* Divider output * clock = Divider input clock * ((PLLFLLFRAC+1)/(PLLFLLDIV+1)) * SIM_CLKDIV3_FREQ = BOARD_SOPT2_FREQ * ((PLLFLLFRAC+1) / (PLLFLLDIV+1)) * SIM_CLKDIV3_FREQ = BOARD_SOPT2_FREQ / (PLLFLLDIV+1) * (PLLFLLFRAC+1) * 72MHz = 144MHz / (1 + 1) * (1 + 0) */ #define BOARD_SIM_CLKDIV3_PLLFLLFRAC 1 #define BOARD_SIM_CLKDIV3_PLLFLLDIV 2 #define BOARD_SIM_CLKDIV3_FREQ (BOARD_SOPT2_FREQ / \ BOARD_SIM_CLKDIV3_PLLFLLDIV * \ BOARD_SIM_CLKDIV3_PLLFLLFRAC) #define BOARD_LPUART0_CLKSRC SIM_SOPT2_LPUARTSRC_MCGCLK #define BOARD_LPUART0_FREQ BOARD_SIM_CLKDIV3_FREQ #define BOARD_TPM_CLKSRC SIM_SOPT2_TPMSRC_MCGCLK #define BOARD_TPM_FREQ BOARD_SIM_CLKDIV3_FREQ /* SDHC clocking ************************************************************/ /* SDCLK configurations corresponding to various modes of operation. * Formula is: * * SDCLK frequency = (base clock) / (prescaler * divisor) * * The SDHC module is always configure configured so that the core clock is * the baseclock. * Possible values for prescaler and divisor are: * * SDCLKFS: {2, 4, 8, 16, 32, 63, 128, 256} * DVS: {1..16} */ /* Identification mode: * Optimal 400KHz, Actual 144MHz / (32 * 12) = 375 Khz */ #define BOARD_SDHC_IDMODE_PRESCALER SDHC_SYSCTL_SDCLKFS_DIV32 #define BOARD_SDHC_IDMODE_DIVISOR SDHC_SYSCTL_DVS_DIV(12) /* MMC normal mode: * Optimal 20MHz, Actual 144MHz / (2 * 4) = 18 MHz */ #define BOARD_SDHC_MMCMODE_PRESCALER SDHC_SYSCTL_SDCLKFS_DIV2 #define BOARD_SDHC_MMCMODE_DIVISOR SDHC_SYSCTL_DVS_DIV(4) /* SD normal mode (1-bit): * Optimal 20MHz, Actual 144MHz / (2 * 4) = 18 MHz */ #define BOARD_SDHC_SD1MODE_PRESCALER SDHC_SYSCTL_SDCLKFS_DIV2 #define BOARD_SDHC_SD1MODE_DIVISOR SDHC_SYSCTL_DVS_DIV(4) /* SD normal mode (4-bit): * Optimal 25MHz, Actual 144MHz / (2 * 3) = 24 MHz (with DMA) * SD normal mode (4-bit): * Optimal 25MHz, Actual 144MHz / (2 * 3) = 24 MHz (no DMA) */ #ifdef CONFIG_SDIO_DMA # define BOARD_SDHC_SD4MODE_PRESCALER SDHC_SYSCTL_SDCLKFS_DIV2 # define BOARD_SDHC_SD4MODE_DIVISOR SDHC_SYSCTL_DVS_DIV(3) #else # define BOARD_SDHC_SD4MODE_PRESCALER SDHC_SYSCTL_SDCLKFS_DIV2 # define BOARD_SDHC_SD4MODE_DIVISOR SDHC_SYSCTL_DVS_DIV(3) #endif /* Use the output of SIM_SOPT2[PLLFLLSEL] as the USB clock source */ #define BOARD_USB_CLKSRC SIM_SOPT2_USBSRC #define BOARD_USB_FREQ BOARD_SIM_CLKDIV2_FREQ /* Allow USBOTG-FS Controller to Read from FLASH */ #define BOARD_USB_FLASHACCESS /* PWM Configuration */ /* FTM0 Channels */ #define GPIO_FTM0_CH0OUT PIN_FTM0_CH0_2 /* Pin 22: PTC1 */ #define GPIO_FTM0_CH1OUT PIN_FTM0_CH1_2 /* Pin 23: PTC2 */ #define GPIO_FTM0_CH2OUT PIN_FTM0_CH2_2 /* Pin 9: PTC3 */ #define GPIO_FTM0_CH3OUT PIN_FTM0_CH3 /* Pin 10: PTC4 */ #define GPIO_FTM0_CH4OUT PIN_FTM0_CH4 /* Pin 6: PTD4 */ #define GPIO_FTM0_CH5OUT PIN_FTM0_CH5_2 /* Pin 20: PTD5 */ #define GPIO_FTM0_CH6OUT PIN_FTM0_CH6_2 /* Pin 21: PTD6 */ #define GPIO_FTM0_CH7OUT PIN_FTM0_CH7_2 /* Pin 5: PTD7 */ /* FTM1 Channels */ #define GPIO_FTM1_CH0OUT PIN_FTM1_CH0_1 /* Pin 3: PTA12 */ #define GPIO_FTM1_CH1OUT PIN_FTM1_CH1_1 /* Pin 4: PTA13 */ /* FTM2 Channels */ #define GPIO_FTM2_CH0OUT PIN_FTM2_CH0 /* Pin 25: PTB18 */ #define GPIO_FTM2_CH1OUT PIN_FTM2_CH1 /* Pin 32: PTB19 */ /* LED definitions **********************************************************/ /* A single LED is available driven by PTC5. The LED is grounded so bringing * PTC5 high will illuminate the LED. */ /* LED index values for use with board_userled() */ #define BOARD_LED 0 #define BOARD_NLEDS 1 /* LED bits for use with board_userled_all() */ #define BOARD_LED_BIT (1 << BOARD_LED) /* When CONFIG_ARCH_LEDS is defined in the NuttX configuration, NuttX will * control the LED as defined below. * Thus if the LED is statically on, NuttX has successfully booted and is, * apparently, running normally. * If the LED is flashing at approximately 2Hz, then a fatal error has been * detected and the system has halted. */ #define LED_STARTED 0 /* STATUS LED=OFF */ #define LED_HEAPALLOCATE 0 /* STATUS LED=OFF */ #define LED_IRQSENABLED 0 /* STATUS LED=OFF */ #define LED_STACKCREATED 1 /* STATUS LED=ON */ #define LED_INIRQ 2 /* STATUS LED=no change */ #define LED_SIGNAL 2 /* STATUS LED=no change */ #define LED_ASSERTION 3 /* STATUS LED=no change */ #define LED_PANIC 3 /* STATUS LED=flashing */ /* Button definitions *******************************************************/ /* The freedom-k28f board has no standard GPIO contact buttons */ /* Alternative pin resolution ***********************************************/ /* The Freedom K28F has five LPUARTs with pin availability as follows: * * ----- --------------- ------------------------------- * GPIO LPUART FUNCTION BOARD CONFIGURATION * ----- --------------- ------------------------------- * PTA1 LPUART0_RX PTA1 GPIO0 * PTA15 LPUART0_RX PTA15 FXIO0_D21 * PTB14 LPUART0_RX PTB14 * PTB16 LPUART0_RX PTB16 SDRAM_D17 * PTC25 LPUART0_RX PTC25 LPUART0_RX_TGTMCU * PTD6 LPUART0_RX PTD6 Arduino_D17_ADC0_SE7b * PTA2 LPUART0_TX PTA2 INT * PTA14 LPUART0_TX PTA14 FXIO0_D20 * PTB15 LPUART0_TX N/C * PTB17 LPUART0_TX PTB17 SDRAM_D16 * PTC24 LPUART0_TX PTC24 LPUART0_TX_TGTMCU * PTD7 LPUART0_TX PTD7 SDRAM_CKE * PTA3 LPUART0_RTS PTA3 * PTA17 LPUART0_RTS PTA17 FXIO0_D23 * PTB2 LPUART0_RTS PTB2 Arduino_D19_ADC0_SE12/I2C0_SCL/SDRAM_WE * PTB12 LPUART0_RTS PTB12 Arduino_D5_FTM1_CH0/FTM0_CH4 * PTC27 LPUART0_RTS PTC27 FXOS8700CQ_RESET * PTD4 LPUART0_RTS PTD4 SDRAM_A10 * PTA0 LPUART0_CTS PTA0 K28F_SWD_CLK * PTA16 LPUART0_CTS PTA16 FXIO0_D22 * PTB3 LPUART0_CTS PTB3 Arduino_D18_ADC0_SE13/I2C0_SDA/SDRAM_CS0 * PTB13 LPUART0_CTS PTB13 Arduino_D6_FTM1_CH1/FTM0_CH5 * PTC26 LPUART0_CTS PTC26 FXOS8700CQ_INT * PTD5 LPUART0_CTS PTD5 SDRAM_A9 * ----- --------------- ------------------------------- * PTD8 LPUART1_RX PTD8 FXIO0_D24 * PTC3 LPUART1_RX PTC3 CLKOUT * PTE1 LPUART1_RX PTE1 QSPIA0_SCLK * PTC4 LPUART1_TX PTC4 SDRAM_A19 * PTD9 LPUART1_TX PTD9 FXIO0_D25 * PTE0 LPUART1_TX PTE0 QSPIA0_DATA3 * PTD10 LPUART1_RTS PTD10 FXIO0_D26 * PTC1 LPUART1_RTS PTC1 SDRAM_A21 * PTE3 LPUART1_RTS PTE3 QSPIA0_DATA2 * PTC2 LPUART1_CTS PTC1 SDRAM_A21 * PTD11 LPUART1_CTS PTD11 FXIO0_D27 * PTE2 LPUART1_CTS PTE2 QSPIA0_DATA0 * ----- --------------- ------------------------------- * PTA25 LPUART2_RX PTA25 SDHC0_D0/Arduino_D0_LPUART2_RX * PTD2 LPUART2_RX PTD2 SDRAM_A12 * PTE13 LPUART2_RX N/C * PTE17 LPUART2_RX N/C * PTA24 LPUART2_TX PTA24 SDHC0_D1/Arduino_D1_LPUART2_TX * PTD3 LPUART2_TX PTD3 SDRAM_A11 * PTE12 LPUART2_TX PTE12 I2S0_TX_BCLK * PTE16 LPUART2_TX N/C * PTD0 LPUART2_RTS PTD0 Button_LLWU_P12 * PTA27 LPUART2_RTS PTA27 SDHC0_CMD * PTE19 LPUART2_RTS N/C * PTA26 LPUART2_CTS PTA26 SDHC0_DCLK * PTD1 LPUART2_CTS PTD1 Arduino_D16_ADC0_SE5b * PTE18 LPUART2_CTS N/C * ----- --------------- ------------------------------- * PTA29 LPUART3_RX PTA29 SDHC0_D2 * PTB10 LPUART3_RX PTB10 SDRAM_D19 * PTC16 LPUART3_RX PTC16 SDRAM_DQM2 * PTE5 LPUART3_RX PTE5 QSPIA0_SS0/USB0_SOF_OUT * PTA28 LPUART3_TX PTA28 SDHC0_D3 * PTB11 LPUART3_TX PTB11 SDRAM_D18 * PTC17 LPUART3_TX PTC17 SDRAM_DQM3 * PTE4 LPUART3_TX PTE4 QSPIA0_DATA1 * PTB8 LPUART3_RTS PTB8 SDRAM_D21 * PTA31 LPUART3_RTS PTA31 * PTC18 LPUART3_RTS PTC18 Arduino_D7 * PTE7 LPUART3_RTS PTE7 I2S0_RXD0/LEDRGB_GREEN * PTA30 LPUART3_CTS PTA30 * PTB9 LPUART3_CTS PTB9 SDRAM_D20 * PTC19 LPUART3_CTS PTC19 Arduino_D8 * PTE6 LPUART3_CTS PTE6 I2S0_MCK/LEDRGB_RED * ----- --------------- ------------------------------- * PTA21 LPUART4_RX PTA21 TE/FXIO0_D9 * PTC14 LPUART4_RX PTC14 SDRAM_D25 * PTE21 LPUART4_RX N/C * PTA20 LPUART4_TX PTA20 RD/FXIO0_D8 * PTC15 LPUART4_TX PTC15 SDRAM_D24 * PTE20 LPUART4_TX N/C * PTA23 LPUART4_RTS PTA23 WR/FXIO0_D7 * PTC12 LPUART4_RTS PTC12 SDRAM_D27 * PTE23 LPUART4_RTS N/C * PTA22 LPUART4_CTS PTA22 CS/FXIO0_D6 * PTC13 LPUART4_CTS PTC13 SDRAM_D26 * PTE22 LPUART4_CTS N/C * ----- --------------- ------------------------------- * * Virtual serial port * ------------------- * * A serial port connection is available between the OpenSDA v2.2 MCU and * pins PTC24 and PTC25 of the K28 MCU: * * ----- --------------- ------------------------------- * GPIO LPUART FUNCTION BOARD CONFIGURATION * ----- --------------- ------------------------------- * PTC25 LPUART0_RX PTC25 LPUART0_RX_TGTMCU * PTC24 LPUART0_TX PTC24 LPUART0_TX_TGTMCU * ----- --------------- ------------------------------- */ #define PIN_LPUART0_RX PIN_LPUART0_RX_5 /* PTC25 */ #define PIN_LPUART0_TX PIN_LPUART0_TX_5 /* PTC24 */ /* Arduino RS-232 Shield * --------------------- * * ----- --------------- ------------------------------- * GPIO LPUART FUNCTION BOARD CONFIGURATION * ----- --------------- ------------------------------- * PTA25 LPUART2_RX PTA25 SDHC0_D0/Arduino_D0_LPUART2_RX * PTA24 LPUART2_TX PTA24 SDHC0_D1/Arduino_D1_LPUART2_TX * ----- --------------- ------------------------------- * * Note: PTA24 and PTA25 are shared between Micro SD Card circuit and * Arduino connectors. Remove R106 and R107 or R94 and R11 as necessary to * prevent contention. */ #define PIN_LPUART2_RX PIN_LPUART2_RX_1 /* PTA25 */ #define PIN_LPUART2_TX PIN_LPUART2_TX_1 /* PTA24 */ /* I2C */ #ifdef CONFIG_KINETIS_I2C0 #ifdef CONFIG_FREEDOM_K28F_I2C_ALT_PINS # define PIN_I2C0_SCL (PIN_I2C0_SCL_1 | PIN_ALT2_OPENDRAIN | PIN_ALT2_SLOW) # define PIN_I2C0_SDA (PIN_I2C0_SDA_1 | PIN_ALT2_OPENDRAIN | PIN_ALT2_SLOW) #else # define PIN_I2C0_SCL (PIN_I2C0_SCL_2 | PIN_ALT2_OPENDRAIN | PIN_ALT2_SLOW) # define PIN_I2C0_SDA (PIN_I2C0_SDA_2 | PIN_ALT2_OPENDRAIN | PIN_ALT2_SLOW) #endif #endif /* REVISIT: Added only for clean compilation with I2C1 enabled. */ #ifdef CONFIG_KINETIS_I2C1 #ifdef CONFIG_FREEDOM_K28F_I2C_ALT_PINS # define PIN_I2C1_SCL (PIN_I2C1_SCL_1 | PIN_ALT2_OPENDRAIN | PIN_ALT2_SLOW) # define PIN_I2C1_SDA (PIN_I2C1_SDA_1 | PIN_ALT2_OPENDRAIN | PIN_ALT2_SLOW) #else # define PIN_I2C1_SCL (PIN_I2C1_SCL_2 | PIN_ALT2_OPENDRAIN | PIN_ALT2_SLOW) # define PIN_I2C1_SDA (PIN_I2C1_SDA_2 | PIN_ALT2_OPENDRAIN | PIN_ALT2_SLOW) #endif #endif /* SDHC */ #ifdef CONFIG_KINETIS_SDHC # define PIN_SDHC0_CMD PIN_SDHC0_CMD_1 # define PIN_SDHC0_D0 PIN_SDHC0_D0_1 # define PIN_SDHC0_D1 PIN_SDHC0_D1_1 # define PIN_SDHC0_D2 PIN_SDHC0_D2_1 # define PIN_SDHC0_D3 PIN_SDHC0_D3_1 # define PIN_SDHC0_DCLK PIN_SDHC0_DCLK_1 #endif /* LED definitions **********************************************************/ /* The Freedom K28F has a single RGB LED driven by the K28F as follows: * * LED K28 * ------ ------------------------------------------------------- * RED PTE6 * BLUE PTE7 * GREEN PTE8 * * If CONFIG_ARCH_LEDS is not defined, then the user can control the LEDs in * any way. The following definitions are used to access individual LEDs. */ /* LED index values for use with board_userled() */ #define BOARD_LED_R 0 #define BOARD_LED_G 1 #define BOARD_LED_B 2 #define BOARD_NLEDS 3 /* LED bits for use with board_userled_all() */ #define BOARD_LED_R_BIT (1 << BOARD_LED_R) #define BOARD_LED_G_BIT (1 << BOARD_LED_G) #define BOARD_LED_B_BIT (1 << BOARD_LED_B) /* If CONFIG_ARCH_LEDs is defined, then NuttX will control the LED on board * the Freedom K28F. The following definitions describe how NuttX controls * the LEDs: * * SYMBOL Meaning LED state * RED GREEN BLUE * ------------------- ---------------------------- ----------------- */ #define LED_STARTED 1 /* NuttX has been started OFF OFF OFF */ #define LED_HEAPALLOCATE 2 /* Heap has been allocated OFF OFF ON */ #define LED_IRQSENABLED 0 /* Interrupts enabled OFF OFF ON */ #define LED_STACKCREATED 3 /* Idle stack created OFF ON OFF */ #define LED_INIRQ 0 /* In an interrupt (no change) */ #define LED_SIGNAL 0 /* In a signal handler (no change) */ #define LED_ASSERTION 0 /* An assertion failed (no change) */ #define LED_PANIC 4 /* The system has crashed FLASH OFF OFF */ #undef LED_IDLE /* K28 is in sleep mode (Not used) */ /* Button definitions *******************************************************/ /* Two push buttons, SW2 and SW3, are available on FRDM-K28F board, * where SW2 is connected to PTA4 and SW3 is connected to PTD0. * Besides the general purpose input/output functions, SW2 and SW3 can be * low-power wake up signal. Also, only SW3 can be a non-maskable interrupt. * * Switch GPIO Function * --------- -------------------------------------------------------------- * SW2 PTA4/NMI_B * SW3 PTA4/NMI_B */ #define BUTTON_SW2 0 #define BUTTON_SW3 1 #define NUM_BUTTONS 2 #define BUTTON_SW2_BIT (1 << BUTTON_SW2) #define BUTTON_SW3_BIT (1 << BUTTON_SW3) #endif /* __BOARDS_ARM_KINETIS_FREEDOM_K28F_INCLUDE_BOARD_H */