/**************************************************************************** * drivers/mmcsd/mmcsd_sdio.c * * Copyright (C) 2009 Gregory Nutt. All rights reserved. * Author: Gregory Nutt * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name NuttX nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmcsd_internal.h" #include "mmcsd_sdio.h" /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ /* The maximum number of references on the driver (because a uint8_t is used. * Use a larger type if more references are needed. */ #define MAX_CREFS 0xff /* Timing (all in units of microseconds) */ #define MMCSD_ #define MMCSD_POWERUP_DELAY ((useconds_t)250) /* 74 clock cycles @ 400KHz = 185uS */ #define MMCSD_IDLE_DELAY ((useconds_t)50000) /* Short delay to allow change to IDLE state */ #define MMCSD_DSR_DELAY ((useconds_t)100000) /* Time to wait after setting DSR */ #define MMCSD_CLK_DELAY ((useconds_t)500000) /* Delay after changing clock speeds */ /* Data delays (all in units of milliseconds). * * For MMC & SD V1.x, these should be based on Nac = TAAC + NSAC; The maximum * value of TAAC is 80MS and the maximum value of NSAC is 25.5K clock cycle. * For SD V2.x, a fixed delay of 100MS is recommend which is preety close to * the worst case SD V1.x Nac. Here we just use 100MS delay for all data * transfers. */ #define MMCSD_SCR_DATADELAY (100) /* Wait up to 100MS to get SCR */ #define MMCSD_BLOCK_DATADELAY (100) /* Wait up to 100MS to get one data block */ #define IS_EMPTY(priv) (priv->type == MMCSD_CARDTYPE_UNKNOWN) /**************************************************************************** * Private Types ****************************************************************************/ /* This structure is contains the unique state of the MMC/SD block driver */ struct mmcsd_state_s { FAR struct sdio_dev_s *dev; /* The SDIO device bound to this instance */ uint8_t crefs; /* Open references on the driver */ sem_t sem; /* Assures mutually exclusive access to the slot */ /* Status flags */ uint8_t probed:1; /* true: mmcsd_probe() discovered a card */ uint8_t widebus:1; /* true: Wide 4-bit bus selected */ uint8_t mediachanged:1; /* true: Media changed since last check */ uint8_t wrbusy:1; /* true: Last transfer was a write, card may be busy */ uint8_t wrprotect:1; /* true: Card is write protected (from CSD) */ uint8_t locked:1; /* true: Media is locked (from R1) */ uint8_t dsrimp:1; /* true: card supports CMD4/DSR setting (from CSD) */ #ifdef CONFIG_SDIO_DMA uint8_t dma:1; /* true: hardware supports DMA */ #endif uint8_t mode:2; /* (See MMCSDMODE_* definitions) */ uint8_t type:4; /* Card type (See MMCSD_CARDTYPE_* definitions) */ uint8_t buswidth:4; /* Bus widthes supported (SD only) */ uint16_t selblocklen; /* The currently selected block length */ uint16_t rca; /* Relative Card Address (RCS) register */ /* Memory card geometry (extracted from the CSD) */ uint8_t blockshift; /* Log2 of blocksize */ uint16_t blocksize; /* Read block length (== block size) */ size_t nblocks; /* Number of blocks */ size_t capacity; /* Total capacity of volume */ /* Read-ahead and write buffering support */ #if defined(CONFIG_FS_WRITEBUFFER) || defined(CONFIG_FS_READAHEAD) struct rwbuffer_s rwbuffer; #endif }; /**************************************************************************** * Private Function Prototypes ****************************************************************************/ /* Misc Helpers *************************************************************/ static void mmcsd_takesem(FAR struct mmcsd_state_s *priv); #define mmcsd_givesem(p) sem_post(&priv->sem); /* Command/response helpers *************************************************/ static int mmcsd_sendcmdpoll(FAR struct mmcsd_state_s *priv, uint32_t cmd, uint32_t arg); static int mmcsd_recvR1(FAR struct mmcsd_state_s *priv, uint32_t cmd); static int mmcsd_recvR6(FAR struct mmcsd_state_s *priv, uint32_t cmd); static int mmcsd_getSCR(FAR struct mmcsd_state_s *priv, uint32_t scr[2]); static void mmcsd_decodeCSD(FAR struct mmcsd_state_s *priv, uint32_t csd[4]); #if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS) static void mmcsd_decodeCID(FAR struct mmcsd_state_s *priv, uint32_t cid[4]); #else # define mmcsd_decodeCID(priv,cid) #endif static void mmcsd_decodeSCR(FAR struct mmcsd_state_s *priv, uint32_t scr[2]); static int mmcsd_getR1(FAR struct mmcsd_state_s *priv, FAR uint32_t *r1); static int mmcsd_verifystate(FAR struct mmcsd_state_s *priv, uint32_t status); /* Transfer helpers *********************************************************/ #ifdef CONFIG_FS_WRITABLE static bool mmcsd_wrprotected(FAR struct mmcsd_state_s *priv); #endif static int mmcsd_eventwait(FAR struct mmcsd_state_s *priv, sdio_eventset_t failevents, uint32_t timeout); static int mmcsd_transferready(FAR struct mmcsd_state_s *priv); static int mmcsd_stoptransmission(FAR struct mmcsd_state_s *priv); static int mmcsd_setblocklen(FAR struct mmcsd_state_s *priv, uint32_t blocklen); static ssize_t mmcsd_readsingle(FAR struct mmcsd_state_s *priv, FAR uint8_t *buffer, off_t startblock); static ssize_t mmcsd_readmultiple(FAR struct mmcsd_state_s *priv, FAR uint8_t *buffer, off_t startblock, size_t nblocks); #ifdef CONFIG_FS_READAHEAD static ssize_t mmcsd_reload(FAR void *dev, FAR uint8_t *buffer, off_t startblock, size_t nblocks); #endif #ifdef CONFIG_FS_WRITABLE static ssize_t mmcsd_writesingle(FAR struct mmcsd_state_s *priv, FAR const uint8_t *buffer, off_t startblock); static ssize_t mmcsd_writemultiple(FAR struct mmcsd_state_s *priv, FAR const uint8_t *buffer, off_t startblock, size_t nblocks); #ifdef CONFIG_FS_WRITEBUFFER static ssize_t mmcsd_flush(FAR void *dev, FAR const uint8_t *buffer, off_t startblock, size_t nblocks); #endif #endif /* Block driver methods *****************************************************/ static int mmcsd_open(FAR struct inode *inode); static int mmcsd_close(FAR struct inode *inode); static ssize_t mmcsd_read(FAR struct inode *inode, FAR unsigned char *buffer, size_t startsector, unsigned int nsectors); #ifdef CONFIG_FS_WRITABLE static ssize_t mmcsd_write(FAR struct inode *inode, FAR const unsigned char *buffer, size_t startsector, unsigned int nsectors); #endif static int mmcsd_geometry(FAR struct inode *inode, FAR struct geometry *geometry); static int mmcsd_ioctl(FAR struct inode *inode, int cmd, unsigned long arg); /* Initialization/uninitialization/reset ************************************/ static void mmcsd_mediachange(FAR void *arg); static int mmcsd_widebus(FAR struct mmcsd_state_s *priv); #ifdef CONFIG_MMCSD_MMCSUPPORT static int mmcsd_mmcinitialize(FAR struct mmcsd_state_s *priv); #endif static int mmcsd_sdinitialize(FAR struct mmcsd_state_s *priv); static int mmcsd_cardidentify(FAR struct mmcsd_state_s *priv); static int mmcsd_probe(FAR struct mmcsd_state_s *priv); static int mmcsd_removed(FAR struct mmcsd_state_s *priv); static int mmcsd_hwinitialize(FAR struct mmcsd_state_s *priv); static void mmcsd_hwuninitialize(FAR struct mmcsd_state_s *priv); /**************************************************************************** * Private Data ****************************************************************************/ static const struct block_operations g_bops = { mmcsd_open, /* open */ mmcsd_close, /* close */ mmcsd_read, /* read */ #ifdef CONFIG_FS_WRITABLE mmcsd_write, /* write */ #else NULL, /* write */ #endif mmcsd_geometry, /* geometry */ mmcsd_ioctl /* ioctl */ }; /**************************************************************************** * Private Functions ****************************************************************************/ /**************************************************************************** * Misc Helpers ****************************************************************************/ static void mmcsd_takesem(FAR struct mmcsd_state_s *priv) { /* Take the semaphore (perhaps waiting) */ while (sem_wait(&priv->sem) != 0) { /* The only case that an error should occr here is if the wait was * awakened by a signal. */ ASSERT(errno == EINTR); } } /**************************************************************************** * Command/Response Helpers ****************************************************************************/ /**************************************************************************** * Name: mmcsd_sendcmdpoll * * Description: * Send a command and poll-wait for the response. * ****************************************************************************/ static int mmcsd_sendcmdpoll(FAR struct mmcsd_state_s *priv, uint32_t cmd, uint32_t arg) { int ret; /* Send the command */ SDIO_SENDCMD(priv->dev, cmd, arg); /* Then poll-wait until the response is available */ ret = SDIO_WAITRESPONSE(priv->dev, cmd); if (ret != OK) { fdbg("ERROR: Wait for response to cmd: %08x failed: %d\n", cmd, ret); } return ret; } /**************************************************************************** * Name: mmcsd_sendcmdpoll * * Description: * Set the Driver Stage Register (DSR) if (1) a CONFIG_MMCSD_DSR has been * provided and (2) the card supports a DSR register. If no DSR value * the card default value (0x0404) will be used. * ****************************************************************************/ static inline int mmcsd_sendcmd4(FAR struct mmcsd_state_s *priv) { int ret = OK; #ifdef CONFIG_MMCSD_DSR /* The dsr_imp bit from the CSD will tell us if the card supports setting * the DSR via CMD4 or not. */ if (priv->dsrimp != false) { /* CMD4 = SET_DSR will set the cards DSR register. The DSR and CMD4 * support are optional. However, since this is a broadcast command * with no response (like CMD0), we will never know if the DSR was * set correctly or not */ mmcsd_sendcmdpoll(priv, MMCSD_CMD4, CONFIG_MMCSD_DSR << 16); up_udelay(MMCSD_DSR_DELAY); /* Send it again to have more confidence */ mmcsd_sendcmdpoll(priv, MMCSD_CMD4, CONFIG_MMCSD_DSR << 16); up_udelay(MMCSD_DSR_DELAY); } #endif return ret; } /**************************************************************************** * Name: mmcsd_recvR1 * * Description: * Receive R1 response and check for errors. * ****************************************************************************/ static int mmcsd_recvR1(FAR struct mmcsd_state_s *priv, uint32_t cmd) { uint32_t r1; int ret; /* Get the R1 response from the hardware */ ret = SDIO_RECVR1(priv->dev, cmd, &r1); if (ret == OK) { /* Check if R1 reports an error */ if ((r1 & MMCSD_R1_ERRORMASK) != 0) { /* Card locked is considered an error. Save the card locked * indication for later use. */ fvdbg("ERROR: R1=%08x\n", r1); priv->locked = ((r1 & MMCSD_R1_CARDISLOCKED) != 0); ret = -EIO; } } return ret; } /**************************************************************************** * Name: mmcsd_recvR6 * * Description: * Receive R6 response and check for errors. On success, priv->rca is set * to the received RCA * ****************************************************************************/ static int mmcsd_recvR6(FAR struct mmcsd_state_s *priv, uint32_t cmd) { uint32_t r6 = 0; int ret; /* R6 Published RCA Response (48-bit, SD card only) * 47 0 Start bit * 46 0 Transmission bit (0=from card) * 45:40 bit5 - bit0 Command index (0-63) * 39:8 bit31 - bit0 32-bit Argument Field, consisting of: * [31:16] New published RCA of card * [15:0] Card status bits {23,22,19,12:0} * 7:1 bit6 - bit0 CRC7 * 0 1 End bit * * Get the R1 response from the hardware */ ret = SDIO_RECVR6(priv->dev, cmd, &r6); if (ret == OK) { /* Check if R6 reports an error */ if ((r6 & MMCSD_R6_ERRORMASK) == 0) { /* No, save the RCA and return success */ priv->rca = (uint16_t)(r6 >> 16); return OK; } /* Otherwise, return an I/O failure */ ret = -EIO; } fdbg("ERROR: Failed to get RCA. R6=%08x: %d\n", r6, ret); return ret; } /**************************************************************************** * Name: mmcsd_getSCR * * Description: * Obtain the SD card's Configuration Register (SCR) * * Returned Value: * OK on success; a negated ernno on failure. * ****************************************************************************/ static int mmcsd_getSCR(FAR struct mmcsd_state_s *priv, uint32_t scr[2]) { int ret; /* Set Block Size To 8 Bytes */ ret = mmcsd_setblocklen(priv, 8); if (ret != OK) { fdbg("ERROR: mmcsd_setblocklen failed: %d\n", ret); return ret; } /* Send CMD55 APP_CMD with argument as card's RCA */ mmcsd_sendcmdpoll(priv, SD_CMD55, (uint32_t)priv->rca << 16); ret = mmcsd_recvR1(priv, SD_CMD55); if (ret != OK) { fdbg("ERROR: RECVR1 for CMD55 failed: %d\n", ret); return ret; } /* Setup up to receive data with interrupt mode */ SDIO_BLOCKSETUP(priv->dev, 8, 1); SDIO_RECVSETUP(priv->dev, (FAR uint8_t*)scr, 8); /* Send ACMD51 SD_APP_SEND_SCR with argument as 0 to start data receipt */ (void)SDIO_WAITENABLE(priv->dev, SDIOWAIT_TRANSFERDONE|SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR); mmcsd_sendcmdpoll(priv, SD_ACMD51, 0); ret = mmcsd_recvR1(priv, SD_ACMD51); if (ret != OK) { fdbg("ERROR: RECVR1 for ACMD51 failed: %d\n", ret); SDIO_CANCEL(priv->dev); return ret; } /* Wait for data to be transferred */ ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR, MMCSD_SCR_DATADELAY); if (ret != OK) { fdbg("ERROR: mmcsd_eventwait for READ DATA failed: %d\n", ret); } return ret; } /**************************************************************************** * Name: mmcsd_decodeCSD * * Description: * Decode and extract necessary information from the CSD. If debug is * enabled, then decode and show the full contents of the CSD. * * Returned Value: * OK on success; a negated ernno on failure. On success, the following * values will be set in the driver state structure: * * priv->dsrimp true: card supports CMD4/DSR setting (from CSD) * priv->wrprotect true: card is write protected (from CSD) * priv->blocksize Read block length (== block size) * priv->nblocks Number of blocks * priv->capacity Total capacity of volume * ****************************************************************************/ static void mmcsd_decodeCSD(FAR struct mmcsd_state_s *priv, uint32_t csd[4]) { #if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS) struct mmcsd_csd_s decoded; #endif unsigned int readbllen; bool permwriteprotect; bool tmpwriteprotect; /* Word 1: Bits 127-96: * * CSD_STRUCTURE 127:126 CSD structure * SPEC_VERS 125:122 (MMC) Spec version * TAAC 119:112 Data read access-time-1 * TIME_VALUE 6:3 Time mantissa * TIME_UNIT 2:0 Time exponent * NSAC 111:104 Data read access-time-2 in CLK cycle(NSAC*100) * TRAN_SPEED 103:96 Max. data transfer rate * TIME_VALUE 6:3 Rate exponent * TRANSFER_RATE_UNIT 2:0 Rate mantissa */ #if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS) decoded.csdstructure = csd[0] >> 30; decoded.mmcspecvers = (csd[0] >> 26) & 0x0f; decoded.taac.timevalue = (csd[0] >> 19) & 0x0f; decoded.taac.timeunit = (csd[0] >> 16) & 7; decoded.nsac = (csd[0] >> 8) & 0xff; decoded.transpeed.timevalue = (csd[0] >> 3) & 0x0f; decoded.transpeed.transferrateunit = csd[0] & 7; #endif /* Word 2: Bits 64:95 * CCC 95:84 Card command classes * READ_BL_LEN 83:80 Max. read data block length * READ_BL_PARTIAL 79:79 Partial blocks for read allowed * WRITE_BLK_MISALIGN 78:78 Write block misalignment * READ_BLK_MISALIGN 77:77 Read block misalignment * DSR_IMP 76:76 DSR implemented * Byte addressed SD and MMC: * C_SIZE 73:62 Device size * Block addressed SD: * 75:70 (reserved) * C_SIZE 48:69 Device size */ priv->dsrimp = (csd[1] >> 12) & 1; readbllen = (csd[1] >> 16) & 0x0f; #if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS) decoded.ccc = (csd[1] >> 20) & 0x0fff; decoded.readbllen = (csd[1] >> 16) & 0x0f; decoded.readblpartial = (csd[1] >> 15) & 1; decoded.writeblkmisalign = (csd[1] >> 14) & 1; decoded.readblkmisalign = (csd[1] >> 13) & 1; decoded.dsrimp = priv->dsrimp; #endif /* Word 3: Bits 32-63 * * Byte addressed SD: * C_SIZE 73:62 Device size * VDD_R_CURR_MIN 61:59 Max. read current at Vcc min * VDD_R_CURR_MAX 58:56 Max. read current at Vcc max * VDD_W_CURR_MIN 55:53 Max. write current at Vcc min * VDD_W_CURR_MAX 52:50 Max. write current at Vcc max * C_SIZE_MULT 49:47 Device size multiplier * SD_ER_BLK_EN 46:46 Erase single block enable (SD only) * SD_SECTOR_SIZE 45:39 Erase sector size * SD_WP_GRP_SIZE 38:32 Write protect group size * Block addressed SD: * 75:70 (reserved) * C_SIZE 48:69 Device size * 47:47 (reserved) * SD_ER_BLK_EN 46:46 Erase single block enable (SD only) * SD_SECTOR_SIZE 45:39 Erase sector size * SD_WP_GRP_SIZE 38:32 Write protect group size * MMC: * C_SIZE 73:62 Device size * VDD_R_CURR_MIN 61:59 Max. read current at Vcc min * VDD_R_CURR_MAX 58:56 Max. read current at Vcc max * VDD_W_CURR_MIN 55:53 Max. write current at Vcc min * VDD_W_CURR_MAX 52:50 Max. write current at Vcc max * C_SIZE_MULT 49:47 Device size multiplier * MMC_SECTOR_SIZE 46:42 Erase sector size * MMC_ER_GRP_SIZE 41:37 Erase group size (MMC) * MMC_WP_GRP_SIZE 36:32 Write protect group size */ if (IS_BLOCK(priv->type)) { /* C_SIZE: 69:64 from Word 2 and 63:48 from Word 3 * * 512 = (1 << 9) * 1024 = (1 << 10) * 512*1024 = (1 << 19) */ uint32_t csize = ((csd[1] & 0x3f) << 16) | (csd[2] >> 16); priv->capacity = (csize + 1) << 19; priv->blockshift = 9; priv->blocksize = 1 << 9; priv->nblocks = priv->capacity >> 9; #if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS) decoded.u.sdblock.csize = csize; decoded.u.sdblock.sderblen = (csd[2] >> 14) & 1; decoded.u.sdblock.sdsectorsize = (csd[2] >> 7) & 0x7f; decoded.u.sdblock.sdwpgrpsize = csd[2] & 0x7f; #endif } else { /* C_SIZE: 73:64 from Word 2 and 63:62 from Word 3 */ uint16_t csize = ((csd[1] & 0x03ff) << 2) | ((csd[2] >> 30) & 3); uint8_t csizemult = (csd[2] >> 15) & 7; priv->nblocks = ((uint32_t)csize + 1) * (1 << (csizemult + 2)); priv->blockshift = readbllen; priv->blocksize = (1 << readbllen); priv->capacity = (priv->nblocks << readbllen); #if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS) if (IS_SD(priv->type)) { decoded.u.sdbyte.csize = csize; decoded.u.sdbyte.vddrcurrmin = (csd[2] >> 27) & 7; decoded.u.sdbyte.vddrcurrmax = (csd[2] >> 24) & 7; decoded.u.sdbyte.vddwcurrmin = (csd[2] >> 21) & 7; decoded.u.sdbyte.vddwcurrmax = (csd[2] >> 18) & 7; decoded.u.sdbyte.csizemult = csizemult; decoded.u.sdbyte.sderblen = (csd[2] >> 14) & 1; decoded.u.sdbyte.sdsectorsize = (csd[2] >> 7) & 0x7f; decoded.u.sdbyte.sdwpgrpsize = csd[2] & 0x7f; } #ifdef CONFIG_MMCSD_MMCSUPPORT else if (IS_MMC(priv->type)) { decoded.u.mmc.csize = csize; decoded.u.mmc.vddrcurrmin = (csd[2] >> 27) & 7; decoded.u.mmc.vddrcurrmax = (csd[2] >> 24) & 7; decoded.u.mmc.vddwcurrmin = (csd[2] >> 21) & 7; decoded.u.mmc.vddwcurrmax = (csd[2] >> 18) & 7; decoded.u.mmc.csizemult = csizemult; decoded.u.mmc.er.mmc22.sectorsize = (csd[2] >> 10) & 0x1f; decoded.u.mmc.er.mmc22.ergrpsize = (csd[2] >> 5) & 0x1f; decoded.u.mmc.mmcwpgrpsize = csd[2] & 0x1f; } #endif #endif } /* Word 4: Bits 0-31 * WP_GRP_EN 31:31 Write protect group enable * MMC DFLT_ECC 30:29 Manufacturer default ECC (MMC only) * R2W_FACTOR 28:26 Write speed factor * WRITE_BL_LEN 25:22 Max. write data block length * WRITE_BL_PARTIAL 21:21 Partial blocks for write allowed * FILE_FORMAT_GROUP 15:15 File format group * COPY 14:14 Copy flag (OTP) * PERM_WRITE_PROTECT 13:13 Permanent write protection * TMP_WRITE_PROTECT 12:12 Temporary write protection * FILE_FORMAT 10:11 File format * ECC 9:8 ECC (MMC only) * CRC 7:1 CRC * Not used 0:0 */ permwriteprotect = (csd[3] >> 13) & 1; tmpwriteprotect = (csd[3] >> 12) & 1; priv->wrprotect = (permwriteprotect || tmpwriteprotect); #if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS) decoded.wpgrpen = csd[3] >> 31; decoded.mmcdfltecc = (csd[3] >> 29) & 3; decoded.r2wfactor = (csd[3] >> 26) & 7; decoded.writebllen = (csd[3] >> 22) & 0x0f; decoded.writeblpartial = (csd[3] >> 21) & 1; decoded.fileformatgrp = (csd[3] >> 15) & 1; decoded.copy = (csd[3] >> 14) & 1; decoded.permwriteprotect = permwriteprotect; decoded.tmpwriteprotect = tmpwriteprotect; decoded.fileformat = (csd[3] >> 10) & 3; decoded.mmcecc = (csd[3] >> 8) & 3; decoded.crc = (csd[3] >> 1) & 0x7f; fvdbg("CSD:\n"); fvdbg(" CSD_STRUCTURE: %d SPEC_VERS: %d (MMC)\n", decoded.csdstructure, decoded.mmcspecvers); fvdbg(" TAAC {TIME_UNIT: %d TIME_VALUE: %d} NSAC: %d\n", decoded.taac.timeunit, decoded.taac.timevalue, decoded.nsac); fvdbg(" TRAN_SPEED {TRANSFER_RATE_UNIT: %d TIME_VALUE: %d}\n", decoded.transpeed.transferrateunit, decoded.transpeed.timevalue); fvdbg(" CCC: %d\n", decoded.ccc); fvdbg(" READ_BL_LEN: %d READ_BL_PARTIAL: %d\n", decoded.readbllen, decoded.readblpartial); fvdbg(" WRITE_BLK_MISALIGN: %d READ_BLK_MISALIGN: %d\n", decoded.writeblkmisalign, decoded.readblkmisalign); fvdbg(" DSR_IMP: %d\n", decoded.dsrimp); if (IS_BLOCK(priv->type)) { fvdbg(" SD Block Addressing:\n"); fvdbg(" C_SIZE: %d SD_ER_BLK_EN: %d\n", decoded.u.sdblock.csize, decoded.u.sdblock.sderblen); fvdbg(" SD_SECTOR_SIZE: %d SD_WP_GRP_SIZE: %d\n", decoded.u.sdblock.sdsectorsize, decoded.u.sdblock.sdwpgrpsize); } else if (IS_SD(priv->type)) { fvdbg(" SD Byte Addressing:\n"); fvdbg(" C_SIZE: %d C_SIZE_MULT: %d\n", decoded.u.sdbyte.csize, decoded.u.sdbyte.csizemult); fvdbg(" VDD_R_CURR_MIN: %d VDD_R_CURR_MAX: %d\n", decoded.u.sdbyte.vddrcurrmin, decoded.u.sdbyte.vddrcurrmax); fvdbg(" VDD_W_CURR_MIN: %d VDD_W_CURR_MAX: %d\n", decoded.u.sdbyte.vddwcurrmin, decoded.u.sdbyte.vddwcurrmax); fvdbg(" SD_ER_BLK_EN: %d SD_SECTOR_SIZE: %d (SD) SD_WP_GRP_SIZE: %d\n", decoded.u.sdbyte.sderblen, decoded.u.sdbyte.sdsectorsize, decoded.u.sdbyte.sdwpgrpsize); } #ifdef CONFIG_MMCSD_MMCSUPPORT else if (IS_MMC(priv->type)) { fvdbg(" MMC:\n"); fvdbg(" C_SIZE: %d C_SIZE_MULT: %d\n", decoded.u.mmc.csize, decoded.u.mmc.csizemult); fvdbg(" VDD_R_CURR_MIN: %d VDD_R_CURR_MAX: %d\n", decoded.u.mmc.vddrcurrmin, decoded.u.mmc.vddrcurrmax); fvdbg(" VDD_W_CURR_MIN: %d VDD_W_CURR_MAX: %d\n", decoded.u.mmc.vddwcurrmin, decoded.u.mmc.vddwcurrmax); fvdbg(" MMC_SECTOR_SIZE: %d MMC_ER_GRP_SIZE: %d MMC_WP_GRP_SIZE: %d\n", decoded.u.mmc.er.mmc22.sectorsize, decoded.u.mmc.er.mmc22.ergrpsize, decoded.u.mmc.mmcwpgrpsize); } #endif fvdbg(" WP_GRP_EN: %d MMC DFLT_ECC: %d (MMC) R2W_FACTOR: %d\n", decoded.wpgrpen, decoded.mmcdfltecc, decoded.r2wfactor); fvdbg(" WRITE_BL_LEN: %d WRITE_BL_PARTIAL: %d\n", decoded.writebllen, decoded.writeblpartial); fvdbg(" FILE_FORMAT_GROUP: %d COPY: %d\n", decoded.fileformatgrp, decoded.copy); fvdbg(" PERM_WRITE_PROTECT: %d TMP_WRITE_PROTECT: %d\n", decoded.permwriteprotect, decoded.tmpwriteprotect); fvdbg(" FILE_FORMAT: %d ECC: %d (MMC) CRC: %d\n", decoded.fileformat, decoded.mmcecc, decoded.crc); fvdbg("Capacity: %dKb, Block size: %db, nblocks: %d wrprotect: %d\n", priv->capacity / 1024, priv->blocksize, priv->nblocks, priv->wrprotect); #endif } /**************************************************************************** * Name: mmcsd_decodeCID * * Description: * Show the contents of the Card Indentification Data (CID) (for debug * purposes only) * ****************************************************************************/ #if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS) static void mmcsd_decodeCID(FAR struct mmcsd_state_s *priv, uint32_t cid[4]) { struct mmcsd_cid_s decoded; /* Word 1: Bits 127-96: * mid - 127-120 8-bit Manufacturer ID * oid - 119-104 16-bit OEM/Application ID (ascii) * pnm - 103-64 40-bit Product Name (ascii) + null terminator * pnm[0] 103:96 */ decoded.mid = cid[0] >> 24; decoded.oid = (cid[0] >> 16) & 0xffff; decoded.pnm[0] = cid[0] & 0xff; /* Word 2: Bits 64:95 * pnm - 103-64 40-bit Product Name (ascii) + null terminator * pnm[1] 95:88 * pnm[2] 87:80 * pnm[3] 79:72 * pnm[4] 71:64 */ decoded.pnm[1] = cid[1] >> 24; decoded.pnm[2] = (cid[1] >> 16) & 0xff; decoded.pnm[3] = (cid[1] >> 8) & 0xff; decoded.pnm[4] = cid[1] & 0xff; decoded.pnm[5] = '\0'; /* Word 3: Bits 32-63 * prv - 63-56 8-bit Product revision * psn - 55-24 32-bit Product serial number */ decoded.prv = cid[2] >> 24; decoded.psn = cid[2] << 8; /* Word 4: Bits 0-31 * psn - 55-24 32-bit Product serial number * 23-20 4-bit (reserved) * mdt - 19:8 12-bit Manufacturing date * crc - 7:1 7-bit CRC7 */ decoded.psn |= cid[3] >> 24; decoded.mdt = (cid[3] >> 8) & 0x0fff; decoded.crc = (cid[3] >> 1) & 0x7f; fvdbg("mid: %02x oid: %04x pnm: %s prv: %d psn: %d mdt: %02x crc: %02x\n", decoded.mid, decoded.oid, decoded.pnm, decoded.prv, decoded.psn, decoded.mdt, decoded.crc); } #endif /**************************************************************************** * Name: mmcsd_decodeSCR * * Description: * Show the contents of the SD Configuration Register (SCR). The only * value retained is: priv->buswidth; * ****************************************************************************/ static void mmcsd_decodeSCR(FAR struct mmcsd_state_s *priv, uint32_t scr[2]) { #if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS) struct mmcsd_scr_s decoded; #endif /* Word 1, bits 63:32 * SCR_STRUCTURE 63:60 4-bit SCR structure version * SD_VERSION 59:56 4-bit SD memory spec. version * DATA_STATE_AFTER_ERASE 55:55 1-bit erase status * SD_SECURITY 54:52 3-bit SD security support level * SD_BUS_WIDTHS 51:48 4-bit bus width indicator * Reserved 47:32 16-bit SD reserved space */ #ifdef CONFIG_ENDIAN_BIG /* Card transfers SCR in big-endian order */ priv->buswidth = (scr[0] >> 16) & 15; #else priv->buswidth = (scr[0] >> 8) & 15; #endif #if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS) #ifdef CONFIG_ENDIAN_BIG /* Card SCR is big-endian order / CPU also big-endian * 60 56 52 48 44 40 36 32 * VVVV SSSS ESSS BBBB RRRR RRRR RRRR RRRR */ decoded.scrversion = scr[0] >> 28; decoded.sdversion = (scr[0] >> 24) & 15; decoded.erasestate = (scr[0] >> 23) & 1; decoded.security = (scr[0] >> 20) & 7; #else /* Card SCR is big-endian order / CPU is little-endian * 36 32 44 40 52 48 60 56 * RRRR RRRR RRRR RRRR ESSS BBBB VVVV SSSS */ decoded.scrversion = (scr[0] >> 4) & 15; decoded.sdversion = scr[0] & 15; decoded.erasestate = (scr[0] >> 15) & 1; decoded.security = (scr[0] >> 12) & 7; #endif decoded.buswidth = priv->buswidth; #endif /* Word 1, bits 63:32 * Reserved 31:0 32-bits reserved for manufacturing usage. */ #if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS) decoded.mfgdata = scr[1]; /* Might be byte reversed! */ fvdbg("SCR:\n"); fvdbg(" SCR_STRUCTURE: %d SD_VERSION: %d\n", decoded.scrversion,decoded.sdversion); fvdbg(" DATA_STATE_AFTER_ERASE: %d SD_SECURITY: %d SD_BUS_WIDTHS: %x\n", decoded.erasestate, decoded.security, decoded.buswidth); fvdbg(" Manufacturing data: %08x\n", decoded.mfgdata); #endif } /**************************************************************************** * Name: mmcsd_getR1 * * Description: * Get the R1 status of the card using CMD13 * ****************************************************************************/ static int mmcsd_getR1(FAR struct mmcsd_state_s *priv, FAR uint32_t *r1) { uint32_t localR1; int ret; DEBUGASSERT(priv != NULL && r1 != NULL); /* Send CMD13, SEND_STATUS. The addressed card responds by sending its * R1 card status register. */ mmcsd_sendcmdpoll(priv, MMCSD_CMD13, (uint32_t)priv->rca << 16); ret = SDIO_RECVR1(priv->dev, MMCSD_CMD13, &localR1); if (ret == OK) { /* Check if R1 reports an error */ if ((localR1 & MMCSD_R1_ERRORMASK) != 0) { /* Card locked is considered an error. Save the card locked * indication for later use. */ priv->locked = ((localR1 & MMCSD_R1_CARDISLOCKED) != 0); ret = -EIO; } else { /* No errors, return R1 */ *r1 = localR1; } } return ret; } /**************************************************************************** * Name: mmcsd_verifystate * * Description: * Verify that the card is in STANDBY state * ****************************************************************************/ static int mmcsd_verifystate(FAR struct mmcsd_state_s *priv, uint32_t state) { uint32_t r1; int ret; /* Get the current R1 status from the card */ ret = mmcsd_getR1(priv, &r1); if (ret != OK) { fdbg("ERROR: mmcsd_getR1 failed: %d\n", ret); return ret; } /* Now check if the card is in the expected state. */ if (IS_STATE(r1, state)) { /* Yes.. return Success */ priv->wrbusy = false; return OK; } return -EINVAL; } /**************************************************************************** * Transfer Helpers ****************************************************************************/ /**************************************************************************** * Name: mmcsd_wrprotected * * Description: * Return true if the the card is unlocked an not write protected. The * * ****************************************************************************/ #ifdef CONFIG_FS_WRITABLE static bool mmcsd_wrprotected(FAR struct mmcsd_state_s *priv) { /* Check if the card is locked (priv->locked) or write protected either (1) * via software as reported via the CSD and retained in priv->wrprotect or * (2) via the mechanical write protect on the card (which we get from the * SDIO driver via SDIO_WRPROTECTED) */ return (priv->wrprotect || priv->locked || SDIO_WRPROTECTED(priv->dev)); } #endif /**************************************************************************** * Name: mmcsd_eventwait * * Description: * Wait for the specified events to occur. Check for wakeup on error events. * ****************************************************************************/ static int mmcsd_eventwait(FAR struct mmcsd_state_s *priv, sdio_eventset_t failevents, uint32_t timeout) { sdio_eventset_t wkupevent; /* Wait for the set of events enabled by SDIO_EVENTENABLE. */ wkupevent = SDIO_EVENTWAIT(priv->dev, timeout); /* SDIO_EVENTWAIT returns the event set containing the event(s) that ended * the wait. It should always be non-zero, but may contain failure as * well as success events. Check if it contains any failure events. */ if ((wkupevent & failevents) != 0) { /* Yes.. the failure event is probably SDIOWAIT_TIMEOUT */ fdbg("ERROR: Awakened with %02x\n", wkupevent); return wkupevent & SDIOWAIT_TIMEOUT ? -ETIMEDOUT : -EIO; } /* Since there are no failure events, we must have been awakened by one * (or more) success events. */ return OK; } /**************************************************************************** * Name: mmcsd_transferready * * Description: * Check if the MMC/SD card is ready for the next read or write transfer. * Ready means: (1) card still in the slot, and (2) if the last transfer * was a write transfer, the card is no longer busy from that transfer. * ****************************************************************************/ static int mmcsd_transferready(FAR struct mmcsd_state_s *priv) { uint32_t starttime; uint32_t elapsed; uint32_t r1; int ret; /* First, check if the card has been removed. */ if (!SDIO_PRESENT(priv->dev)) { fdbg("ERROR: Card has been removed\n"); return -ENODEV; } /* If the last data transfer was not a write, then we do not have to check * the card status. */ else if (!priv->wrbusy) { return OK; } /* The card is still present and the last transfer was a write transfer. * Loop, querying the card state. Return when (1) the card is in the TRANSFER * state, (2) the card stays in the PROGRAMMING state too long, or (3) the * card is in any other state. * * The PROGRAMMING state occurs normally after a WRITE operation. During this * time, the card may be busy completing the WRITE and is not available for * other operations. The card will transition from the PROGRAMMING state to * the TRANSFER state when the card completes the WRITE operation. */ starttime = g_system_timer; do { /* Get the current R1 status from the card */ ret = mmcsd_getR1(priv, &r1); if (ret != OK) { fdbg("ERROR: mmcsd_getR1 failed: %d\n", ret); return ret; } /* Now check if the card is in the expected transfer state. */ if (IS_STATE(r1, MMCSD_R1_STATE_TRAN)) { /* Yes.. return Success */ priv->wrbusy = false; return OK; } /* Check for the programming state. This is not an error. It means * that the card is still busy from the last (write) transfer. */ else if (!IS_STATE(r1, MMCSD_R1_STATE_PRG)) { /* Any other state would be an error in this context. There is * a possibility that the card is not selected. In this case, * it could be in STANDBY or DISCONNECTED state and the fix * might b to send CMD7 to re-select the card. Consider this * if this error occurs. */ fdbg("ERROR: Unexpected R1 state: %08x\n", r1); return -EINVAL; } /* We are still in the programming state. Calculate the elapsed * time... we can't stay in this loop forever! */ elapsed = g_system_timer - starttime; } while (elapsed < TICK_PER_SEC); return -ETIMEDOUT; } /**************************************************************************** * Name: mmcsd_stoptransmission * * Description: * Send STOP_TRANSMISSION * ****************************************************************************/ static int mmcsd_stoptransmission(FAR struct mmcsd_state_s *priv) { int ret; /* Send CMD12, STOP_TRANSMISSION, and verify good R1 return status */ mmcsd_sendcmdpoll(priv, MMCSD_CMD12, 0); ret = mmcsd_recvR1(priv, MMCSD_CMD12); if (ret != OK) { fdbg("ERROR: mmcsd_recvR1 for CMD12 failed: %d\n", ret); } return ret; } /**************************************************************************** * Name: mmcsd_setblocklen * * Description: * Read a single block of data. * ****************************************************************************/ static int mmcsd_setblocklen(FAR struct mmcsd_state_s *priv, uint32_t blocklen) { int ret = OK; /* Is the block length already selected in the card? */ if (priv->selblocklen != blocklen) { /* Send CMD16 = SET_BLOCKLEN. This command sets the block length (in * bytes) for all following block commands (read and write). Default * block length is specified in the CSD. */ mmcsd_sendcmdpoll(priv, MMCSD_CMD16, blocklen); ret = mmcsd_recvR1(priv, MMCSD_CMD16); if (ret == OK) { priv->selblocklen = blocklen; } else { fdbg("ERROR: mmcsd_recvR1 for CMD16 failed: %d\n", ret); } } return ret; } /**************************************************************************** * Name: mmcsd_readsingle * * Description: * Read a single block of data. * ****************************************************************************/ static ssize_t mmcsd_readsingle(FAR struct mmcsd_state_s *priv, FAR uint8_t *buffer, off_t startblock) { off_t offset; int ret; fvdbg("startblock=%d\n", startblock); DEBUGASSERT(priv != NULL && buffer != NULL); /* Check if the card is locked */ if (priv->locked) { fdbg("ERROR: Card is locked\n"); return -EPERM; } /* Verify that the card is ready for the transfer. The card may still be * busy from the preceding write transfer. It would be simpler to check * for write busy at the end of each write, rather than at the beginning of * each read AND write, but putting the busy-wait at the beginning of the * transfer allows for more overlap and, hopefully, better performance */ ret = mmcsd_transferready(priv); if (ret != OK) { fdbg("ERROR: Card not ready: %d\n", ret); return ret; } /* If this is a byte addressed SD card, then convert sector start sector * number to a byte offset */ if (IS_BLOCK(priv->type)) { offset = startblock; } else { offset = startblock << priv->blockshift; } fvdbg("offset=%d\n", offset); /* Select the block size for the card */ ret = mmcsd_setblocklen(priv, priv->blocksize); if (ret != OK) { fdbg("ERROR: mmcsd_setblocklen failed: %d\n", ret); return ret; } /* Configure SDIO controller hardware for the read transfer */ SDIO_BLOCKSETUP(priv->dev, priv->blocksize, 1); SDIO_WAITENABLE(priv->dev, SDIOWAIT_TRANSFERDONE|SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR); #ifdef CONFIG_SDIO_DMA if (priv->dma) { SDIO_DMARECVSETUP(priv->dev, buffer, priv->blocksize); } else #endif { SDIO_RECVSETUP(priv->dev, buffer, priv->blocksize); } /* Send CMD17, READ_SINGLE_BLOCK: Read a block of the size selected * by the mmcsd_setblocklen() and verify that good R1 status is * returned. The card state should change from Transfer to Sending-Data * state. */ mmcsd_sendcmdpoll(priv, MMCSD_CMD17, offset); ret = mmcsd_recvR1(priv, MMCSD_CMD17); if (ret != OK) { fdbg("ERROR: mmcsd_recvR1 for CMD17 failed: %d\n", ret); SDIO_CANCEL(priv->dev); return ret; } /* Then wait for the data transfer to complete */ ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR, MMCSD_BLOCK_DATADELAY); if (ret != OK) { fdbg("ERROR: CMD17 transfer failed: %d\n", ret); return ret; } /* Return value: One sector read */ return 1; } /**************************************************************************** * Name: mmcsd_readmultiple * * Description: * Read multiple, contiguous blocks of data from the physical device. * ****************************************************************************/ static ssize_t mmcsd_readmultiple(FAR struct mmcsd_state_s *priv, FAR uint8_t *buffer, off_t startblock, size_t nblocks) { size_t nbytes; off_t offset; int ret; fvdbg("startblock=%d nblocks=%d\n", startblock, nblocks); DEBUGASSERT(priv != NULL && buffer != NULL && nblocks > 1); /* Check if the card is locked */ if (priv->locked) { fdbg("ERROR: Card is locked\n"); return -EPERM; } /* Verify that the card is ready for the transfer. The card may still be * busy from the preceding write transfer. It would be simpler to check * for write busy at the end of each write, rather than at the beginning of * each read AND write, but putting the busy-wait at the beginning of the * transfer allows for more overlap and, hopefully, better performance */ ret = mmcsd_transferready(priv); if (ret != OK) { fdbg("ERROR: Card not ready: %d\n", ret); return ret; } /* If this is a byte addressed SD card, then convert both the total transfer * size to bytes and the sector start sector number to a byte offset */ nbytes = nblocks << priv->blockshift; if (IS_BLOCK(priv->type)) { offset = startblock; } else { offset = startblock << priv->blockshift; } fvdbg("nbytes=%d byte offset=%d\n", nbytes, offset); /* Select the block size for the card */ ret = mmcsd_setblocklen(priv, priv->blocksize); if (ret != OK) { fdbg("ERROR: mmcsd_setblocklen failed: %d\n", ret); return ret; } /* Configure SDIO controller hardware for the read transfer */ SDIO_BLOCKSETUP(priv->dev, priv->blocksize, nblocks); SDIO_WAITENABLE(priv->dev, SDIOWAIT_TRANSFERDONE|SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR); #ifdef CONFIG_SDIO_DMA if (priv->dma) { SDIO_DMARECVSETUP(priv->dev, buffer, nbytes); } else #endif { SDIO_RECVSETUP(priv->dev, buffer, nbytes); } /* Send CMD18, READ_MULT_BLOCK: Read a block of the size selected by * the mmcsd_setblocklen() and verify that good R1 status is returned */ mmcsd_sendcmdpoll(priv, MMCSD_CMD18, offset); ret = mmcsd_recvR1(priv, MMCSD_CMD18); if (ret != OK) { fdbg("ERROR: mmcsd_recvR1 for CMD18 failed: %d\n", ret); SDIO_CANCEL(priv->dev); return ret; } /* Wait for the transfer to complete */ ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR, nblocks * MMCSD_BLOCK_DATADELAY); if (ret != OK) { fdbg("ERROR: CMD18 transfer failed: %d\n", ret); return ret; } /* Send STOP_TRANSMISSION */ ret = mmcsd_stoptransmission(priv); if (ret != OK) { fdbg("ERROR: mmcsd_stoptransmission failed: %d\n", ret); } /* On success, return the number of blocks read */ return nblocks; } /**************************************************************************** * Name: mmcsd_reload * * Description: * Reload the specified number of sectors from the physical device into the * read-ahead buffer. * ****************************************************************************/ #ifdef CONFIG_FS_READAHEAD static ssize_t mmcsd_reload(FAR void *dev, FAR uint8_t *buffer, off_t startblock, size_t nblocks) { FAR struct mmcsd_state_s *priv = (FAR struct mmcsd_state_s *)dev; ssize_t ret; DEBUGASSERT(priv != NULL && buffer != NULL && nblocks > 0) if (nblocks == 1) { ret = mmcsd_readsingle(priv, buffer, startblock); } else { ret = mmcsd_readmultiple(priv, buffer, startblock, nblocks); } /* On success, return the number of blocks read */ return ret; } #endif /**************************************************************************** * Name: mmcsd_writesingle * * Description: * Write a single block of data to the physical device. * ****************************************************************************/ #ifdef CONFIG_FS_WRITABLE static ssize_t mmcsd_writesingle(FAR struct mmcsd_state_s *priv, FAR const uint8_t *buffer, off_t startblock) { off_t offset; int ret; fvdbg("startblock=%d\n", startblock); DEBUGASSERT(priv != NULL && buffer != NULL); /* Check if the card is locked or write protected (either via software or * via the mechanical write protect on the card) */ if (mmcsd_wrprotected(priv)) { fdbg("ERROR: Card is locked or write protected\n"); return -EPERM; } /* Verify that the card is ready for the transfer. The card may still be * busy from the preceding write transfer. It would be simpler to check * for write busy at the end of each write, rather than at the beginning of * each read AND write, but putting the busy-wait at the beginning of the * transfer allows for more overlap and, hopefully, better performance */ ret = mmcsd_transferready(priv); if (ret != OK) { fdbg("ERROR: Card not ready: %d\n", ret); return ret; } /* If this is a byte addressed SD card, then convert sector start sector * number to a byte offset */ if (IS_BLOCK(priv->type)) { offset = startblock; } else { offset = startblock << priv->blockshift; } fvdbg("offset=%d\n", offset); /* Select the block size for the card */ ret = mmcsd_setblocklen(priv, priv->blocksize); if (ret != OK) { fdbg("ERROR: mmcsd_setblocklen failed: %d\n", ret); return ret; } /* Send CMD24, WRITE_BLOCK, and verify that good R1 status is returned */ mmcsd_sendcmdpoll(priv, MMCSD_CMD24, offset); ret = mmcsd_recvR1(priv, MMCSD_CMD24); if (ret != OK) { fdbg("ERROR: mmcsd_recvR1 for CMD24 failed: %d\n", ret); return ret; } /* Configure SDIO controller hardware for the write transfer */ SDIO_BLOCKSETUP(priv->dev, priv->blocksize, 1); SDIO_WAITENABLE(priv->dev, SDIOWAIT_TRANSFERDONE|SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR); #ifdef CONFIG_SDIO_DMA if (priv->dma) { SDIO_DMASENDSETUP(priv->dev, buffer, priv->blocksize); } else #endif { SDIO_SENDSETUP(priv->dev, buffer, priv->blocksize); } /* Flag that a write transfer is pending that we will have to check for * write complete at the beginning of the next transfer. */ priv->wrbusy = true; /* Wait for the transfer to complete */ ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR, MMCSD_BLOCK_DATADELAY); if (ret != OK) { fdbg("ERROR: CMD24 transfer failed: %d\n", ret); return ret; } /* On success, return the number of blocks written */ return 1; } #endif /**************************************************************************** * Name: mmcsd_writemultiple * * Description: * Write multiple, contiguous blocks of data to the physical device. * ****************************************************************************/ #ifdef CONFIG_FS_WRITABLE static ssize_t mmcsd_writemultiple(FAR struct mmcsd_state_s *priv, FAR const uint8_t *buffer, off_t startblock, size_t nblocks) { off_t offset; size_t nbytes; int ret; fvdbg("startblockr=%d nblocks=%d\n", startblock, nblocks); DEBUGASSERT(priv != NULL && buffer != NULL && nblocks > 1); /* Check if the card is locked or write protected (either via software or * via the mechanical write protect on the card) */ if (mmcsd_wrprotected(priv)) { fdbg("ERROR: Card is locked or write protected\n"); return -EPERM; } /* Verify that the card is ready for the transfer. The card may still be * busy from the preceding write transfer. It would be simpler to check * for write busy at the end of each write, rather than at the beginning of * each read AND write, but putting the busy-wait at the beginning of the * transfer allows for more overlap and, hopefully, better performance */ ret = mmcsd_transferready(priv); if (ret != OK) { fdbg("ERROR: Card not ready: %d\n", ret); return ret; } /* If this is a byte addressed SD card, then convert both the total transfer * size to bytes and the sector start sector number to a byte offset */ nbytes = nblocks << priv->blockshift; if (IS_BLOCK(priv->type)) { offset = startblock; } else { offset = startblock << priv->blockshift; } fvdbg("nbytes=%d byte offset=%d\n", nbytes, offset); /* Select the block size for the card */ ret = mmcsd_setblocklen(priv, priv->blocksize); if (ret != OK) { fdbg("ERROR: mmcsd_setblocklen failed: %d\n", ret); return ret; } /* If this is an SD card, then send ACMD23 (SET_WR_BLK_COUNT) just before * sending CMD25 (WRITE_MULTIPLE_BLOCK). This sets the number of write * blocks to be pre-erased and might make the following multiple block write * command faster. */ if (IS_SD(priv->type)) { /* Send CMD55, APP_CMD, a verify that good R1 status is retured */ mmcsd_sendcmdpoll(priv, SD_CMD55, 0); ret = mmcsd_recvR1(priv, SD_CMD55); if (ret != OK) { fdbg("ERROR: mmcsd_recvR1 for CMD55 (ACMD23) failed: %d\n", ret); return ret; } /* Send CMD23, SET_WR_BLK_COUNT, and verify that good R1 status is returned */ mmcsd_sendcmdpoll(priv, SD_ACMD23, 0); ret = mmcsd_recvR1(priv, SD_ACMD23); if (ret != OK) { fdbg("ERROR: mmcsd_recvR1 for ACMD23 failed: %d\n", ret); return ret; } } /* Send CMD25, WRITE_MULTIPLE_BLOCK, and verify that good R1 status * is returned */ mmcsd_sendcmdpoll(priv, MMCSD_CMD25, offset); ret = mmcsd_recvR1(priv, MMCSD_CMD25); if (ret != OK) { fdbg("ERROR: mmcsd_recvR1 for CMD24 failed: %d\n", ret); return ret; } /* Configure SDIO controller hardware for the write transfer */ SDIO_BLOCKSETUP(priv->dev, priv->blocksize, nblocks); SDIO_WAITENABLE(priv->dev, SDIOWAIT_TRANSFERDONE|SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR); #ifdef CONFIG_SDIO_DMA if (priv->dma) { SDIO_DMASENDSETUP(priv->dev, buffer, nbytes); } else #endif { SDIO_SENDSETUP(priv->dev, buffer, nbytes); } /* Flag that a write transfer is pending that we will have to check for * write complete at the beginning of the next transfer. */ priv->wrbusy = true; /* Wait for the transfer to complete */ ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR, nblocks * MMCSD_BLOCK_DATADELAY); if (ret != OK) { fdbg("ERROR: CMD18 transfer failed: %d\n", ret); return ret; } /* Send STOP_TRANSMISSION */ ret = mmcsd_stoptransmission(priv); if (ret != OK) { fdbg("ERROR: mmcsd_stoptransmission failed: %d\n", ret); return ret; } /* On success, return the number of blocks read */ return nblocks; } #endif /**************************************************************************** * Name: mmcsd_flush * * Description: * Flush the specified number of sectors from the write buffer to the card. * ****************************************************************************/ #if defined(CONFIG_FS_WRITABLE) && defined(CONFIG_FS_WRITEBUFFER) static ssize_t mmcsd_flush(FAR void *dev, FAR const uint8_t *buffer, off_t startblock, size_t nblocks) { FAR struct mmcsd_state_s *priv = (FAR struct mmcsd_state_s *)dev; ssize_t ret; DEBUGASSERT(priv != NULL && buffer != NULL && nblocks > 0) if (nblocks == 1) { ret = mmcsd_writesingle(priv, buffer, startblock); } else { ret = mmcsd_writemultiple(priv, buffer, startblock, nblocks); } /* On success, return the number of blocks written */ return ret; } #endif /**************************************************************************** * Block Driver Methods ****************************************************************************/ /**************************************************************************** * Name: mmcsd_open * * Description: Open the block device * ****************************************************************************/ static int mmcsd_open(FAR struct inode *inode) { FAR struct mmcsd_state_s *priv; fvdbg("Entry\n"); DEBUGASSERT(inode && inode->i_private); priv = (FAR struct mmcsd_state_s *)inode->i_private; /* Just increment the reference count on the driver */ DEBUGASSERT(priv->crefs < MAX_CREFS); mmcsd_takesem(priv); priv->crefs++; mmcsd_givesem(priv); return OK; } /**************************************************************************** * Name: mmcsd_close * * Description: close the block device * ****************************************************************************/ static int mmcsd_close(FAR struct inode *inode) { FAR struct mmcsd_state_s *priv; fvdbg("Entry\n"); DEBUGASSERT(inode && inode->i_private); priv = (FAR struct mmcsd_state_s *)inode->i_private; /* Decrement the reference count on the block driver */ DEBUGASSERT(priv->crefs > 0); mmcsd_takesem(priv); priv->crefs--; mmcsd_givesem(priv); return OK; } /**************************************************************************** * Name: mmcsd_read * * Description: * Read the specified numer of sectors from the read-ahead buffer or from * the physical device. * ****************************************************************************/ static ssize_t mmcsd_read(FAR struct inode *inode, unsigned char *buffer, size_t startsector, unsigned int nsectors) { FAR struct mmcsd_state_s *priv; ssize_t ret = 0; DEBUGASSERT(inode && inode->i_private); priv = (FAR struct mmcsd_state_s *)inode->i_private; fvdbg("startsector: %d nsectors: %d sectorsize: %d\n", startsector, nsectors, priv->blocksize); if (nsectors > 0) { mmcsd_takesem(priv); #ifdef CONFIG_FS_READAHEAD ret = rwb_read(&priv->rwbuffer, startsector, nsectors, buffer); #else if (nsectors == 1) { ret = mmcsd_readsingle(priv, buffer, startsector); } else { ret = mmcsd_readmultiple(priv, buffer, startsector, nsectors); } #endif mmcsd_givesem(priv); } /* On success, return the number of blocks read */ return ret; } /**************************************************************************** * Name: mmcsd_write * * Description: * Write the specified number of sectors to the write buffer or to the * physical device. * ****************************************************************************/ #ifdef CONFIG_FS_WRITABLE static ssize_t mmcsd_write(FAR struct inode *inode, const unsigned char *buffer, size_t startsector, unsigned int nsectors) { FAR struct mmcsd_state_s *priv; int ret; fvdbg("sector: %d nsectors: %d sectorsize: %d\n"); DEBUGASSERT(inode && inode->i_private); priv = (FAR struct mmcsd_state_s *)inode->i_private; mmcsd_takesem(priv); #ifdef CONFIG_FS_WRITEBUFFER ret = rwb_write(&priv->rwbuffer, startsector, nsectors, buffer); #else if (nsectors == 1) { ret = mmcsd_writesingle(priv, buffer, startsector); } else { ret = mmcsd_writemultiple(priv, buffer, startsector, nsectors); } #endif mmcsd_givesem(priv); /* On success, return the number of blocks written */ return ret; } #endif /**************************************************************************** * Name: mmcsd_geometry * * Description: Return device geometry * ****************************************************************************/ static int mmcsd_geometry(FAR struct inode *inode, struct geometry *geometry) { FAR struct mmcsd_state_s *priv; int ret = -EINVAL; fvdbg("Entry\n"); DEBUGASSERT(inode && inode->i_private); if (geometry) { /* Is there a (supported) card inserted in the slot? */ priv = (FAR struct mmcsd_state_s *)inode->i_private; mmcsd_takesem(priv); if (IS_EMPTY(priv)) { /* No.. return ENODEV */ fvdbg("IS_EMPTY\n"); ret = -ENODEV; } else { /* Yes.. return the geometry of the card */ geometry->geo_available = true; geometry->geo_mediachanged = priv->mediachanged; #ifdef CONFIG_FS_WRITABLE geometry->geo_writeenabled = !mmcsd_wrprotected(priv); #else geometry->geo_writeenabled = false; #endif geometry->geo_nsectors = priv->nblocks; geometry->geo_sectorsize = priv->blocksize; fvdbg("available: true mediachanged: %s writeenabled: %s\n", geometry->geo_mediachanged ? "true" : "false", geometry->geo_writeenabled ? "true" : "false"); fvdbg("nsectors: %ld sectorsize: %d\n", (long)geometry->geo_nsectors, geometry->geo_sectorsize); priv->mediachanged = false; ret = OK; } mmcsd_givesem(priv); } return ret; } /**************************************************************************** * Name: mmcsd_ioctl * * Description: Return device geometry * ****************************************************************************/ static int mmcsd_ioctl(FAR struct inode *inode, int cmd, unsigned long arg) { FAR struct mmcsd_state_s *priv; int ret; fvdbg("Entry\n"); DEBUGASSERT(inode && inode->i_private); priv = (FAR struct mmcsd_state_s *)inode->i_private; /* Process the IOCTL by command */ mmcsd_takesem(priv); switch (cmd) { case BIOC_PROBE: /* Check for media in the slot */ { fvdbg("BIOC_PROBE\n"); /* Probe the MMC/SD slot for media */ ret = mmcsd_probe(priv); if (ret != OK) { fdbg("ERROR: mmcsd_probe failed: %d\n", ret); } } break; case BIOC_EJECT: /* Media has been removed from the slot */ { fvdbg("BIOC_EJECT\n"); /* Process the removal of the card */ ret = mmcsd_removed(priv); if (ret != OK) { fdbg("ERROR: mmcsd_removed failed: %d\n", ret); } /* Enable logic to detect if a card is re-inserted */ SDIO_CALLBACKENABLE(priv->dev, SDIOMEDIA_INSERTED); } break; default: ret = -ENOTTY; break; } mmcsd_givesem(priv); return ret; } /**************************************************************************** * Initialization/uninitialization/reset ****************************************************************************/ /**************************************************************************** * Name: mmcsd_mediachange * * Description: * This is a callback function from the SDIO driver that indicates that * there has been a change in the slot... either a card has been inserted * or a card has been removed. * * Assumptions: * This callback is NOT supposd to run in the context of an interrupt * handler; it is probably running in the context of work thread. * ****************************************************************************/ static void mmcsd_mediachange(FAR void *arg) { FAR struct mmcsd_state_s *priv = (FAR struct mmcsd_state_s *)arg; fvdbg("arg: %p\n", arg); DEBUGASSERT(priv); /* Is there a card present in the slot? */ mmcsd_takesem(priv); if (SDIO_PRESENT(priv->dev)) { /* No... process the card insertion. This could cause chaos if we think * that a card is already present and there are mounted filesystems! * NOTE that mmcsd_probe() will always re-enable callbacks appropriately. */ (void)mmcsd_probe(priv); } else { /* No... process the card removal. This could have very bad implications * for any mounted file systems! NOTE that mmcsd_removed() does NOT * re-enable callbacks so we will need to do that here. */ (void)mmcsd_removed(priv); /* Enable logic to detect if a card is re-inserted */ SDIO_CALLBACKENABLE(priv->dev, SDIOMEDIA_INSERTED); } mmcsd_givesem(priv); } /**************************************************************************** * Name: mmcsd_widebus * * Description: * An SD card has been inserted and its SCR has been obtained. Select wide * (4-bit) bus operation if the card supports it. * * Assumptions: * This function is called only once per card insertion as part of the SD * card initialization sequence. It is not necessary to reselect the card * there is not need to check if wide bus operation has already been * selected. * ****************************************************************************/ static int mmcsd_widebus(FAR struct mmcsd_state_s *priv) { int ret; /* Check if the SD card supports this feature (as reported in the SCR) */ if ((priv->buswidth & MMCSD_SCR_BUSWIDTH_4BIT) != 0) { /* Disconnect any CD/DAT3 pull up using ACMD42. ACMD42 is optional and * need not be supported by all SD calls. * * First end CMD55 APP_CMD with argument as card's RCA. */ mmcsd_sendcmdpoll(priv, SD_CMD55, (uint32_t)priv->rca << 16); ret = mmcsd_recvR1(priv, SD_CMD55); if (ret != OK) { fdbg("ERROR: RECVR1 for CMD55 of ACMD42: %d\n", ret); return ret; } /* Then send ACMD42 with the argument to disconnect the CD/DAT3 * pullup */ mmcsd_sendcmdpoll(priv, SD_ACMD42, MMCSD_ACMD42_CD_DISCONNECT); ret = mmcsd_recvR1(priv, SD_ACMD42); if (ret != OK) { fvdbg("WARNING: SD card does not support ACMD42: %d\n", ret); return ret; } /* Now send ACMD6 to select wide, 4-bit bus operation, beginning * with CMD55, APP_CMD: */ mmcsd_sendcmdpoll(priv, SD_CMD55, (uint32_t)priv->rca << 16); ret = mmcsd_recvR1(priv, SD_CMD55); if (ret != OK) { fdbg("ERROR: RECVR1 for CMD55 of ACMD6: %d\n", ret); return ret; } /* Then send ACMD6 */ mmcsd_sendcmdpoll(priv, SD_ACMD6, MMCSD_ACMD6_BUSWIDTH_4); ret = mmcsd_recvR1(priv, SD_ACMD6); if (ret != OK) { return ret; } /* Configure the SDIO peripheral */ fvdbg("Wide bus operation selected\n"); SDIO_WIDEBUS(priv->dev, true); priv->widebus = true; SDIO_CLOCK(priv->dev, CLOCK_SD_TRANSFER_4BIT); up_udelay(MMCSD_CLK_DELAY); return OK; } /* Wide bus operation not supported */ fdbg("WARNING: Card does not support wide-bus operation\n"); return -ENOSYS; } /**************************************************************************** * Name: mmcsd_mmcinitialize * * Description: * We believe that there is an MMC card in the slot. Attempt to initialize * and configure the MMC card. This is called only from mmcsd_probe(). * ****************************************************************************/ #ifdef CONFIG_MMCSD_MMCSUPPORT static int mmcsd_mmcinitialize(FAR struct mmcsd_state_s *priv) { uint32_t cid[4]; uint32_t csd[4]; int ret; /* At this point, slow, ID mode clocking has been supplied to the card * and CMD0 has been sent successfully. CMD1 succeeded and ACMD41 failed * so there is good evidence that we have an MMC card inserted into the * slot. * * Send CMD2, ALL_SEND_CID. This implementation supports only one MMC slot. * If mulitple cards were installed, each card would respond to CMD2 by * sending its CID (only one card completes the response at a time). The * driver should send CMD2 and assign an RCAs until no response to * ALL_SEND_CID is received. CMD2 causes transition to identification state/ * card-identification mode */ mmcsd_sendcmdpoll(priv, MMCSD_CMD2, 0); ret = SDIO_RECVR2(priv->dev, MMCSD_CMD2, cid); if (ret != OK) { fdbg("ERROR: SDIO_RECVR2 for MMC CID failed: %d\n", ret); return ret; } mmcsd_decodeCID(priv, cid); /* Send CMD3, SET_RELATIVE_ADDR. This command is used to assign a logical * address to the card. For MMC, the host assigns the address. CMD3 causes * transition to standby state/data-transfer mode */ priv->rca = 1; /* There is only one card */ mmcsd_sendcmdpoll(priv, MMC_CMD3, priv->rca << 16); ret = mmcsd_recvR1(priv, MMC_CMD3); if (ret != OK) { fdbg("ERROR: mmcsd_recvR1(CMD3) failed: %d\n", ret); return ret; } /* This should have caused a transition to standby state. However, this will * not be reflected in the present R1 status. R1/6 contains the state of the * card when the command was received, not when it completed execution. * * Verify that we are in standby state/data-transfer mode */ ret = mmcsd_verifystate(priv, MMCSD_R1_STATE_STBY); if (ret != OK) { fdbg("ERROR: Failed to enter standby state\n"); return ret; } /* Send CMD9, SEND_CSD in standby state/data-transfer mode to obtain the * Card Specific Data (CSD) register, e.g., block length, card storage * capacity, etc. (Stays in standy state/data-transfer mode) */ mmcsd_sendcmdpoll(priv, MMCSD_CMD9, priv->rca << 16); ret = SDIO_RECVR2(priv->dev, MMCSD_CMD9, csd); if (ret != OK) { fdbg("ERROR: Could not get SD CSD register: %d\n", ret); return ret; } mmcsd_decodeCSD(priv, csd); /* Set the Driver Stage Register (DSR) if (1) a CONFIG_MMCSD_DSR has been * provided and (2) the card supports a DSR register. If no DSR value * the card default value (0x0404) will be used. */ (void)mmcsd_sendcmd4(priv); /* Select high speed MMC clocking (which may depend on the DSR setting) */ SDIO_CLOCK(priv->dev, CLOCK_MMC_TRANSFER); up_udelay(MMCSD_CLK_DELAY); return OK; } #endif /**************************************************************************** * Name: mmcsd_sdinitialize * * Description: * We believe that there is an SD card in the slot. Attempt to initialize * and configure the SD card. This is called only from mmcsd_probe(). * ****************************************************************************/ static int mmcsd_sdinitialize(FAR struct mmcsd_state_s *priv) { uint32_t cid[4]; uint32_t csd[4]; uint32_t scr[2]; int ret; /* At this point, clocking has been supplied to the card, both CMD0 and * ACMD41 (with OCR=0) have been sent successfully, the card is no longer * busy and (presumably) in the IDLE state so there is good evidence * that we have an SD card inserted into the slot. * * Send CMD2, ALL_SEND_CID. The SD CMD2 is similar to the MMC CMD2 except * that the buffer type used to transmit to response of the card (SD Memory * Card: Push-Pull, MMC: Open-Drain). This implementation supports only a * single SD card. If multiple cards were installed in the slot, each card * would respond to CMD2 by sending its CID (only one card completes the * response at a time). The driver should send CMD2 and obtain RCAs until * no response to ALL_SEND_CID is received. * * When an SD card receives the CMD2 command it should transition to the * identification state/card-identification mode */ mmcsd_sendcmdpoll(priv, MMCSD_CMD2, 0); ret = SDIO_RECVR2(priv->dev, MMCSD_CMD2, cid); if (ret != OK) { fdbg("ERROR: SDIO_RECVR2 for SD CID failed: %d\n", ret); return ret; } mmcsd_decodeCID(priv, cid); /* Send CMD3, SET_RELATIVE_ADDR. In both protocols, this command is used * to assign a logical address to the card. For MMC, the host assigns the * address; for SD, the memory card has this responsibility. CMD3 causes * transition to standby state/data-transfer mode * * Send CMD3 with argument 0, SD card publishes its RCA in the response. */ mmcsd_sendcmdpoll(priv, SD_CMD3, 0); ret = mmcsd_recvR6(priv, SD_CMD3); if (ret != OK) { fdbg("ERROR: mmcsd_recvR2 for SD RCA failed: %d\n", ret); return ret; } fvdbg("RCA: %04x\n", priv->rca); /* This should have caused a transition to standby state. However, this will * not be reflected in the present R1 status. R1/6 contains the state of * the card when the command was received, not when it completed execution. * * Verify that we are in standby state/data-transfer mode */ ret = mmcsd_verifystate(priv, MMCSD_R1_STATE_STBY); if (ret != OK) { fdbg("ERROR: Failed to enter standby state\n"); return ret; } /* Send CMD9, SEND_CSD, in standby state/data-transfer mode to obtain the * Card Specific Data (CSD) register. The argument is the RCA that we * just obtained from CMD3. The card stays in standy state/data-transfer * mode. */ mmcsd_sendcmdpoll(priv, MMCSD_CMD9, (uint32_t)priv->rca << 16); ret = SDIO_RECVR2(priv->dev, MMCSD_CMD9, csd); if (ret != OK) { fdbg("ERROR: Could not get SD CSD register(%d)\n", ret); return ret; } mmcsd_decodeCSD(priv, csd); /* Send CMD7 with the argument == RCA in order to select the card. * Since we are supporting only a single card, we just leave the * card selected all of the time. */ mmcsd_sendcmdpoll(priv, MMCSD_CMD7S, (uint32_t)priv->rca << 16); ret = mmcsd_recvR1(priv, MMCSD_CMD7S); if (ret != OK) { fdbg("ERROR: mmcsd_recvR1 for CMD7 failed: %d\n", ret); return ret; } /* Set the Driver Stage Register (DSR) if (1) a CONFIG_MMCSD_DSR has been * provided and (2) the card supports a DSR register. If no DSR value * the card default value (0x0404) will be used. */ (void)mmcsd_sendcmd4(priv); /* Select high speed SD clocking (which may depend on the DSR setting) */ SDIO_CLOCK(priv->dev, CLOCK_SD_TRANSFER_1BIT); up_udelay(MMCSD_CLK_DELAY); /* Get the SD card Configuration Register (SCR). We need this now because * that configuration register contains the indication whether or not * this card supports wide bus operation. */ ret = mmcsd_getSCR(priv, scr); if (ret != OK) { fdbg("ERROR: Could not get SD SCR register(%d)\n", ret); return ret; } mmcsd_decodeSCR(priv, scr); /* Select width (4-bit) bus operation (if the card supports it) */ ret = mmcsd_widebus(priv); if (ret != OK) { fdbg("WARN: Failed to set wide bus operation: %d\n", ret); } return OK; } /**************************************************************************** * Name: mmcsd_cardidentify * * Description: * We believe that there is media in the slot. Attempt to initialize and * configure the card. This is called only from mmcsd_probe(). * ****************************************************************************/ static int mmcsd_cardidentify(FAR struct mmcsd_state_s *priv) { uint32_t response; uint32_t start; uint32_t elapsed; uint32_t sdcapacity = MMCSD_ACMD41_STDCAPACITY; int ret; /* Assume failure to identify the card */ priv->type = MMCSD_CARDTYPE_UNKNOWN; /* Check if there is a card present in the slot. This is normally a matter is * of GPIO sensing. */ if (!SDIO_PRESENT(priv->dev)) { fvdbg("No card present\n"); return -ENODEV; } /* Set ID mode clocking (<400KHz) */ SDIO_CLOCK(priv->dev, CLOCK_IDMODE); /* After power up at least 74 clock cycles are required prior to starting bus * communication */ up_udelay(MMCSD_POWERUP_DELAY); /* Then send CMD0 (twice just to be sure) */ mmcsd_sendcmdpoll(priv, MMCSD_CMD0, 0); mmcsd_sendcmdpoll(priv, MMCSD_CMD0, 0); up_udelay(MMCSD_IDLE_DELAY); /* Check for SDHC Version 2.x. Send CMD8 to verify SD card interface * operating condition. CMD 8 is reserved on SD version 1.0 and MMC. * * CMD8 Argument: * [31:12]: Reserved (shall be set to '0') * [11:8]: Supply Voltage (VHS) 0x1 (Range: 2.7-3.6 V) * [7:0]: Check Pattern (recommended 0xaa) * CMD8 Response: R7 */ mmcsd_sendcmdpoll(priv, SD_CMD8, MMCSD_CMD8CHECKPATTERN|MMCSD_CMD8VOLTAGE_27); ret = SDIO_RECVR7(priv->dev, SD_CMD8, &response); if (ret == OK) { /* CMD8 succeeded this is probably a SDHC card. Verify the operating * voltage and that the check pattern was correctly echoed */ if (((response & MMCSD_R7VOLTAGE_MASK) == MMCSD_R7VOLTAGE_27) && ((response & MMCSD_R7ECHO_MASK) == MMCSD_R7CHECKPATTERN)) { fvdbg("SD V2.x card\n"); priv->type = MMCSD_CARDTYPE_SDV2; sdcapacity = MMCSD_ACMD41_HIGHCAPACITY; } else { fdbg("ERROR: R7: %08x\n", response); return -EIO; } } /* At this point, type is either UNKNOWN or SDV2. Try sending * CMD55 and (maybe) ACMD41 for up to 1 second or until the card * exits the IDLE state. CMD55 is supported by SD V1.x and SD V2.x, * but not MMC */ start = g_system_timer; elapsed = 0; do { /* We may have already determined that his card is an MMC card from * an earlier pass through through this loop. In that case, we should * skip the SD-specific commands. */ #ifdef CONFIG_MMCSD_MMCSUPPORT if (priv->type != MMCSD_CARDTYPE_MMC) #endif { /* Send CMD55 with argument = 0 */ mmcsd_sendcmdpoll(priv, SD_CMD55, 0); ret = mmcsd_recvR1(priv, SD_CMD55); if (ret != OK) { /* I am a little confused.. I think both SD and MMC cards support * CMD55 (but maybe only SD cards support CMD55). We'll make the * the MMC vs. SD decision based on CMD1 and ACMD41. */ fdbg("ERROR: mmcsd_recvR1(CMD55) failed: %d\n", ret); } else { /* Send ACMD41 */ mmcsd_sendcmdpoll(priv, SD_ACMD41, MMCSD_ACMD41_VOLTAGEWINDOW|sdcapacity); ret = SDIO_RECVR3(priv->dev, SD_ACMD41, &response); if (ret != OK) { /* If the error is a timeout, then it is probably an MMC card, * but we will make the decision based on CMD1 below */ fdbg("ERROR: ACMD41 RECVR3: %d\n", ret); } else { /* ACMD41 succeeded. ACMD41 is supported by SD V1.x and SD V2.x, * but not MMC. If we did not previously determine that this is * an SD V2.x (via CMD8), then this must be SD V1.x */ fvdbg("R3: %08x\n", response); if (priv->type == MMCSD_CARDTYPE_UNKNOWN) { fvdbg("SD V1.x card\n"); priv->type = MMCSD_CARDTYPE_SDV1; } /* Check if the card is busy. Very confusing, BUSY is set LOW * if the card has not finished its initialization, so it really * means NOT busy. */ if ((response & MMCSD_CARD_BUSY) != 0) { /* No.. We really should check the current state to see if * the SD card successfully made it to the IDLE state, but * at least for now, we will simply assume that that is the * case. * * Now, check if this is a SD V2.x card that supports block * addressing */ if ((response & MMCSD_R3_HIGHCAPACITY) != 0) { fvdbg("SD V2.x card with block addressing\n"); DEBUGASSERT(priv->type == MMCSD_CARDTYPE_SDV2); priv->type |= MMCSD_CARDTYPE_BLOCK; } /* And break out of the loop with an SD card identified */ break; } } } } /* If we get here then either (1) CMD55 failed, (2) CMD41 failed, or (3) * and SD or MMC card has been identified, but it is not yet in the IDLE state. * If SD card has not been identified, then we might be looking at an * MMC card. We can send the CMD1 to find out for sure. CMD1 is supported * by MMC cards, but not by SD cards. */ #ifdef CONFIG_MMCSD_MMCSUPPORT if (priv->type == MMCSD_CARDTYPE_UNKNOWN || priv->type == MMCSD_CARDTYPE_MMC) { /* Send the MMC CMD1 to specify the operating voltage. CMD1 causes * transition to ready state/ card-identification mode. NOTE: If the * card does not support this voltage range, it will go the inactive * state. * * NOTE: An MMC card will only respond once to CMD1 (unless it is busy). * This is part of the logic used to determine how many MMC cards are * connected (This implementation supports only a single MMC card). So * we cannot re-send CMD1 without first placing the card back into * stand-by state (if the card is busy, it will automatically * go back to the the standby state). */ mmcsd_sendcmdpoll(priv, MMC_CMD1, MMCSD_VDD_33_34); ret = SDIO_RECVR3(priv->dev, MMC_CMD1, &response); /* Was the operating range set successfully */ if (ret != OK) { fdbg("ERROR: CMD1 RECVR3: %d\n", ret); } else { /* CMD1 succeeded... this must be an MMC card */ fdbg("CMD1 succeeded, assuming MMC card\n"); priv->type = MMCSD_CARDTYPE_MMC; /* Check if the card is busy. Very confusing, BUSY is set LOW * if the card has not finished its initialization, so it really * means NOT busy. */ if ((response & MMCSD_CARD_BUSY) != 0) { /* NO.. We really should check the current state to see if the * MMC successfully made it to the IDLE state, but at least for now, * we will simply assume that that is the case. * * Then break out of the look with an MMC card identified */ break; } } } #endif /* Check the elapsed time. We won't keep trying this forever! */ elapsed = g_system_timer - start; } while (elapsed < TICK_PER_SEC || ret != OK); /* We get here when the above loop completes, either (1) we could not * communicate properly with the card due to errors (and the loop times * out), or (3) it is an MMC or SD card that has successfully transitioned * to the IDLE state (well, at least, it provided its OCR saying that it * it is no longer busy). */ if (elapsed >= TICK_PER_SEC || priv->type == MMCSD_CARDTYPE_UNKNOWN) { fdbg("ERROR: Failed to identify card\n"); return -EIO; } return OK; } /**************************************************************************** * Name: mmcsd_probe * * Description: * Check for media inserted in a slot. Called (1) during initialization to * see if there was a card in the slot at power up, (2) when/if a media * insertion event occurs, or (3) if the BIOC_PROBE ioctl command is * received. * ****************************************************************************/ static int mmcsd_probe(FAR struct mmcsd_state_s *priv) { int ret; fvdbg("type: %d probed: %d\n", priv->type, priv->probed); /* If we have reliable card detection events and if we have * already probed the card, then we don't need to do anything * else */ #ifdef CONFIG_MMCSD_HAVECARDDETECT if (priv->probed && SDIO_PRESENT(priv->dev)) { return OK; } #endif /* Otherwise, we are going to probe the card. There are lots of * possibilities here: We may think that there is a card in the slot, * or not. There may be a card in the slot, or not. If there is * card in the slot, perhaps it is a different card than we one we * think is there? The safest thing to do is to process the card * removal first and start from known place. */ mmcsd_removed(priv); /* Now.. is there a card in the slot? */ if (SDIO_PRESENT(priv->dev)) { /* Yes.. probe it. First, what kind of card was inserted? */ ret = mmcsd_cardidentify(priv); if (ret != OK) { fdbg("ERROR: Failed to initialize card: %d\n", ret); SDIO_CALLBACKENABLE(priv->dev, SDIOMEDIA_INSERTED); } else { /* Then initialize the driver according to the identified card type */ switch (priv->type) { case MMCSD_CARDTYPE_SDV1: /* Bit 1: SD version 1.x */ case MMCSD_CARDTYPE_SDV2: /* SD version 2.x with byte addressing */ case MMCSD_CARDTYPE_SDV2|MMCSD_CARDTYPE_BLOCK: /* SD version 2.x with block addressing */ ret = mmcsd_sdinitialize(priv); break; case MMCSD_CARDTYPE_MMC: /* MMC card */ #ifdef CONFIG_MMCSD_MMCSUPPORT ret = mmcsd_mmcinitialize(priv); break; #endif case MMCSD_CARDTYPE_UNKNOWN: /* Unknown card type */ default: fdbg("ERROR: Internal confusion: %d\n", priv->type); ret = -EPERM; break; }; /* Was the card configured successfully? */ if (ret == OK) { /* Yes... */ fvdbg("Capacity: %d Kbytes\n", priv->capacity / 1024); priv->mediachanged = true; /* Set up to receive asynchronous, media removal events */ SDIO_CALLBACKENABLE(priv->dev, SDIOMEDIA_EJECTED); } } /* In any event, we have probed this card */ priv->probed = true; } else { /* There is no card in the slot */ fvdbg("No card\n"); SDIO_CALLBACKENABLE(priv->dev, SDIOMEDIA_INSERTED); ret = -ENODEV; } return ret; } /**************************************************************************** * Name: mmcsd_removed * * Description: * Disable support for media in the slot. Called (1) when/if a media * removal event occurs, or (2) if the BIOC_EJECT ioctl command is * received. * ****************************************************************************/ static int mmcsd_removed(FAR struct mmcsd_state_s *priv) { fvdbg("type: %d present: %d\n", priv->type, SDIO_PRESENT(priv->dev)); /* Forget the card geometry, pretend the slot is empty (it might not * be), and that the card has never been initialized. */ priv->capacity = 0; /* Capacity=0 sometimes means no media */ priv->blocksize = 0; priv->mediachanged = false; priv->type = MMCSD_CARDTYPE_UNKNOWN; priv->probed = false; priv->rca = 0; priv->selblocklen = 0; /* Go back to the default 1-bit data bus. */ SDIO_WIDEBUS(priv->dev, false); priv->widebus = false; /* Disable clocking to the card */ (void)SDIO_CLOCK(priv->dev, CLOCK_SDIO_DISABLED); return OK; } /**************************************************************************** * Name: mmcsd_hwinitialize * * Description: * One-time hardware initialization. Called only from sdio_slotinitialize. * ****************************************************************************/ static int mmcsd_hwinitialize(FAR struct mmcsd_state_s *priv) { int ret; mmcsd_takesem(priv); #ifdef CONFIG_SDIO_DMA /* Does this architecture support DMA with the MMC/SD device? */ priv->dma = SDIO_DMASUPPORTED(priv->dev); fvdbg("DMA supported: %d\n", priv->dma); #endif /* Attach and prepare MMC/SD interrupts */ if (SDIO_ATTACH(priv->dev)) { fdbg("ERROR: Unable to attach MMC/SD interrupts\n"); mmcsd_givesem(priv); return -EBUSY; } fvdbg("Attached MMC/SD interrupts\n"); /* Register a callback so that we get informed if media is inserted or * removed from the slot (Initially all callbacks are disabled). */ SDIO_REGISTERCALLBACK(priv->dev, mmcsd_mediachange, (FAR void *)priv); /* Is there a card in the slot now? For an MMC/SD card, there are three * possible card detect mechanisms: * * 1. Mechanical insertion that can be detected using the WP switch * that is closed when a card is inserted into then SD slot (SD * "hot insertion capable" card conector only) * 2. Electrical insertion that can be sensed using the pull-up resistor * on CD/DAT3 (both SD/MMC), * 3. Or by periodic attempts to initialize the card from software. * * The behavior of SDIO_PRESENT() is to use whatever information is available * on the particular platform. If no card insertion information is available * (polling only), then SDIO_PRESENT() will always return true and we will * try to initialize the card. */ if (SDIO_PRESENT(priv->dev)) { /* Yes... probe for a card in the slot */ ret = mmcsd_probe(priv); if (ret != OK) { fvdbg("Slot not empty, but initialization failed: %d\n", ret); /* NOTE: The failure to initialize a card does not mean that * initialization has failed! A card could be installed in the slot * at a later time. ENODEV is return in this case, * sdio_slotinitialize will use this return value to set up the * card inserted callback event. */ ret = -ENODEV; } } else { /* ENODEV is returned to indicate that no card is inserted in the slot. * sdio_slotinitialize will use this return value to set up the card * inserted callback event. */ ret = -ENODEV; } /* OK is returned only if the slot initialized correctly AND the card in * the slot was successfully configured. */ mmcsd_givesem(priv); return ret; } /**************************************************************************** * Name: mmcsd_hwuninitialize * * Description: * Restore the MMC/SD slot to the uninitialized state. Called only from * sdio_slotinitialize on a failure to initialize. * ****************************************************************************/ static void mmcsd_hwuninitialize(FAR struct mmcsd_state_s *priv) { if (priv) { mmcsd_removed(priv); SDIO_RESET(priv->dev); free(priv); } } /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Name: mmcsd_slotinitialize * * Description: * Initialize one slot for operation using the MMC/SD interface * * Input Parameters: * minor - The MMC/SD minor device number. The MMC/SD device will be * registered as /dev/mmcsdN where N is the minor number * dev - And instance of an MMC/SD interface. The MMC/SD hardware should * be initialized and ready to use. * ****************************************************************************/ int mmcsd_slotinitialize(int minor, FAR struct sdio_dev_s *dev) { FAR struct mmcsd_state_s *priv; char devname[16]; int ret = -ENOMEM; fvdbg("minor: %d\n", minor); /* Sanity check */ #ifdef CONFIG_DEBUG if (minor < 0 || minor > 255 || !dev) { return -EINVAL; } #endif /* Allocate a MMC/SD state structure */ priv = (FAR struct mmcsd_state_s *)malloc(sizeof(struct mmcsd_state_s)); if (priv) { /* Initialize the MMC/SD state structure */ memset(priv, 0, sizeof(struct mmcsd_state_s)); sem_init(&priv->sem, 0, 1); /* Bind the MMCSD driver to the MMCSD state structure */ priv->dev = dev; /* Initialize the hardware associated with the slot */ ret = mmcsd_hwinitialize(priv); /* Was the slot initialized successfully? */ if (ret != OK) { /* No... But the error ENODEV is returned if hardware initialization * succeeded but no card is inserted in the slot. In this case, the * no error occurred, but the driver is still not ready. */ if (ret == -ENODEV) { /* No card in the slot (or if there is, we could not recognize * it).. Setup to receive the media inserted event */ SDIO_CALLBACKENABLE(priv->dev, SDIOMEDIA_INSERTED); fdbg("MMC/SD slot is empty\n"); } else { /* Some other non-recoverable bad thing happened */ fdbg("ERROR: Failed to initialize MMC/SD slot: %d\n", ret); goto errout_with_alloc; } } /* Initialize buffering */ #if defined(CONFIG_FS_WRITEBUFFER) || defined(CONFIG_FS_READAHEAD) ret = rwb_initialize(&priv->rwbuffer); if (ret < 0) { fdbg("ERROR: Buffer setup failed: %d\n", ret); goto errout_with_hwinit; } #endif /* Create a MMCSD device name */ snprintf(devname, 16, "/dev/mmcsd%d", minor); /* Inode private data is a reference to the MMCSD state structure */ ret = register_blockdriver(devname, &g_bops, 0, priv); if (ret < 0) { fdbg("ERROR: register_blockdriver failed: %d\n", ret); goto errout_with_buffers; } } return OK; errout_with_buffers: #if defined(CONFIG_FS_WRITEBUFFER) || defined(CONFIG_FS_READAHEAD) rwb_uninitialize(&priv->rwbuffer); errout_with_hwinit: #endif mmcsd_hwuninitialize(priv); errout_with_alloc: free(priv); return ret; }