/************************************************************************************ * drivers/mtd/ramtron.c * Driver for SPI-based RAMTRON NVRAM Devices FM25V10 and others (not tested) * * Copyright (C) 2011 Uros Platise. All rights reserved. * Copyright (C) 2009-2010, 2012-2013, 2017 Gregory Nutt. All rights reserved. * Author: Uros Platise * Gregory Nutt * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name NuttX nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ************************************************************************************/ /* OPTIONS: * - additional non-jedec standard device: FM25H20 * must be enabled with the CONFIG_RAMTRON_FRAM_NON_JEDEC=y * * NOTE: * - frequency is fixed to desired max by RAMTRON_INIT_CLK_MAX if new devices with * different speed arrive, use the table to handle freq change and to fit all * devices. Note that STM32_SPI driver is prone to too high freq. parameters and * limit it within physical constraints. The speed may be changed through ioctl * MTDIOC_SETSPEED * * TODO: * - add support for sleep * - add support for faster read FSTRD command */ /************************************************************************************ * Included Files ************************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include /************************************************************************************ * Pre-processor Definitions ************************************************************************************/ /* Used to abort the write wait */ #ifndef CONFIG_MTD_RAMTRON_WRITEWAIT_COUNT # define CONFIG_MTD_RAMTRON_WRITEWAIT_COUNT 100 #endif /* RAMTRON devices are flat! * For purpose of the VFAT file system we emulate the following configuration: */ #define RAMTRON_EMULATE_SECTOR_SHIFT 9 #define RAMTRON_EMULATE_PAGE_SHIFT 9 #define RAMTRON_EMULATE_PAGE_SIZE (1 << RAMTRON_EMULATE_PAGE_SHIFT) /* RAMTRON Identification register values */ #define RAMTRON_MANUFACTURER 0x7f #define RAMTRON_MEMORY_TYPE 0xc2 /* Instructions: * Command Value N Description Addr Dummy Data */ #define RAMTRON_WREN 0x06 /* 1 Write Enable 0 0 0 */ #define RAMTRON_WRDI 0x04 /* 1 Write Disable 0 0 0 */ #define RAMTRON_RDSR 0x05 /* 1 Read Status Register 0 0 >=1 */ #define RAMTRON_WRSR 0x01 /* 1 Write Status Register 0 0 1 */ #define RAMTRON_READ 0x03 /* 1 Read Data Bytes A 0 >=1 */ #define RAMTRON_FSTRD 0x0b /* 1 Higher speed read A 1 >=1 */ #define RAMTRON_WRITE 0x02 /* 1 Write A 0 1-256 */ #define RAMTRON_SLEEP 0xb9 /* TODO: */ #define RAMTRON_RDID 0x9f /* 1 Read Identification 0 0 1-3 */ #define RAMTRON_SN 0xc3 /* TODO: */ /* Status register bit definitions */ #define RAMTRON_SR_WIP (1 << 0) /* Bit 0: Write in progress bit */ #define RAMTRON_SR_WEL (1 << 1) /* Bit 1: Write enable latch bit */ #define RAMTRON_SR_BP_SHIFT (2) /* Bits 2-4: Block protect bits */ #define RAMTRON_SR_BP_MASK (7 << RAMTRON_SR_BP_SHIFT) # define RAMTRON_SR_BP_NONE (0 << RAMTRON_SR_BP_SHIFT) /* Unprotected */ # define RAMTRON_SR_BP_UPPER64th (1 << RAMTRON_SR_BP_SHIFT) /* Upper 64th */ # define RAMTRON_SR_BP_UPPER32nd (2 << RAMTRON_SR_BP_SHIFT) /* Upper 32nd */ # define RAMTRON_SR_BP_UPPER16th (3 << RAMTRON_SR_BP_SHIFT) /* Upper 16th */ # define RAMTRON_SR_BP_UPPER8th (4 << RAMTRON_SR_BP_SHIFT) /* Upper 8th */ # define RAMTRON_SR_BP_UPPERQTR (5 << RAMTRON_SR_BP_SHIFT) /* Upper quarter */ # define RAMTRON_SR_BP_UPPERHALF (6 << RAMTRON_SR_BP_SHIFT) /* Upper half */ # define RAMTRON_SR_BP_ALL (7 << RAMTRON_SR_BP_SHIFT) /* All sectors */ #define RAMTRON_SR_SRWD (1 << 7) /* Bit 7: Status register write protect */ #define RAMTRON_DUMMY 0xa5 /* Defines the initial speed compatible with all devices. In case of RAMTRON * the defined devices within the part list have all the same speed. */ #define RAMTRON_INIT_CLK_MAX 40000000UL /************************************************************************************ * Private Types ************************************************************************************/ struct ramtron_parts_s { FAR const char *name; uint8_t id1; uint8_t id2; uint32_t size; uint8_t addr_len; uint32_t speed; #ifdef CONFIG_RAMTRON_CHUNKING bool chunked; /* True: write buffer size limitations */ uint16_t chunksize; /* Write chunk Size */ #endif }; /* This type represents the state of the MTD device. The struct mtd_dev_s * must appear at the beginning of the definition so that you can freely * cast between pointers to struct mtd_dev_s and struct ramtron_dev_s. */ struct ramtron_dev_s { struct mtd_dev_s mtd; /* MTD interface */ FAR struct spi_dev_s *dev; /* Saved SPI interface instance */ uint8_t sectorshift; uint8_t pageshift; uint16_t nsectors; uint32_t npages; uint32_t speed; /* Overridable via ioctl */ FAR const struct ramtron_parts_s *part; /* Part instance */ }; /************************************************************************************ * Supported Part Lists ************************************************************************************/ static const struct ramtron_parts_s g_ramtron_parts[] = { { "FM25V01", /* name */ 0x21, /* id1 */ 0x00, /* id2 */ 16L*1024L, /* size */ 2, /* addr_len */ RAMTRON_INIT_CLK_MAX /* speed */ #ifdef CONFIG_RAMTRON_CHUNKING , false, /* chunked */ RAMTRON_EMULATE_PAGE_SIZE /* chunksize */ #endif }, { "FM25V01A", /* name */ 0x21, /* id1 */ 0x08, /* id2 */ 16L*1024L, /* size */ 2, /* addr_len */ RAMTRON_INIT_CLK_MAX /* speed */ #ifdef CONFIG_RAMTRON_CHUNKING , false, /* chunked */ RAMTRON_EMULATE_PAGE_SIZE /* chunksize */ #endif }, { "FM25V02", /* name */ 0x22, /* id1 */ 0x00, /* id2 */ 32L*1024L, /* size */ 2, /* addr_len */ RAMTRON_INIT_CLK_MAX /* speed */ #ifdef CONFIG_RAMTRON_CHUNKING , false, /* chunked */ RAMTRON_EMULATE_PAGE_SIZE /* chunksize */ #endif }, { "FM25V02A", /* name */ 0x22, /* id1 */ 0x08, /* id2 */ 32L*1024L, /* size */ 2, /* addr_len */ RAMTRON_INIT_CLK_MAX /* speed */ #ifdef CONFIG_RAMTRON_CHUNKING , false, /* chunked */ RAMTRON_EMULATE_PAGE_SIZE /* chunksize */ #endif }, { "FM25VN02", /* name */ 0x22, /* id1 */ 0x01, /* id2 */ 32L*1024L, /* size */ 2, /* addr_len */ RAMTRON_INIT_CLK_MAX /* speed */ #ifdef CONFIG_RAMTRON_CHUNKING , false, /* chunked */ RAMTRON_EMULATE_PAGE_SIZE /* chunksize */ #endif }, { "FM25V05", /* name */ 0x23, /* id1 */ 0x00, /* id2 */ 64L*1024L, /* size */ 2, /* addr_len */ RAMTRON_INIT_CLK_MAX /* speed */ #ifdef CONFIG_RAMTRON_CHUNKING , false, /* chunked */ RAMTRON_EMULATE_PAGE_SIZE /* chunksize */ #endif }, { "FM25VN05", /* name */ 0x23, /* id1 */ 0x01, /* id2 */ 64L*1024L, /* size */ 2, /* addr_len */ RAMTRON_INIT_CLK_MAX /* speed */ #ifdef CONFIG_RAMTRON_CHUNKING , false, /* chunked */ RAMTRON_EMULATE_PAGE_SIZE /* chunksize */ #endif }, { "FM25V10", /* name */ 0x24, /* id1 */ 0x00, /* id2 */ 128L*1024L, /* size */ 3, /* addr_len */ RAMTRON_INIT_CLK_MAX /* speed */ #ifdef CONFIG_RAMTRON_CHUNKING , false, /* chunked */ RAMTRON_EMULATE_PAGE_SIZE /* chunksize */ #endif }, { "FM25VN10", /* name */ 0x24, /* id1 */ 0x01, /* id2 */ 128L*1024L, /* size */ 3, /* addr_len */ RAMTRON_INIT_CLK_MAX /* speed */ #ifdef CONFIG_RAMTRON_CHUNKING , false, /* chunked */ RAMTRON_EMULATE_PAGE_SIZE /* chunksize */ #endif }, { "FM25V20A", /* name */ 0x25, /* id1 */ 0x08, /* id2 */ 256L*1024L, /* size */ 3, /* addr_len */ RAMTRON_INIT_CLK_MAX /* speed */ #ifdef CONFIG_RAMTRON_CHUNKING , false, /* chunked */ RAMTRON_EMULATE_PAGE_SIZE /* chunksize */ #endif }, { "CY15B104Q", /* name */ 0x26, /* id1 */ 0x08, /* id2 */ 512L*1024L, /* size */ 3, /* addr_len */ RAMTRON_INIT_CLK_MAX /* speed */ #ifdef CONFIG_RAMTRON_CHUNKING , false, /* chunked */ RAMTRON_EMULATE_PAGE_SIZE /* chunksize */ #endif }, { "MB85RS1MT", /* name */ 0x27, /* id1 */ 0x03, /* id2 */ 128L*1024L, /* size */ 3, /* addr_len */ 25000000 /* speed */ #ifdef CONFIG_RAMTRON_CHUNKING , false, /* chunked */ RAMTRON_EMULATE_PAGE_SIZE /* chunksize */ #endif }, { "MB85RS256B", /* name */ 0x05, /* id1 */ 0x09, /* id2 */ 32L*1024L, /* size */ 3, /* addr_len */ 25000000 /* speed */ #ifdef CONFIG_RAMTRON_CHUNKING , false, /* chunked */ RAMTRON_EMULATE_PAGE_SIZE /* chunksize */ #endif }, #ifdef CONFIG_RAMTRON_CHUNKING { "MB85AS4MT", /* name */ 0xc9, /* id1 */ 0x03, /* id2 */ 512L*1024L, /* size */ 3, /* addr_len */ RAMTRON_INIT_CLK_MAX, /* speed */ true, /* chunked */ 256 /* chunksize */ }, #endif #ifdef CONFIG_RAMTRON_FRAM_NON_JEDEC { "FM25H20", /* name */ 0xff, /* id1 */ 0xff, /* id2 */ 256L*1024L, /* size */ 3, /* addr_len */ RAMTRON_INIT_CLK_MAX /* speed */ #ifdef CONFIG_RAMTRON_CHUNKING , false, /* chunked */ RAMTRON_EMULATE_PAGE_SIZE /* chunksize */ #endif }, #endif { NULL, /* name */ 0, /* id1 */ 0, /* id2 */ 0, /* size */ 0, /* addr_len */ 0 /* speed */ #ifdef CONFIG_RAMTRON_CHUNKING , false, /* chunked */ 0, /* chunksize */ #endif } }; /************************************************************************************ * Private Function Prototypes ************************************************************************************/ /* Helpers */ static void ramtron_lock(FAR struct ramtron_dev_s *priv); static inline void ramtron_unlock(FAR struct spi_dev_s *dev); static inline int ramtron_readid(struct ramtron_dev_s *priv); static int ramtron_waitwritecomplete(struct ramtron_dev_s *priv); static void ramtron_writeenable(struct ramtron_dev_s *priv); static inline int ramtron_pagewrite(struct ramtron_dev_s *priv, FAR const uint8_t *buffer, off_t offset, size_t pagesize); /* MTD driver methods */ static int ramtron_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks); static ssize_t ramtron_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR uint8_t *buf); #ifdef CONFIG_RAMTRON_CHUNKING static ssize_t ramtron_bwrite_nonchunked(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buffer); static ssize_t ramtron_bwrite_chunked(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buf); #endif static ssize_t ramtron_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buf); static ssize_t ramtron_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer); static int ramtron_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg); /************************************************************************************ * Private Functions ************************************************************************************/ /************************************************************************************ * Name: ramtron_lock ************************************************************************************/ static void ramtron_lock(FAR struct ramtron_dev_s *priv) { FAR struct spi_dev_s *dev = priv->dev; /* On SPI buses where there are multiple devices, it will be necessary to * lock SPI to have exclusive access to the buses for a sequence of * transfers. The bus should be locked before the chip is selected. * * This is a blocking call and will not return until we have exclusive access to * the SPI bus. We will retain that exclusive access until the bus is unlocked. */ SPI_LOCK(dev, true); /* After locking the SPI bus, the we also need call the setfrequency, setbits, and * setmode methods to make sure that the SPI is properly configured for the device. * If the SPI bus is being shared, then it may have been left in an incompatible * state. */ SPI_SETMODE(dev, SPIDEV_MODE3); SPI_SETBITS(dev, 8); SPI_HWFEATURES(dev, 0); SPI_SETFREQUENCY(dev, priv->speed); } /************************************************************************************ * Name: ramtron_unlock ************************************************************************************/ static inline void ramtron_unlock(FAR struct spi_dev_s *dev) { SPI_LOCK(dev, false); } /************************************************************************************ * Name: ramtron_readid ************************************************************************************/ static inline int ramtron_readid(struct ramtron_dev_s *priv) { uint16_t manufacturer; uint16_t memory; uint16_t capacity; uint16_t part; int i; finfo("priv: %p\n", priv); /* Lock the SPI bus, configure the bus, and select this FLASH part. */ ramtron_lock(priv); SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the "Read ID (RDID)" command */ SPI_SEND(priv->dev, RAMTRON_RDID); /* Read the first six manufacturer ID bytes. */ for (i = 0; i < 6; i++) { /* Read the next manufacturer byte */ manufacturer = SPI_SEND(priv->dev, RAMTRON_DUMMY); /* Fujitsu parts such as MB85RS1MT only have 1-byte for the manufacturer * ID. The manufacturer code is "0x4". */ if (i == 0 && manufacturer == 0x04) { break; } } memory = SPI_SEND(priv->dev, RAMTRON_DUMMY); capacity = SPI_SEND(priv->dev, RAMTRON_DUMMY); /* fram.id1 */ part = SPI_SEND(priv->dev, RAMTRON_DUMMY); /* fram.id2 */ /* Deselect the FLASH and unlock the bus */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); ramtron_unlock(priv->dev); /* Select part from the part list */ for (priv->part = g_ramtron_parts; priv->part->name != NULL && !(priv->part->id1 == capacity && priv->part->id2 == part); priv->part++); if (priv->part->name != NULL) { UNUSED(manufacturer); /* Eliminate warnings when debug is off */ UNUSED(memory); /* Eliminate warnings when debug is off */ finfo("RAMTRON %s of size %d bytes (mf:%02x mem:%02x cap:%02x part:%02x)\n", priv->part->name, priv->part->size, manufacturer, memory, capacity, part); priv->sectorshift = RAMTRON_EMULATE_SECTOR_SHIFT; priv->nsectors = priv->part->size / (1 << RAMTRON_EMULATE_SECTOR_SHIFT); priv->pageshift = RAMTRON_EMULATE_PAGE_SHIFT; priv->npages = priv->part->size / (1 << RAMTRON_EMULATE_PAGE_SHIFT); priv->speed = priv->part->speed; return OK; } finfo("RAMTRON device not found\n"); return -ENODEV; } /************************************************************************************ * Name: ramtron_waitwritecomplete ************************************************************************************/ static int ramtron_waitwritecomplete(struct ramtron_dev_s *priv) { uint8_t status; int retries = CONFIG_MTD_RAMTRON_WRITEWAIT_COUNT; /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Read Status Register (RDSR)" command */ SPI_SEND(priv->dev, RAMTRON_RDSR); /* Loop as long as the memory is busy with a write cycle, but limit the * cycles. * * RAMTRON FRAM is never busy per spec compared to flash, and so anything * exceeding the default timeout number is highly suspicious. */ do { /* Send a dummy byte to generate the clock needed to shift out the status */ status = SPI_SEND(priv->dev, RAMTRON_DUMMY); } while ((status & RAMTRON_SR_WIP) != 0 && retries-- > 0); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); if (retries > 0) { finfo("Complete\n"); retries = OK; } else { ferr("ERROR: timeout waiting for write completion\n"); retries = -EAGAIN; } return retries; } /************************************************************************************ * Name: ramtron_writeenable ************************************************************************************/ static void ramtron_writeenable(struct ramtron_dev_s *priv) { /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Write Enable (WREN)" command */ SPI_SEND(priv->dev, RAMTRON_WREN); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); finfo("Enabled\n"); } /************************************************************************************ * Name: ramtron_sendaddr ************************************************************************************/ static inline void ramtron_sendaddr(const struct ramtron_dev_s *priv, uint32_t addr) { DEBUGASSERT(priv->part->addr_len == 3 || priv->part->addr_len == 2); if (priv->part->addr_len == 3) { SPI_SEND(priv->dev, (addr >> 16) & 0xff); } SPI_SEND(priv->dev, (addr >> 8) & 0xff); SPI_SEND(priv->dev, addr & 0xff); } /************************************************************************************ * Name: ramtron_pagewrite ************************************************************************************/ static inline int ramtron_pagewrite(struct ramtron_dev_s *priv, FAR const uint8_t *buffer, off_t page, size_t pagesize) { off_t offset = page * pagesize; finfo("page: %08lx offset: %08lx\n", (long)page, (long)offset); #ifndef CONFIG_RAMTRON_WRITEWAIT /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ ramtron_waitwritecomplete(priv); #endif /* Enable the write access to the FLASH */ ramtron_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Page Program (PP)" command */ SPI_SEND(priv->dev, RAMTRON_WRITE); /* Send the page offset high byte first. */ ramtron_sendaddr(priv, offset); /* Then write the specified number of bytes */ SPI_SNDBLOCK(priv->dev, buffer, pagesize); /* Deselect the FLASH: Chip Select high */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); finfo("Written\n"); #ifdef CONFIG_RAMTRON_WRITEWAIT /* Wait for write completion now so we can report any errors to the caller. Thus * the caller will know whether or not if the data is on stable storage */ return ramtron_waitwritecomplete(priv); #else return OK; #endif } /************************************************************************************ * Name: ramtron_erase ************************************************************************************/ static int ramtron_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks) { finfo("startblock: %08lx nblocks: %d\n", (unsigned long)startblock, (int)nblocks); finfo("On RAMTRON devices erasing makes no sense, returning as OK\n"); return (int)nblocks; } /************************************************************************************ * Name: ramtron_bread ************************************************************************************/ static ssize_t ramtron_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR uint8_t *buffer) { FAR struct ramtron_dev_s *priv = (FAR struct ramtron_dev_s *)dev; ssize_t nbytes; finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* On this device, we can handle the block read just like the byte-oriented read */ nbytes = ramtron_read(dev, startblock << priv->pageshift, nblocks << priv->pageshift, buffer); if (nbytes > 0) { return nbytes >> priv->pageshift; } return (int)nbytes; } /************************************************************************************ * Name: ramtron_bwrite/ramtron_bwrite_nonchunked ************************************************************************************/ #ifdef CONFIG_RAMTRON_CHUNKING static ssize_t ramtron_bwrite_nonchunked(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buffer) #else static ssize_t ramtron_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buffer) #endif { FAR struct ramtron_dev_s *priv = (FAR struct ramtron_dev_s *)dev; size_t blocksleft = nblocks; finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); DEBUGASSERT(priv != NULL && buffer != NULL); /* Lock the SPI bus and write each page to FLASH */ ramtron_lock(priv); while (blocksleft-- > 0) { if (ramtron_pagewrite(priv, buffer, startblock, 1 << priv->pageshift)) { nblocks = 0; break; } startblock++; } ramtron_unlock(priv->dev); return nblocks; } /************************************************************************************ * Name: ramtron_bwrite_chunked ************************************************************************************/ #ifdef CONFIG_RAMTRON_CHUNKING static ssize_t ramtron_bwrite_chunked(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buffer) { FAR struct ramtron_dev_s *priv = (FAR struct ramtron_dev_s *)dev; FAR const struct ramtron_parts_s *part; size_t blocksleft = nblocks; uint32_t p, writesplits; off_t newstartblock; finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); DEBUGASSERT(priv != NULL && priv->part != NULL && buffer != NULL); part = priv->part; writesplits = (1 << priv->pageshift) / part->chunksize; newstartblock = startblock * writesplits; /* Lock the SPI bus and write each page to FLASH */ ramtron_lock(priv); while (blocksleft-- > 0) { /* Split writes in chunksize chunks */ for (p = 0; p < writesplits; p++) { if (ramtron_pagewrite(priv, buffer + p * part->chunksize, newstartblock, part->chunksize)) { nblocks = 0; goto out; } newstartblock++; } } out: ramtron_unlock(priv->dev); return nblocks; } #endif /************************************************************************************ * Name: ramtron_bwrite ************************************************************************************/ #ifdef CONFIG_RAMTRON_CHUNKING static ssize_t ramtron_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buffer) { FAR struct ramtron_dev_s *priv = (FAR struct ramtron_dev_s *)dev; FAR const struct ramtron_parts_s *part; DEBUGASSERT(priv != NULL && priv->part != NULL && buffer != NULL); part = priv->part; /* Handle parts that require chunked output differently */ if (part->chunked) { return ramtron_bwrite_chunked(dev, startblock, nblocks, buffer); } else { return ramtron_bwrite_nonchunked(dev, startblock, nblocks, buffer); } } #endif /************************************************************************************ * Name: ramtron_read ************************************************************************************/ static ssize_t ramtron_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer) { FAR struct ramtron_dev_s *priv = (FAR struct ramtron_dev_s *)dev; #ifdef CONFIG_RAMTRON_WRITEWAIT uint8_t status; #endif finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); /* Lock the SPI bus NOW because the ramtron_waitwritecomplete call must be * executed with the bus locked. */ ramtron_lock(priv); #ifndef CONFIG_RAMTRON_WRITEWAIT /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ ramtron_waitwritecomplete(priv); #endif /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Read from Memory " instruction */ SPI_SEND(priv->dev, RAMTRON_READ); /* Send the page offset high byte first. */ ramtron_sendaddr(priv, offset); /* Then read all of the requested bytes */ SPI_RECVBLOCK(priv->dev, buffer, nbytes); #ifdef CONFIG_RAMTRON_WRITEWAIT /* Read the status register. This isn't strictly needed, but it gives us a * chance to detect if SPI transactions are operating correctly, which * allows us to catch complete device failures in the read path. We expect * the status register to just have the write enable bit set to the write * enable state */ SPI_SEND(priv->dev, RAMTRON_RDSR); status = SPI_SEND(priv->dev, RAMTRON_DUMMY); if ((status & ~RAMTRON_SR_SRWD) == 0) { ferr("ERROR: read status failed - got 0x%02x\n", (unsigned)status); nbytes = -EIO; } #endif /* Deselect the FLASH and unlock the SPI bus */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); ramtron_unlock(priv->dev); finfo("return nbytes: %d\n", (int)nbytes); return nbytes; } /************************************************************************************ * Name: ramtron_ioctl ************************************************************************************/ static int ramtron_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg) { FAR struct ramtron_dev_s *priv = (FAR struct ramtron_dev_s *)dev; int ret = -EINVAL; /* Assume good command with bad parameters */ finfo("cmd: %d \n", cmd); switch (cmd) { case MTDIOC_GEOMETRY: { FAR struct mtd_geometry_s *geo = (FAR struct mtd_geometry_s *)((uintptr_t)arg); if (geo) { /* Populate the geometry structure with information need to know * the capacity and how to access the device. * * NOTE: that the device is treated as though it where just an array * of fixed size blocks. That is most likely not true, but the client * will expect the device logic to do whatever is necessary to make it * appear so. */ geo->blocksize = (1 << priv->pageshift); geo->erasesize = (1 << priv->sectorshift); geo->neraseblocks = priv->nsectors; ret = OK; finfo("blocksize: %d erasesize: %d neraseblocks: %d\n", geo->blocksize, geo->erasesize, geo->neraseblocks); } } break; case MTDIOC_BULKERASE: finfo("BULDERASE: Makes no sense in ramtron. Let's confirm operation as OK\n"); ret = OK; break; #ifdef CONFIG_RAMTRON_SETSPEED case MTDIOC_SETSPEED: { if (arg > 0 && arg <= RAMTRON_INIT_CLK_MAX) { priv->speed = arg; finfo("set bus speed to %lu\n", priv->speed); ret = OK; } } break; #endif case MTDIOC_XIPBASE: default: ret = -ENOTTY; /* Bad command */ break; } finfo("return %d\n", ret); return ret; } /************************************************************************************ * Public Functions ************************************************************************************/ /************************************************************************************ * Name: ramtron_initialize * * Description: * Create an initialize MTD device instance. MTD devices are not registered * in the file system, but are created as instances that can be bound to * other functions (such as a block or character driver front end). * ************************************************************************************/ FAR struct mtd_dev_s *ramtron_initialize(FAR struct spi_dev_s *dev) { FAR struct ramtron_dev_s *priv; finfo("dev: %p\n", dev); /* Allocate a state structure (we allocate the structure instead of using * a fixed, static allocation so that we can handle multiple FLASH devices. * The current implementation would handle only one FLASH part per SPI * device (only because of the SPIDEV_FLASH(0) definition) and so would have * to be extended to handle multiple FLASH parts on the same SPI bus. */ priv = (FAR struct ramtron_dev_s *)kmm_zalloc(sizeof(struct ramtron_dev_s)); if (priv) { /* Initialize the allocated structure. (unsupported methods were * nullified by kmm_zalloc). */ priv->mtd.erase = ramtron_erase; priv->mtd.bread = ramtron_bread; priv->mtd.bwrite = ramtron_bwrite; priv->mtd.read = ramtron_read; priv->mtd.ioctl = ramtron_ioctl; priv->mtd.name = "ramtron"; priv->dev = dev; /* Deselect the FLASH */ SPI_SELECT(dev, SPIDEV_FLASH(0), false); /* Identify the FLASH chip and get its capacity */ if (ramtron_readid(priv) != OK) { /* Unrecognized! Discard all of that work we just did and return NULL */ kmm_free(priv); return NULL; } } /* Return the implementation-specific state structure as the MTD device */ finfo("Return %p\n", priv); return (FAR struct mtd_dev_s *)priv; }