/****************************************************************************
 * drivers/mtd/is25xp.c
 *
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.  The
 * ASF licenses this file to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance with the
 * License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 ****************************************************************************/

/****************************************************************************
 * Included Files
 ****************************************************************************/

#include <nuttx/config.h>

#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <debug.h>
#include <inttypes.h>

#include <nuttx/kmalloc.h>
#include <nuttx/signal.h>
#include <nuttx/fs/ioctl.h>
#include <nuttx/spi/spi.h>
#include <nuttx/mtd/mtd.h>

/****************************************************************************
 * Pre-processor Definitions
 ****************************************************************************/

/* Configuration ************************************************************/

/* Per the data sheet, IS25xP parts can be driven with either SPI mode 0
 * (CPOL=0 and CPHA=0) or mode 3 (CPOL=1 and CPHA=1).  So you may need to
 * specify CONFIG_IS25XP_SPIMODE to select the best mode for your device.
 * If CONFIG_IS25XP_SPIMODE is not defined, mode 0 will be used.
 */

#ifndef CONFIG_IS25XP_SPIMODE
#define CONFIG_IS25XP_SPIMODE SPIDEV_MODE0
#endif

/* SPI Frequency.  May be up to 50MHz. */

#ifndef CONFIG_IS25XP_SPIFREQUENCY
#define CONFIG_IS25XP_SPIFREQUENCY 20000000
#endif

/* IS25 Registers ***********************************************************/

/* Identification register values */

#define IS25_MANUFACTURER         0x9d
#define IS25_MEMORY_TYPE          0x60

/*  IS25LP064 capacity is 8,388,608 bytes:
 *  (2,048 sectors) * (4,096 bytes per sector)
 *  (32,768 pages) * (256 bytes per page)
 */

#define IS25_IS25LP064_CAPACITY       0x17
#define IS25_IS25LP064_SECTOR_SHIFT   12    /* Sector size 1 << 12 = 4,096 */
#define IS25_IS25LP064_NSECTORS       2048
#define IS25_IS25LP064_PAGE_SHIFT     8     /* Page size 1 << 8 = 256 */
#define IS25_IS25LP064_NPAGES         32768
#define IS25_IS25LP064_ADDRLEN        3

/*  IS25LP128 capacity is 16,777,216 bytes:
 *  (4,096 sectors) * (4,096 bytes per sector)
 *  (65,536 pages) * (256 bytes per page)
 */

#define IS25_IS25LP128_CAPACITY       0x18
#define IS25_IS25LP128_SECTOR_SHIFT   12    /* Sector size 1 << 12 = 4,096 */
#define IS25_IS25LP128_NSECTORS       4096
#define IS25_IS25LP128_PAGE_SHIFT     8     /* Page size 1 << 8 = 256 */
#define IS25_IS25LP128_NPAGES         65536
#define IS25_IS25LP128_ADDRLEN        3

/*  IS25LP256 capacity is 33,554,432 bytes:
 *  (8,192 sectors) * (4,096 bytes per sector)
 *  (131,072 pages) * (256 bytes per page)
 */

#define IS25_IS25LP256_CAPACITY       0x19
#define IS25_IS25LP256_SECTOR_SHIFT   12    /* Sector size 1 << 12 = 4,096 */
#define IS25_IS25LP256_NSECTORS       8192
#define IS25_IS25LP256_PAGE_SHIFT     8     /* Page size 1 << 8 = 256 */
#define IS25_IS25LP256_NPAGES         131072
#define IS25_IS25LP256_ADDRLEN        4 /* This chip requires long addresses */

/*  IS25LP512 capacity is 67,108,864 bytes:
 *  (16,364 sectors) * (4,096 bytes per sector)
 *  (262,144 pages) * (256 bytes per page)
 */

#define IS25_IS25LP512_CAPACITY       0x1A
#define IS25_IS25LP512_SECTOR_SHIFT   12    /* Sector size 1 << 12 = 4,096 */
#define IS25_IS25LP512_NSECTORS       16384
#define IS25_IS25LP512_PAGE_SHIFT     8     /* Page size 1 << 8 = 256 */
#define IS25_IS25LP512_NPAGES         262144
#define IS25_IS25LP512_ADDRLEN        4 /* This chip requires long addresses */

/* Instructions */

/*   Command          Value    N Description            Addr Dummy  Data */

#define IS25_WREN      0x06  /* 1 Write Enable               0   0     0     */
#define IS25_WRDI      0x04  /* 1 Write Disable              0   0     0     */
#define IS25_RDID      0x9f  /* 1 Read Identification        0   0     1-3   */
#define IS25_RDSR      0x05  /* 1 Read Status Register       0   0     >=1   */

#define IS25_EWSR      0x50  /* 1 Write enable status        0   0     0     */
#define IS25_WRSR      0x01  /* 1 Write Status Register      0   0     1     */
#define IS25_READ      0x03  /* 1 Read Data Bytes            3   0     >=1   */
#define IS25_FAST_READ 0x0b  /* 1 Higher speed read          3   1     >=1   */
#define IS25_PP        0x02  /* 1 Page Program               3   0     1-256 */
#define IS25_SE        0x20  /* 1 Sector Erase               3   0     0     */
#define IS25_BE32      0x52  /* 2 32K Block Erase            3   0     0     */
#define IS25_BE64      0xD8  /* 2 64K Block Erase            3   0     0     */
#define IS25_CER       0xC7  /* 1 Chip Erase                 0   0     0     */
#define IS25_EN4B      0xB7  /* 1 Enter 4-byte Address Mode  0   0     0     */

/* NOTE 1: All parts.
 * NOTE 2: In IS25XP terminology, 0x52 and 0xd8 are block erase and 0x20
 *         is a sector erase.  Block erase provides a faster way to erase
 *         multiple 4K sectors at once.
 * NOTE 3: The larger chips (256/512Mbit) requires more than 24 address bits.
 *         To enable this, the EN4B command changes the address length of all
 *         commands that take a 3-byte address to 4 bytes. For information,
 *         other commands with a fixed 4-byte address are available.
 */

/* Status register bit definitions */

#define IS25_SR_WIP            (1 << 0)                /* Bit 0: Write in progress bit */
#define IS25_SR_WEL            (1 << 1)                /* Bit 1: Write enable latch bit */
#define IS25_SR_BP_SHIFT       (2)                     /* Bits 2-5: Block protect bits */
#define IS25_SR_BP_MASK        (15 << IS25_SR_BP_SHIFT)
#define IS25_SR_BP_NONE        (0 << IS25_SR_BP_SHIFT) /* Unprotected */
#define IS25_SR_BP_UPPER128th  (1 << IS25_SR_BP_SHIFT) /* Upper 128th */
#define IS25_SR_BP_UPPER64th   (2 << IS25_SR_BP_SHIFT) /* Upper 64th */
#define IS25_SR_BP_UPPER32nd   (3 << IS25_SR_BP_SHIFT) /* Upper 32nd */
#define IS25_SR_BP_UPPER16th   (4 << IS25_SR_BP_SHIFT) /* Upper 16th */
#define IS25_SR_BP_UPPER8th    (5 << IS25_SR_BP_SHIFT) /* Upper 8th */
#define IS25_SR_BP_UPPERQTR    (6 << IS25_SR_BP_SHIFT) /* Upper quarter */
#define IS25_SR_BP_UPPERHALF   (7 << IS25_SR_BP_SHIFT) /* Upper half */
#define IS25_SR_BP_ALL         (8 << IS25_SR_BP_SHIFT) /* All sectors */
#define IS25_SR_QE             (1 << 6)                /* Bit 6: Quad (QSPI) enable bit */
#define IS25_SR_SRWD           (1 << 7)                /* Bit 7: Status register write protect */

#define IS25_DUMMY     0xa5

/****************************************************************************
 * Private Types
 ****************************************************************************/

/* This type represents the state of the MTD device.  The struct mtd_dev_s
 * must appear at the beginning of the definition so that you can freely
 * cast between pointers to struct mtd_dev_s and struct is25xp_dev_s.
 */

struct is25xp_dev_s
{
  struct mtd_dev_s mtd;      /* MTD interface */
  FAR struct spi_dev_s *dev; /* Saved SPI interface instance */
  uint8_t  sectorshift;      /* 12 */
  uint8_t  pageshift;        /* 8 */
  uint16_t nsectors;         /* 2,048 or 4,096 or 8,192 or 16,384 */
  uint32_t npages;           /* 32,768 or 65,536 or 131,072 or 262,144 */
  uint8_t  lastwaswrite;     /* Indicates if last operation was write */
  uint8_t  addrlen;          /* Address length, 3 or 4 bytes */
};

/****************************************************************************
 * Private Function Prototypes
 ****************************************************************************/

/* Helpers */

static void is25xp_lock(FAR struct spi_dev_s *dev);
static inline void is25xp_unlock(FAR struct spi_dev_s *dev);
static inline int is25xp_readid(struct is25xp_dev_s *priv);
static void is25xp_enable4byteaddr(struct is25xp_dev_s *priv);
static void is25xp_waitwritecomplete(struct is25xp_dev_s *priv);
static void is25xp_writeenable(struct is25xp_dev_s *priv);
static inline void is25xp_sectorerase(struct is25xp_dev_s *priv,
                                      off_t offset,
                                      uint8_t type);
static inline int  is25xp_bulkerase(struct is25xp_dev_s *priv);
static inline void is25xp_pagewrite(struct is25xp_dev_s *priv,
                                    FAR const uint8_t *buffer,
                                    off_t offset);

/* MTD driver methods */

static int is25xp_erase(FAR struct mtd_dev_s *dev,
                        off_t startblock,
                        size_t nblocks);
static ssize_t is25xp_bread(FAR struct mtd_dev_s *dev,
                            off_t startblock,
                            size_t nblocks, FAR uint8_t *buf);
static ssize_t is25xp_bwrite(FAR struct mtd_dev_s *dev,
                             off_t startblock,
                             size_t nblocks, FAR const uint8_t *buf);
static ssize_t is25xp_read(FAR struct mtd_dev_s *dev,
                           off_t offset,
                           size_t nbytes,
                           FAR uint8_t *buffer);
#ifdef CONFIG_MTD_BYTE_WRITE
static ssize_t is25xp_write(FAR struct mtd_dev_s *dev,
                            off_t offset,
                            size_t nbytes,
                            FAR const uint8_t *buffer);
#endif
static int is25xp_ioctl(FAR struct mtd_dev_s *dev,
                        int cmd,
                        unsigned long arg);

/****************************************************************************
 * Name: is25xp_lock
 ****************************************************************************/

static void is25xp_lock(FAR struct spi_dev_s *dev)
{
  /* On SPI buses where there are multiple devices, it will be necessary to
   * lock SPI to have exclusive access to the buses for a sequence of
   * transfers.  The bus should be locked before the chip is selected.
   *
   * This is a blocking call and will not return until we have exclusive
   * access to the SPI bus. We will retain that exclusive access until the
   * bus is unlocked.
   */

  SPI_LOCK(dev, true);

  /* After locking the SPI bus, the we also need call the setfrequency,
   * setbits, and setmode methods to make sure that the SPI is properly
   * configured for the device.
   * If the SPI bus is being shared, then it may have been left in an
   * incompatible state.
   */

  SPI_SETMODE(dev, CONFIG_IS25XP_SPIMODE);
  SPI_SETBITS(dev, 8);
  SPI_HWFEATURES(dev, 0);
  SPI_SETFREQUENCY(dev, CONFIG_IS25XP_SPIFREQUENCY);
}

/****************************************************************************
 * Name: is25xp_unlock
 ****************************************************************************/

static inline void is25xp_unlock(FAR struct spi_dev_s *dev)
{
  SPI_LOCK(dev, false);
}

/****************************************************************************
 * Name: is25xp_readid
 ****************************************************************************/

static inline int is25xp_readid(struct is25xp_dev_s *priv)
{
  uint16_t manufacturer;
  uint16_t memory;
  uint16_t capacity;

  finfo("priv: %p\n", priv);

  /* Lock the SPI bus, configure the bus, and select this FLASH part. */

  is25xp_lock(priv->dev);
  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);

  /* Send the "Read ID (RDID)" command and read the first three ID bytes */

  SPI_SEND(priv->dev, IS25_RDID);
  manufacturer = SPI_SEND(priv->dev, IS25_DUMMY);
  memory       = SPI_SEND(priv->dev, IS25_DUMMY);
  capacity     = SPI_SEND(priv->dev, IS25_DUMMY);

  /* Deselect the FLASH and unlock the bus */

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
  is25xp_unlock(priv->dev);

  finfo("manufacturer: %02x memory: %02x capacity: %02x\n",
        manufacturer, memory, capacity);

  /* Check for a valid manufacturer and memory type */

  if (manufacturer == IS25_MANUFACTURER && memory == IS25_MEMORY_TYPE)
    {
      /* Okay.. is it a FLASH capacity that we understand? */

      if (capacity == IS25_IS25LP064_CAPACITY)
        {
           /* Save the FLASH geometry */

           priv->sectorshift = IS25_IS25LP064_SECTOR_SHIFT;
           priv->nsectors    = IS25_IS25LP064_NSECTORS;
           priv->pageshift   = IS25_IS25LP064_PAGE_SHIFT;
           priv->npages      = IS25_IS25LP064_NPAGES;
           priv->addrlen     = IS25_IS25LP064_ADDRLEN;
           return OK;
        }
      else if (capacity == IS25_IS25LP128_CAPACITY)
        {
           /* Save the FLASH geometry */

           priv->sectorshift = IS25_IS25LP128_SECTOR_SHIFT;
           priv->nsectors    = IS25_IS25LP128_NSECTORS;
           priv->pageshift   = IS25_IS25LP128_PAGE_SHIFT;
           priv->npages      = IS25_IS25LP128_NPAGES;
           priv->addrlen     = IS25_IS25LP128_ADDRLEN;
           return OK;
        }
      else if (capacity == IS25_IS25LP256_CAPACITY)
        {
           /* Save the FLASH geometry */

           priv->sectorshift = IS25_IS25LP256_SECTOR_SHIFT;
           priv->nsectors    = IS25_IS25LP256_NSECTORS;
           priv->pageshift   = IS25_IS25LP256_PAGE_SHIFT;
           priv->npages      = IS25_IS25LP256_NPAGES;
           priv->addrlen     = IS25_IS25LP256_ADDRLEN;
           return OK;
        }
      else if (capacity == IS25_IS25LP512_CAPACITY)
        {
           /* Save the FLASH geometry */

           priv->sectorshift = IS25_IS25LP512_SECTOR_SHIFT;
           priv->nsectors    = IS25_IS25LP512_NSECTORS;
           priv->pageshift   = IS25_IS25LP512_PAGE_SHIFT;
           priv->npages      = IS25_IS25LP512_NPAGES;
           priv->addrlen     = IS25_IS25LP512_ADDRLEN;
           return OK;
        }
    }

  return -ENODEV;
}

/****************************************************************************
 * Name: is25xp_enable4byteaddr
 ****************************************************************************/

static void is25xp_enable4byteaddr(struct is25xp_dev_s *priv)
{
  /* Lock the SPI bus, configure the bus, and select this FLASH part. */

  is25xp_lock(priv->dev);
  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);

  /* Send the "Enter 4-byte Address Mode (EN4B)" command */

  SPI_SEND(priv->dev, IS25_EN4B);

  /* Deselect the FLASH and unlock the bus */

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
  is25xp_unlock(priv->dev);
}

/****************************************************************************
 * Name: is25xp_waitwritecomplete
 ****************************************************************************/

static void is25xp_waitwritecomplete(struct is25xp_dev_s *priv)
{
  uint8_t status;

  /* No need to check if no write / erase was done */

#if 0
  if (!priv->lastwaswrite)
    {
      return;
    }
#endif

  /* Are we the only device on the bus? */

#ifdef CONFIG_SPI_OWNBUS

  /* Select this FLASH part */

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);

  /* Send "Read Status Register (RDSR)" command */

  SPI_SEND(priv->dev, IS25_RDSR);

  /* Loop as long as the memory is busy with a write cycle */

  do
    {
      /* Send a dummy byte to generate the clock needed to shift out
       * the status
       */

      status = SPI_SEND(priv->dev, IS25_DUMMY);
    }
  while ((status & IS25_SR_WIP) != 0);

  /* Deselect the FLASH */

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);

#else

  /* Loop as long as the memory is busy with a write cycle */

  do
    {
      /* Select this FLASH part */

      SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);

      /* Send "Read Status Register (RDSR)" command */

      SPI_SEND(priv->dev, IS25_RDSR);

      /* Send a dummy byte to generate the clock needed to shift out
       * the status
       */

      status = SPI_SEND(priv->dev, IS25_DUMMY);

      /* Deselect the FLASH */

      SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);

      /* Given that writing could take up to few tens of milliseconds,
       * and erasing could take more.  The following short delay in the
       * "busy" case will allow other peripherals to access the SPI bus.
       */

      if ((status & IS25_SR_WIP) != 0)
        {
          is25xp_unlock(priv->dev);
          nxsig_usleep(1000);
          is25xp_lock(priv->dev);
        }
    }
  while ((status & IS25_SR_WIP) != 0);
#endif

  priv->lastwaswrite = false;

  finfo("Complete\n");
}

/****************************************************************************
 * Name:  is25xp_writeenable
 ****************************************************************************/

static void is25xp_writeenable(struct is25xp_dev_s *priv)
{
  /* Select this FLASH part */

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);

  /* Send "Write Enable (WREN)" command */

  SPI_SEND(priv->dev, IS25_WREN);

  /* Deselect the FLASH */

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
  finfo("Enabled\n");
}

/****************************************************************************
 * Name: is25xp_unprotect
 ****************************************************************************/

static void is25xp_unprotect(struct is25xp_dev_s *priv)
{
  /* Make writeable */

  is25xp_writeenable(priv);

  /* Send "Write status (WRSR)" */

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
  SPI_SEND(priv->dev, IS25_WRSR);

  /* Followed by the new status value */

  SPI_SEND(priv->dev, 0);

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
}

/****************************************************************************
 * Name:  is25xp_sectorerase
 ****************************************************************************/

static void is25xp_sectorerase(struct is25xp_dev_s *priv,
                               off_t sector,
                               uint8_t type)
{
  off_t offset;

  offset = sector << priv->sectorshift;

  finfo("sector: %08lx\n", (long)sector);

  /* Wait for any preceding write to complete.  We could simplify things by
   * perform this wait at the end of each write operation (rather than at
   * the beginning of ALL operations), but have the wait first will slightly
   * improve performance.
   */

  is25xp_waitwritecomplete(priv);

  /* Send write enable instruction */

  is25xp_writeenable(priv);

  /* Select this FLASH part */

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);

  /* Send the "Sector Erase (SE)" or Sub-Sector Erase (SSE) instruction
   * that was passed in as the erase type.
   */

  SPI_SEND(priv->dev, type);

  /* Send the sector offset high byte first.  For all of the supported
   * parts, the sector number is completely contained in the first byte
   * and the values used in the following two bytes don't really matter.
   */

  if (priv->addrlen == 4)
    {
      SPI_SEND(priv->dev, (offset >> 24) & 0xff);
    }

  SPI_SEND(priv->dev, (offset >> 16) & 0xff);
  SPI_SEND(priv->dev, (offset >> 8) & 0xff);
  SPI_SEND(priv->dev, offset & 0xff);
  priv->lastwaswrite = true;

  /* Deselect the FLASH */

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
  finfo("Erased\n");
}

/****************************************************************************
 * Name:  is25xp_bulkerase
 ****************************************************************************/

static inline int is25xp_bulkerase(struct is25xp_dev_s *priv)
{
  finfo("priv: %p\n", priv);

  /* Wait for any preceding write to complete.  We could simplify things by
   * perform this wait at the end of each write operation (rather than at
   * the beginning of ALL operations), but have the wait first will slightly
   * improve performance.
   */

  is25xp_waitwritecomplete(priv);

  /* Send write enable instruction */

  is25xp_writeenable(priv);

  /* Select this FLASH part */

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);

  /* Send the "Chip Erase (CER)" instruction */

  SPI_SEND(priv->dev, IS25_CER);

  /* Deselect the FLASH */

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
  is25xp_waitwritecomplete(priv);

  finfo("Return: OK\n");
  return OK;
}

/****************************************************************************
 * Name:  is25xp_pagewrite
 ****************************************************************************/

static inline void is25xp_pagewrite(struct is25xp_dev_s *priv,
                                    FAR const uint8_t *buffer,
                                    off_t page)
{
  off_t offset = page << priv->pageshift;

  finfo("page: %08lx offset: %08lx\n", (long)page, (long)offset);

  /* Wait for any preceding write to complete.  We could simplify things by
   * perform this wait at the end of each write operation (rather than at
   * the beginning of ALL operations), but have the wait first will slightly
   * improve performance.
   */

  is25xp_waitwritecomplete(priv);

  /* Enable the write access to the FLASH */

  is25xp_writeenable(priv);

  /* Select this FLASH part */

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);

  /* Send "Page Program (PP)" command */

  SPI_SEND(priv->dev, IS25_PP);

  /* Send the page offset high byte first. */

  if (priv->addrlen == 4)
    {
      SPI_SEND(priv->dev, (offset >> 24) & 0xff);
    }

  SPI_SEND(priv->dev, (offset >> 16) & 0xff);
  SPI_SEND(priv->dev, (offset >> 8) & 0xff);
  SPI_SEND(priv->dev, offset & 0xff);

  /* Then write the specified number of bytes */

  SPI_SNDBLOCK(priv->dev, buffer, 1 << priv->pageshift);
  priv->lastwaswrite = true;

  /* Deselect the FLASH: Chip Select high */

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
  finfo("Written\n");
}

/****************************************************************************
 * Name:  is25xp_bytewrite
 ****************************************************************************/

#ifdef CONFIG_MTD_BYTE_WRITE
static inline void is25xp_bytewrite(struct is25xp_dev_s *priv,
                                    FAR const uint8_t *buffer, off_t offset,
                                    uint16_t count)
{
  finfo("offset: %08lx  count:%d\n", (long)offset, count);

  /* Wait for any preceding write to complete.  We could simplify things by
   * perform this wait at the end of each write operation (rather than at
   * the beginning of ALL operations), but have the wait first will slightly
   * improve performance.
   */

  is25xp_waitwritecomplete(priv);

  /* Enable the write access to the FLASH */

  is25xp_writeenable(priv);

  /* Select this FLASH part */

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);

  /* Send "Page Program (PP)" command */

  SPI_SEND(priv->dev, IS25_PP);

  /* Send the page offset high byte first. */

  if (priv->addrlen == 4)
    {
      SPI_SEND(priv->dev, (offset >> 24) & 0xff);
    }

  SPI_SEND(priv->dev, (offset >> 16) & 0xff);
  SPI_SEND(priv->dev, (offset >> 8) & 0xff);
  SPI_SEND(priv->dev, offset & 0xff);

  /* Then write the specified number of bytes */

  SPI_SNDBLOCK(priv->dev, buffer, count);
  priv->lastwaswrite = true;

  /* Deselect the FLASH: Chip Select high */

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
  finfo("Written\n");
}
#endif

/****************************************************************************
 * Name: is25xp_erase
 ****************************************************************************/

static int is25xp_erase(FAR struct mtd_dev_s *dev,
                        off_t startblock,
                        size_t nblocks)
{
  FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev;
  size_t blocksleft = nblocks;

  finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);

  /* Lock access to the SPI bus until we complete the erase */

  is25xp_lock(priv->dev);
  while (blocksleft > 0)
    {
      size_t sectorboundry;
      size_t blkper;

      /* We will erase in either 4K sectors or 32K or 64K blocks depending
       * on the largest unit we can use given the startblock and nblocks.
       * This will reduce erase time (in the event we have partitions
       * enabled and are doing a bulk erase which is translated into
       * a block erase operation).
       */

      /* Test for 64K alignment */

      blkper = 64 / 4;
      sectorboundry = (startblock + blkper - 1) / blkper;
      sectorboundry *= blkper;

      /* If we are on a sector boundary and have at least a full sector
       * of blocks left to erase, then we can do a full sector erase.
       */

      if (startblock == sectorboundry && blocksleft >= blkper)
        {
          /* Do a 64k block erase */

          is25xp_sectorerase(priv, startblock, IS25_BE64);
          startblock += blkper;
          blocksleft -= blkper;
          continue;
        }

      /* Test for 32K block alignment */

      blkper = 32 / 4;
      sectorboundry = (startblock + blkper - 1) / blkper;
      sectorboundry *= blkper;

      if (startblock == sectorboundry && blocksleft >= blkper)
        {
          /* Do a 32k block erase */

          is25xp_sectorerase(priv, startblock, IS25_BE32);
          startblock += blkper;
          blocksleft -= blkper;
          continue;
        }
      else
        {
          /* Just do a sector erase */

          is25xp_sectorerase(priv, startblock, IS25_SE);
          startblock++;
          blocksleft--;
          continue;
        }
    }

  is25xp_unlock(priv->dev);
  return (int)nblocks;
}

/****************************************************************************
 * Name: is25xp_bread
 ****************************************************************************/

static ssize_t is25xp_bread(FAR struct mtd_dev_s *dev,
                            off_t startblock,
                            size_t nblocks,
                            FAR uint8_t *buffer)
{
  FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev;
  ssize_t nbytes;

  finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);

  /* On this device, we can handle the block read just like the byte-oriented
   * read
   */

  nbytes = is25xp_read(dev,
                       startblock << priv->pageshift,
                       nblocks << priv->pageshift,
                       buffer);
  if (nbytes > 0)
    {
        return nbytes >> priv->pageshift;
    }

  return (int)nbytes;
}

/****************************************************************************
 * Name: is25xp_bwrite
 ****************************************************************************/

static ssize_t is25xp_bwrite(FAR struct mtd_dev_s *dev,
                             off_t startblock,
                             size_t nblocks,
                             FAR const uint8_t *buffer)
{
  FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev;
  size_t blocksleft = nblocks;
  size_t pagesize = 1 << priv->pageshift;

  finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);

  /* Lock the SPI bus and write each page to FLASH */

  is25xp_lock(priv->dev);
  while (blocksleft-- > 0)
    {
      is25xp_pagewrite(priv, buffer, startblock);
      buffer += pagesize;
      startblock++;
    }

  is25xp_unlock(priv->dev);
  return nblocks;
}

/****************************************************************************
 * Name: is25xp_read
 ****************************************************************************/

static ssize_t is25xp_read(FAR struct mtd_dev_s *dev,
                           off_t offset,
                           size_t nbytes,
                           FAR uint8_t *buffer)
{
  FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev;

  finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);

  /* Lock the SPI bus NOW because the following call must be executed with
   * the bus locked.
   */

  is25xp_lock(priv->dev);

  /* Wait for any preceding write to complete.  We could simplify things by
   * perform this wait at the end of each write operation (rather than at
   * the beginning of ALL operations), but have the wait first will slightly
   * improve performance.
   */

  if (priv->lastwaswrite)
    {
      is25xp_waitwritecomplete(priv);
    }

  /* Select this FLASH part */

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);

  /* Send "Read from Memory " instruction */

  SPI_SEND(priv->dev, IS25_READ);

  /* Send the page offset high byte first. */

  if (priv->addrlen == 4)
    {
      SPI_SEND(priv->dev, (offset >> 24) & 0xff);
    }

  SPI_SEND(priv->dev, (offset >> 16) & 0xff);
  SPI_SEND(priv->dev, (offset >> 8) & 0xff);
  SPI_SEND(priv->dev, offset & 0xff);

  /* Then read all of the requested bytes */

  SPI_RECVBLOCK(priv->dev, buffer, nbytes);

  /* Deselect the FLASH and unlock the SPI bus */

  SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
  is25xp_unlock(priv->dev);

  finfo("return nbytes: %d\n", (int)nbytes);
  return nbytes;
}

/****************************************************************************
 * Name: is25xp_write
 ****************************************************************************/

#ifdef CONFIG_MTD_BYTE_WRITE
static ssize_t is25xp_write(FAR struct mtd_dev_s *dev,
                            off_t offset,
                            size_t nbytes,
                            FAR const uint8_t *buffer)
{
  FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev;
  int    startpage;
  int    endpage;
  int    count;
  int    index;
  int    pagesize;
  int    bytestowrite;

  finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);

  /* We must test if the offset + count crosses one or more pages
   * and perform individual writes.  The devices can only write in
   * page increments.
   */

  startpage = offset / (1 << priv->pageshift);
  endpage = (offset + nbytes) / (1 << priv->pageshift);

  is25xp_lock(priv->dev);
  if (startpage == endpage)
    {
      /* All bytes within one programmable page.  Just do the write. */

      is25xp_bytewrite(priv, buffer, offset, nbytes);
    }
  else
    {
      /* Write the 1st partial-page */

      count = nbytes;
      pagesize = (1 << priv->pageshift);
      bytestowrite = pagesize - (offset & (pagesize - 1));
      is25xp_bytewrite(priv, buffer, offset, bytestowrite);

      /* Update offset and count */

      offset += bytestowrite;
      count -=  bytestowrite;
      index = bytestowrite;

      /* Write full pages */

      while (count >= pagesize)
        {
          is25xp_bytewrite(priv, &buffer[index], offset, pagesize);

          /* Update offset and count */

          offset += pagesize;
          count -= pagesize;
          index += pagesize;
        }

      /* Now write any partial page at the end */

      if (count > 0)
        {
          is25xp_bytewrite(priv, &buffer[index], offset, count);
        }

      priv->lastwaswrite = true;
    }

  is25xp_unlock(priv->dev);
  return nbytes;
}
#endif /* CONFIG_MTD_BYTE_WRITE */

/****************************************************************************
 * Name: is25xp_ioctl
 ****************************************************************************/

static int is25xp_ioctl(FAR struct mtd_dev_s *dev,
                        int cmd,
                        unsigned long arg)
{
  FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev;
  int ret = -EINVAL; /* Assume good command with bad parameters */

  finfo("cmd: %d\n", cmd);

  switch (cmd)
    {
      case MTDIOC_GEOMETRY:
        {
          FAR struct mtd_geometry_s *geo =
                              (FAR struct mtd_geometry_s *)((uintptr_t)arg);
          if (geo)
            {
              memset(geo, 0, sizeof(*geo));

              /* Populate the geometry structure with information need to
               * know the capacity and how to access the device.
               *
               * NOTE:
               * that the device is treated as though it where just an array
               * of fixed size blocks.  That is most likely not true, but the
               * client will expect the device logic to do whatever is
               * necessary to make it appear so.
               */

              geo->blocksize = (1 << priv->pageshift);
              geo->erasesize    = (1 << priv->sectorshift);
              geo->neraseblocks = priv->nsectors;

              ret = OK;

              finfo("blocksize: %"PRIu32" erasesize: %"PRIu32
                    " neraseblocks: %"PRIu32"\n", geo->blocksize,
                    geo->erasesize, geo->neraseblocks);
            }
        }
        break;

      case BIOC_PARTINFO:
        {
          FAR struct partition_info_s *info =
            (FAR struct partition_info_s *)arg;
          if (info != NULL)
            {
              info->numsectors  = priv->nsectors <<
                                  (priv->sectorshift - priv->pageshift);
              info->sectorsize  = 1 << priv->pageshift;
              info->startsector = 0;
              info->parent[0]   = '\0';
              ret               = OK;
            }
        }
        break;

      case MTDIOC_BULKERASE:
        {
            /* Erase the entire device */

            is25xp_lock(priv->dev);
            ret = is25xp_bulkerase(priv);
            is25xp_unlock(priv->dev);
        }
        break;

      default:
        ret = -ENOTTY; /* Bad command */
        break;
    }

  finfo("return %d\n", ret);
  return ret;
}

/****************************************************************************
 * Public Functions
 ****************************************************************************/

/****************************************************************************
 * Name: is25xp_initialize
 *
 * Description:
 *   Create an initialize MTD device instance. MTD devices are not registered
 *   in the file system, but are created as instances that can be bound to
 *   other functions (such as a block or character driver front end).
 *
 ****************************************************************************/

FAR struct mtd_dev_s *is25xp_initialize(FAR struct spi_dev_s *dev)
{
  FAR struct is25xp_dev_s *priv;
  int ret;

  finfo("dev: %p\n", dev);

  /* Allocate a state structure (we allocate the structure instead of using
   * a fixed, static allocation so that we can handle multiple FLASH devices.
   * The current implementation would handle only one FLASH part per SPI
   * device (only because of the SPIDEV_FLASH(0) definition) and so would
   * have to be extended to handle multiple FLASH parts on the same SPI bus.
   */

  priv = (FAR struct is25xp_dev_s *)kmm_zalloc(sizeof(struct is25xp_dev_s));
  if (priv)
    {
      /* Initialize the allocated structure. (unsupported methods were
       * nullified by kmm_zalloc).
       */

      priv->mtd.erase  = is25xp_erase;
      priv->mtd.bread  = is25xp_bread;
      priv->mtd.bwrite = is25xp_bwrite;
      priv->mtd.read   = is25xp_read;
#ifdef CONFIG_MTD_BYTE_WRITE
      priv->mtd.write  = is25xp_write;
#endif
      priv->mtd.ioctl  = is25xp_ioctl;
      priv->mtd.name   = "is25xp";
      priv->dev        = dev;
      priv->lastwaswrite = false;

      /* Deselect the FLASH */

      SPI_SELECT(dev, SPIDEV_FLASH(0), false);

      /* Identify the FLASH chip and get its capacity */

      ret = is25xp_readid(priv);
      if (ret != OK)
        {
          /* Unrecognized! Discard all of that work we just did and
           * return NULL
           */

          ferr("ERROR: Unrecognized\n");
          kmm_free(priv);
          return NULL;
        }
      else
        {
          /* For the large capacity chip, enable 4-byte address mode. */

          if (priv->addrlen == 4)
            {
              is25xp_enable4byteaddr(priv);
            }

          /* Make sure that the FLASH is unprotected so that we can
           * write into it
           */

          is25xp_unprotect(priv);
        }
    }

  /* Return the implementation-specific state structure as the MTD device */

  finfo("Return %p\n", priv);
  return (FAR struct mtd_dev_s *)priv;
}