/************************************************************************************ * drivers/mtd/mx35.c * Driver for SPI-based MX35LFxGE4AB parts of 1 or 2GBit. * * Copyright (C) 2016, 2019 Gregory Nutt. All rights reserved. * Author: Ekaterina Kovylova * * Copied from / based on mx25lx.c driver written by * Aleksandr Vyhovanec * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name NuttX nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ************************************************************************************/ /************************************************************************************ * Included Files ************************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include /************************************************************************************ * Pre-processor Definitions ************************************************************************************/ /* Configuration ********************************************************************/ /* Per the data sheet, MX35 parts can be driven with either SPI mode 0 (CPOL=0 and * CPHA=0) or mode 3 (CPOL=1 and CPHA=1). If CONFIG_MX35_SPIMODE is not defined, * mode 0 will be used. */ #ifndef CONFIG_MX35_SPIMODE # define CONFIG_MX35_SPIMODE SPIDEV_MODE0 #endif #ifndef CONFIG_MX35_SPIFREQUENCY # define CONFIG_MX35_SPIFREQUENCY 104000000 #endif #ifndef CONFIG_MX35_MANUFACTURER # define CONFIG_MX35_MANUFACTURER 0xC2 #endif /* Debug ****************************************************************************/ #ifdef CONFIG_MX35_DEBUG # define mx35err(format, ...) _err(format, ##__VA_ARGS__) # define mx35info(format, ...) _info(format, ##__VA_ARGS__) #else # define mx35err(x...) # define mx35info(x...) #endif /* Indentification register values **************************************************/ #define MX35_MANUFACTURER CONFIG_MX35_MANUFACTURER #define MX35_MX35LF1GE4AB_CAPACITY 0x12 /* 1 Gb */ #define MX35_MX35LF2GE4AB_CAPACITY 0x22 /* 2 Gb */ /* Chip Geometries ******************************************************************/ /* MX35LF1GE4AB capacity is 1 G-bit */ #define MX35_MX35LF1GE4AB_SECTOR_SHIFT 17 /* Sector size 1 << 17 = 128 Kb */ #define MX35_MX35LF1GE4AB_NSECTORS 1024 #define MX35_MX35LF1GE4AB_PAGE_SHIFT 11 /* Page size 1 << 11 = 2 Kb */ /* MX35LF2GE4AB capacity is 2 G-bit */ #define MX35_MX35LF2GE4AB_SECTOR_SHIFT 17 /* Sector size 1 << 17 = 128 Kb */ #define MX35_MX35LF2GE4AB_NSECTORS 2048 #define MX35_MX35LF2GE4AB_PAGE_SHIFT 11 /* Page size 1 << 11 = 2 Kb */ /* MX35 Instructions ****************************************************************/ /* Command Value Description Addr Data */ /* Dummy */ #define MX35_GET_FEATURE 0x0F /* Get features 1 0 1 */ #define MX35_SET_FEATURE 0x1F /* Set features 1 0 1 */ #define MX35_PAGE_READ 0x13 /* Array read 3 0 0 */ #define MX35_READ_FROM_CACHE 0x03 /* Output cache data on SO 2 1 1-2112 */ #define MX35_READ_FROM_CACHE_X1 0x0B /* Output cache data on SO 2 1 1-2112 */ #define MX35_READ_FROM_CACHE_X2 0x3B /* Output cache data on SI and SO 2 1 1-2112 */ #define MX35_READ_FROM_CACHE_X4 0x6B /* Output cache data on SI, SO, WP, HOLD 2 1 1-2112 */ #define MX35_READ_ID 0x9F /* Read device ID 0 1 2 */ #define MX35_ECC_STATUS_READ 0x7C /* Internal ECC status output 0 1 1 */ #define MX35_BLOCK_ERASE 0xD8 /* Block erase 3 0 0 */ #define MX35_PROGRAM_EXECUTE 0x10 /* Enter block/page address, execute 3 0 0 */ #define MX35_PROGRAM_LOAD 0x02 /* Load program data with cache reset first 2 0 1-2112 */ #define MX35_PROGRAM_LOAD_RANDOM 0x84 /* Load program data without cache reset 2 0 1-2112 */ #define MX35_PROGRAM_LOAD_X4 0x32 /* Program load operation with x4 data input 2 0 1-2112 */ #define MX35_PROGRAM_LOAD_RANDOM_X4 0x34 /* Load random operation with x4 data input 2 0 1-2112 */ #define MX35_WRITE_ENABLE 0x06 /* 0 0 0 */ #define MX35_WRITE_DISABLE 0x04 /* 0 0 0 */ #define MX35_RESET 0xFF /* Reset the device 0 0 0 */ #define MX35_DUMMY 0x00 /* No Operation 0 0 0 */ /* Feature register *****************************************************************/ /* Register address */ #define MX35_SECURE_OTP 0xB0 #define MX35_STATUS 0xC0 #define MX35_BLOCK_PROTECTION 0xA0 /* Bit definitions */ /* Secure OTP (On-Time-Programmable) register*/ #define MX35_SOTP_QE (1 << 0) /* Bit 0: Quad Enable */ #define MX35_SOTP_ECC (1 << 4) /* Bit 4: ECC enabled */ #define MX35_SOTP_SOTP_EN (1 << 6) /* Bit 6: Secure OTP Enable */ #define MX35_SOTP_SOTP_PROT (1 << 7) /* Bit 7: Secure OTP Protect */ /* Status register */ #define MX35_SR_OIP (1 << 0) /* Bit 0: Operation in progress */ #define MX35_SR_WEL (1 << 1) /* Bit 1: Write enable latch */ #define MX35_SR_E_FAIL (1 << 2) /* Bit 2: Erase fail */ #define MX35_SR_P_FAIL (1 << 3) /* Bit 3: Program Fail */ #define MX35_SR_ECC_S0 (1 << 4) /* Bit 4-5: ECC Status */ #define MX35_SR_ECC_S1 (1 << 5) /* Block Protection register*/ #define MX35_BP_SP (1 << 0) /* Bit 0: Solid-protection (1Gb only) */ #define MX35_BP_COMPL (1 << 1) /* Bit 1: Complementary (1Gb only) */ #define MX35_BP_INV (1 << 2) /* Bit 2: Invert (1Gb only) */ #define MX35_BP_BP0 (1 << 3) /* Bit 3: Block Protection 0 */ #define MX35_BP_BP1 (1 << 4) /* Bit 4: Block Protection 1 */ #define MX35_BP_BP2 (1 << 5) /* Bit 5: Block Protection 2 */ #define MX35_BP_BPRWD (1 << 7) /* Bit 7: Block Protection Register * Write Disable */ /* ECC Status register */ #define MX35_FEATURE_ECC_MASK (0x03 << 4) #define MX35_FEATURE_ECC_INCORRECTABLE (0x02 << 4) #define MX35_FEATURE_ECC_OFFSET 4 #define MX35_ECC_STATUS_MASK 0x0F #define MX35_ECC_INCORRECTABLE 0x0F /************************************************************************************ * Private Types ************************************************************************************/ /* This type represents the state of the MTD device. The struct mtd_dev_s * must appear at the beginning of the definition so that you can freely * cast between pointers to struct mtd_dev_s and struct m25p_dev_s. */ struct mx35_dev_s { struct mtd_dev_s mtd; /* MTD interface */ FAR struct spi_dev_s *dev; /* Saved SPI interface instance */ uint8_t highCapacity; uint8_t sectorshift; /* 17 */ uint16_t nsectors; /* 1024 or 2048 */ uint8_t pageshift; /* 11 */ uint8_t eccstatus; /* Internal ECC status */ }; /************************************************************************************ * Private Function Prototypes ************************************************************************************/ static inline void mx35_lock(FAR struct spi_dev_s *dev); static inline void mx35_unlock(FAR struct spi_dev_s *dev); static int mx35_readid(FAR struct mx35_dev_s *priv); static bool mx35_waitstatus(FAR struct mx35_dev_s *priv, uint8_t mask, bool successif); static inline void mx35_writeenable(struct mx35_dev_s *priv); static inline void mx35_writedisable(struct mx35_dev_s *priv); static inline uint32_t mx35_addresstorow(FAR struct mx35_dev_s *priv, uint32_t address); static inline uint32_t mx35_addresstocolumn(FAR struct mx35_dev_s *priv, uint32_t address); static bool mx35_sectorerase(FAR struct mx35_dev_s *priv, off_t startsector); static int mx35_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks); static void mx35_readbuffer(FAR struct mx35_dev_s *priv, uint32_t address, uint8_t *buffer, size_t length); static bool mx35_read_page(FAR struct mx35_dev_s *priv, uint32_t position); static ssize_t mx35_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer); static void mx35_write_to_cache(FAR struct mx35_dev_s *priv, uint32_t address, const uint8_t *buffer, size_t length); static bool mx35_execute_write(FAR struct mx35_dev_s *priv, uint32_t position); static ssize_t mx35_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR const uint8_t *buffer); static int mx35_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg); static inline void mx35_eccstatusread(struct mx35_dev_s *priv); static inline void mx35_enableECC(struct mx35_dev_s *priv); static inline void mx35_unlockblocks(struct mx35_dev_s *priv); /************************************************************************************ * Private Functions ************************************************************************************/ /************************************************************************************ * Name: mx35_lock ************************************************************************************/ static inline void mx35_lock(FAR struct spi_dev_s *dev) { /* On SPI busses where there are multiple devices, it will be necessary to * lock SPI to have exclusive access to the busses for a sequence of * transfers. The bus should be locked before the chip is selected. * * This is a blocking call and will not return until we have exclusive access to * the SPI buss. We will retain that exclusive access until the bus is unlocked. */ SPI_LOCK(dev, true); /* After locking the SPI bus, the we also need call the setfrequency, setbits, and * setmode methods to make sure that the SPI is properly configured for the device. * If the SPI buss is being shared, then it may have been left in an incompatible * state. */ SPI_SETMODE(dev, CONFIG_MX35_SPIMODE); SPI_SETBITS(dev, 8); SPI_HWFEATURES(dev, 0); SPI_SETFREQUENCY(dev, CONFIG_MX35_SPIFREQUENCY); } /************************************************************************************ * Name: mx35_unlock ************************************************************************************/ static inline void mx35_unlock(FAR struct spi_dev_s *dev) { SPI_LOCK(dev, false); } /************************************************************************************ * Name: m25p_readid ************************************************************************************/ static int mx35_readid(struct mx35_dev_s *priv) { uint16_t manufacturer; uint16_t capacity; mx35info("priv: %p\n", priv); /* Lock the SPI bus, configure the bus, and select this FLASH part. */ mx35_lock(priv->dev); SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the "Read ID" command and read two ID bytes */ SPI_SEND(priv->dev, MX35_READ_ID); SPI_SEND(priv->dev, MX35_DUMMY); manufacturer = SPI_SEND(priv->dev, MX35_DUMMY); capacity = SPI_SEND(priv->dev, MX35_DUMMY); /* Deselect the FLASH and unlock the bus */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); mx35_unlock(priv->dev); mx35info("manufacturer: %02x capacity: %02x\n", manufacturer, capacity); /* Check for a valid manufacturer */ if (manufacturer == MX35_MANUFACTURER) { /* Okay.. is it a FLASH capacity that we understand? */ if (capacity == MX35_MX35LF1GE4AB_CAPACITY) { /* Save the FLASH geometry */ priv->highCapacity = 0; priv->sectorshift = MX35_MX35LF1GE4AB_SECTOR_SHIFT; priv->nsectors = MX35_MX35LF1GE4AB_NSECTORS; priv->pageshift = MX35_MX35LF1GE4AB_PAGE_SHIFT; return OK; } else if (capacity == MX35_MX35LF2GE4AB_CAPACITY) { /* Save the FLASH geometry */ priv->highCapacity = 1; priv->sectorshift = MX35_MX35LF2GE4AB_SECTOR_SHIFT; priv->nsectors = MX35_MX35LF2GE4AB_NSECTORS; priv->pageshift = MX35_MX35LF2GE4AB_PAGE_SHIFT; return OK; } } return -ENODEV; } /************************************************************************************ * Name: mx35_waitstatus ************************************************************************************/ static bool mx35_waitstatus(FAR struct mx35_dev_s *priv, uint8_t mask, bool successif) { uint8_t status; /* Loop as long as the memory is busy with a write cycle */ do { /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Get feature command */ SPI_SEND(priv->dev, MX35_GET_FEATURE); SPI_SEND(priv->dev, MX35_STATUS); status = SPI_SEND(priv->dev, MX35_DUMMY); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); /* Given that writing could take up to few tens of milliseconds, and erasing * could take more. The following short delay in the "busy" case will allow * other peripherals to access the SPI bus. */ } while (((status & MX35_SR_OIP) != 0) && (!nxsig_usleep(1000))); mx35info("Complete\n"); return successif ? ((status & mask) != 0) : ((status & mask) == 0); } /************************************************************************************ * Name: mx35_writeenable ************************************************************************************/ static inline void mx35_writeenable(struct mx35_dev_s *priv) { /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send Write Enable command */ SPI_SEND(priv->dev, MX35_WRITE_ENABLE); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); } /************************************************************************************ * Name: mx35_writedisable ************************************************************************************/ static inline void mx35_writedisable(struct mx35_dev_s *priv) { /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send Write Enable command */ SPI_SEND(priv->dev, MX35_WRITE_DISABLE); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); } /************************************************************************************ * Name: mx35_addresstorow ************************************************************************************/ static inline uint32_t mx35_addresstorow(FAR struct mx35_dev_s *priv, uint32_t address) { /* Convert to page */ uint32_t row = address >> priv->pageshift; if (priv->highCapacity) { const uint32_t plane = (row >> (16 - 6)) & 0x40; /* Shift block address */ row = ((row & ~0x3F) << 1) | (row & 0x3F); /* Insert plane select bit */ row = row | plane; } return row; } /************************************************************************************ * Name: mx35_addresstocolumn ************************************************************************************/ static inline uint32_t mx35_addresstocolumn(FAR struct mx35_dev_s *priv, uint32_t address) { uint32_t column = address % (1 << priv->pageshift); if (priv->highCapacity) { /* Convert to page */ const uint32_t row = address >> priv->pageshift; const uint32_t plane = (row >> (16 - 12)) & 0x1000; /* Insert plane select bit */ column = column | plane; } else { uint16_t wraplength = 0x00; column |= (wraplength & 0xC000); } return column; } /************************************************************************************ * Name: mx35_sectorerase (128K) ************************************************************************************/ static bool mx35_sectorerase(FAR struct mx35_dev_s *priv, off_t startsector) { off_t address = (off_t)startsector << priv->sectorshift; const uint32_t block = mx35_addresstorow(priv, address); mx35info("sector: %08lx\n", (long)startsector); /* Send write enable instruction */ mx35_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the Block Erase instruction */ SPI_SEND(priv->dev, MX35_BLOCK_ERASE); SPI_SEND(priv->dev, (block >> 16) & 0xff); SPI_SEND(priv->dev, (block >> 8) & 0xff); SPI_SEND(priv->dev, block & 0xff); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); mx35info("Erased\n"); return mx35_waitstatus(priv, MX35_SR_E_FAIL, false); } /************************************************************************************ * Name: mx35_erase ************************************************************************************/ static int mx35_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks) { FAR struct mx35_dev_s *priv = (FAR struct mx35_dev_s *)dev; size_t blocksleft = nblocks; mx35info("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* Lock access to the SPI bus until we complete the erase */ mx35_lock(priv->dev); /* Wait all operations complete */ mx35_waitstatus(priv, MX35_SR_OIP, false); while (blocksleft-- > 0) { mx35_sectorerase(priv, startblock); startblock++; } mx35_unlock(priv->dev); return (int)nblocks; } /************************************************************************************ * Name: mx35_readbuffer ************************************************************************************/ static void mx35_readbuffer(FAR struct mx35_dev_s *priv, uint32_t address, uint8_t *buffer, size_t length) { const uint16_t offset = mx35_addresstocolumn(priv, address); /* Select the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); SPI_SEND(priv->dev, MX35_READ_FROM_CACHE); /* Send the address high byte first. */ SPI_SEND(priv->dev, (offset >> 8) & 0xff); SPI_SEND(priv->dev, (offset) & 0xff); /* Send a dummy byte */ SPI_SEND(priv->dev, MX35_DUMMY); /* Then read all of the requested bytes */ SPI_RECVBLOCK(priv->dev, buffer, length); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); } /************************************************************************************ * Name: mx35_read_page ************************************************************************************/ static bool mx35_read_page(FAR struct mx35_dev_s *priv, uint32_t pageaddress) { const uint32_t row = mx35_addresstorow(priv, pageaddress); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the Read Page instruction */ SPI_SEND(priv->dev, MX35_PAGE_READ); SPI_SEND(priv->dev, (row >> 16) & 0xff); SPI_SEND(priv->dev, (row >> 8) & 0xff); SPI_SEND(priv->dev, row & 0xff); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); mx35_waitstatus(priv, MX35_SR_OIP, false); mx35_eccstatusread(priv); if ((priv->eccstatus & MX35_FEATURE_ECC_MASK) == MX35_FEATURE_ECC_INCORRECTABLE) { return false; } return true; } /************************************************************************************ * Name: mx35_read ************************************************************************************/ static ssize_t mx35_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer) { FAR struct mx35_dev_s *priv = (FAR struct mx35_dev_s *)dev; size_t bytesleft = nbytes; uint32_t position = offset; mx35info("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); /* Lock the SPI bus and select this FLASH part */ mx35_lock(priv->dev); /* Wait all operations complete */ mx35_waitstatus(priv, MX35_SR_OIP, false); while (bytesleft) { const uint32_t pageaddress = (position >> priv->pageshift) << priv->pageshift; const uint32_t spaceleft = pageaddress + (1 << priv->pageshift) - position; const size_t chunklength = bytesleft < spaceleft ? bytesleft : spaceleft; if (!mx35_read_page(priv, pageaddress)) { break; } mx35_readbuffer(priv, position, buffer, chunklength); position += chunklength; buffer += chunklength; bytesleft -= chunklength; } mx35_unlock(priv->dev); mx35info("return nbytes: %d\n", (int)(nbytes - bytesleft)); return nbytes - bytesleft; } /************************************************************************************ * Name: mx35_write_to_cache ************************************************************************************/ static void mx35_write_to_cache(FAR struct mx35_dev_s *priv, uint32_t address, const uint8_t *buffer, size_t length) { const uint16_t offset = mx35_addresstocolumn(priv, address); /* Select the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the Program Load command */ SPI_SEND(priv->dev, MX35_PROGRAM_LOAD); /* Send the address high byte first. */ SPI_SEND(priv->dev, (offset >> 8) & 0xff); SPI_SEND(priv->dev, (offset) & 0xff); /* Send block of bytes */ SPI_SNDBLOCK(priv->dev, buffer, length); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); } /************************************************************************************ * Name: mx35_write_to_cache ************************************************************************************/ static bool mx35_execute_write(FAR struct mx35_dev_s *priv, uint32_t pageaddress) { const uint32_t row = mx35_addresstorow(priv, pageaddress); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the Pragram Execute instruction */ SPI_SEND(priv->dev, MX35_PROGRAM_EXECUTE); SPI_SEND(priv->dev, (row >> 16) & 0xff); SPI_SEND(priv->dev, (row >> 8) & 0xff); SPI_SEND(priv->dev, row & 0xff); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); return mx35_waitstatus(priv, MX35_SR_P_FAIL, false); } /************************************************************************************ * Name: mx35_write ************************************************************************************/ static ssize_t mx35_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR const uint8_t *buffer) { FAR struct mx35_dev_s *priv = (FAR struct mx35_dev_s *)dev; size_t bytesleft = nbytes; uint32_t position = offset; mx35_lock(priv->dev); /* Wait all operations complete */ mx35_waitstatus(priv, MX35_SR_OIP, false); while (bytesleft) { const uint32_t pageaddress = (position >> priv->pageshift) << priv->pageshift; const uint32_t spaceleft = pageaddress + (1 << priv->pageshift) - position; const size_t chunklength = bytesleft < spaceleft ? bytesleft : spaceleft; mx35_writeenable(priv); mx35_write_to_cache(priv, position, buffer, chunklength); if (!mx35_execute_write(priv, pageaddress)) { continue; } position += chunklength; buffer += chunklength; bytesleft -= chunklength; } mx35_unlock(priv->dev); return nbytes - bytesleft; } /************************************************************************************ * Name: mx25l_ioctl ************************************************************************************/ static int mx35_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg) { FAR struct mx35_dev_s *priv = (FAR struct mx35_dev_s *)dev; int ret = -EINVAL; /* Assume good command with bad parameters */ mx35info("cmd: %d \n", cmd); switch (cmd) { case MTDIOC_GEOMETRY: { FAR struct mtd_geometry_s *geo = (FAR struct mtd_geometry_s *)((uintptr_t)arg); if (geo) { /* Populate the geometry structure with information need to know * the capacity and how to access the device. * * NOTE: that the device is treated as though it where just an array * of fixed size blocks. That is most likely not true, but the client * will expect the device logic to do whatever is necessary to make it * appear so. */ geo->blocksize = (1 << priv->pageshift); geo->erasesize = (1 << priv->sectorshift); geo->neraseblocks = priv->nsectors; ret = OK; mx35info("blocksize: %d erasesize: %d neraseblocks: %d\n", geo->blocksize, geo->erasesize, geo->neraseblocks); } } break; case MTDIOC_BULKERASE: { /* Erase the entire device */ ret = mx35_erase(dev, 0, priv->nsectors); } break; case MTDIOC_ECCSTATUS: { uint8_t *result = (uint8_t *)arg; *result = (priv->eccstatus & MX35_FEATURE_ECC_MASK) >> MX35_FEATURE_ECC_OFFSET; ret = OK; } break; default: ret = -ENOTTY; /* Bad command */ break; } mx35info("return %d\n", ret); return ret; } /************************************************************************************ * Name: mx35_eccstatusread ************************************************************************************/ static inline void mx35_eccstatusread(struct mx35_dev_s *priv) { SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); SPI_SEND(priv->dev, MX35_GET_FEATURE); SPI_SEND(priv->dev, MX35_STATUS); priv->eccstatus = SPI_SEND(priv->dev, MX35_DUMMY); SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); } /************************************************************************************ * Name: mx35_enableECC ************************************************************************************/ static inline void mx35_enableECC(struct mx35_dev_s *priv) { uint8_t secureOTP = MX35_SOTP_ECC; mx35_lock(priv->dev); mx35_writeenable(priv); SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); SPI_SEND(priv->dev, MX35_SET_FEATURE); SPI_SEND(priv->dev, MX35_SECURE_OTP); SPI_SEND(priv->dev, secureOTP); SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); mx35_writedisable(priv); mx35_unlock(priv->dev); } /************************************************************************************ * Name: mx35_unlockblocks ************************************************************************************/ static inline void mx35_unlockblocks(struct mx35_dev_s *priv) { uint8_t blockprotection = 0x00; mx35_lock(priv->dev); mx35_writeenable(priv); SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); SPI_SEND(priv->dev, MX35_SET_FEATURE); SPI_SEND(priv->dev, MX35_BLOCK_PROTECTION); SPI_SEND(priv->dev, blockprotection); SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); mx35_writedisable(priv); mx35_unlock(priv->dev); } /************************************************************************************ * Public Functions ************************************************************************************/ /************************************************************************************ * Name: mx35_initialize * * Description: * Create an initialize MTD device instance. MTD devices are not registered * in the file system, but are created as instances that can be bound to * other functions (such as a block or character driver front end). * ************************************************************************************/ FAR struct mtd_dev_s *mx35_initialize(FAR struct spi_dev_s *dev) { FAR struct mx35_dev_s *priv; int ret; mx35info("dev: %p\n", dev); /* Allocate a state structure (we allocate the structure instead of using * a fixed, static allocation so that we can handle multiple FLASH devices. * The current implementation would handle only one FLASH part per SPI * device (only because of the SPIDEV_FLASH(0) definition) and so would have * to be extended to handle multiple FLASH parts on the same SPI bus. */ priv = (FAR struct mx35_dev_s *)kmm_zalloc(sizeof(struct mx35_dev_s)); if (priv) { /* Initialize the allocated structure. (unsupported methods were * nullified by kmm_zalloc). */ priv->mtd.erase = mx35_erase; priv->mtd.read = mx35_read; priv->mtd.write = mx35_write; priv->mtd.ioctl = mx35_ioctl; priv->mtd.name = "mx35"; priv->dev = dev; /* Deselect the FLASH */ SPI_SELECT(dev, SPIDEV_FLASH(0), false); /* Reset the flash */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); SPI_SEND(priv->dev, MX35_RESET); SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); /* Wait reset complete */ mx35_waitstatus(priv, MX35_SR_OIP, false); /* Identify the FLASH chip and get its capacity */ ret = mx35_readid(priv); if (ret != OK) { /* Unrecognized! Discard all of that work we just did and return NULL */ mx35err("ERROR: Unrecognized\n"); kmm_free(priv); return NULL; } mx35_enableECC(priv); mx35_unlockblocks(priv); } /* Return the implementation-specific state structure as the MTD device */ mx35info("Return %p\n", priv); return (FAR struct mtd_dev_s *)priv; }