/**************************************************************************** * drivers/wireless/cc1101.c * * Copyright (C) 2011 Uros Platise. All rights reserved. * * Authors: Uros Platise * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name NuttX nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /* Features: * - Maximum data length: 61 bytes CC1101_PACKET_MAXDATALEN * - Packet length includes two additional bytes: CC1101_PACKET_MAXTOTALLEN * - Requires one GDO to trigger end-of-packets in RX and TX modes. * - Variable packet length with data payload between 1..61 bytes * (three bytes are reserved for packet length, and RSSI and LQI * appended at the end of RXFIFO after each reception) * - Support for General Digital Outputs with overload protection * (single XOSC pin is allowed, otherwise error is returned) * - Loadable RF settings, one for ISM Region 1 (Europe) and one for * ISM Region 2 (Complete America) * * Todo: * - Extend max packet length up to 255 bytes or rather infinite < 4096 bytes * - Power up/down modes * - Sequencing between states or add protection for correct termination of * various different state (so that CC1101 does not block in case of improper use) * * RSSI and LQI value interpretation * * The LQI can be read from the LQI status register or it can be appended * to the received packet in the RX FIFO. LQI is a metric of the current * quality of the received signal. The LQI gives an estimate of how easily * a received signal can be demodulated by accumulating the magnitude of * the error between ideal constellations and the received signal over * the 64 symbols immediately following the sync word. LQI is best used * as a relative measurement of the link quality (a high value indicates * a better link than what a low value does), since the value is dependent * on the modulation format. * * To simplify: If the received modulation is FSK or GFSK, the receiver * will measure the frequency of each "bit" and compare it with the * expected frequency based on the channel frequency and the deviation * and the measured frequency offset. If other modulations are used, the * error of the modulated parameter (frequency for FSK/GFSK, phase for * MSK, amplitude for ASK etc) will be measured against the expected * ideal value * * RSSI (Received Signal Strength Indicator) is a signal strength * indication. It does not care about the "quality" or "correctness" of * the signal. LQI does not care about the actual signal strength, but * the signal quality often is linked to signal strength. This is because * a strong signal is likely to be less affected by noise and thus will * be seen as "cleaner" or more "correct" by the receiver. * * There are four to five "extreme cases" that can be used to illustrate * how RSSI and LQI work: * 1. A weak signal in the presence of noise may give low RSSI and low LQI. * 2. A weak signal in "total" absence of noise may give low RSSI and high LQI. * 3. Strong noise (usually coming from an interferer) may give high RSSI and low LQI. * 4. A strong signal without much noise may give high RSSI and high LQI. * 5. A very strong signal that causes the receiver to saturate may give * high RSSI and low LQI. * * Note that both RSSI and LQI are best used as relative measurements since * the values are dependent on the modulation format. */ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include #include #include /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ #define CC1101_SPIFREQ_BURST 6500000 /* Hz, no delay */ #define CC1101_SPIFREQ_SINGLE 9000000 /* Hz, single access only - no delay */ #define CC1101_MCSM0_VALUE 0x1C /**************************************************************************** * Chipcon CC1101 Internal Registers ****************************************************************************/ /* Configuration Registers */ #define CC1101_IOCFG2 0x00 /* GDO2 output pin configuration */ #define CC1101_IOCFG1 0x01 /* GDO1 output pin configuration */ #define CC1101_IOCFG0 0x02 /* GDO0 output pin configuration */ #define CC1101_FIFOTHR 0x03 /* RX FIFO and TX FIFO thresholds */ #define CC1101_SYNC1 0x04 /* Sync word, high byte */ #define CC1101_SYNC0 0x05 /* Sync word, low byte */ #define CC1101_PKTLEN 0x06 /* Packet length */ #define CC1101_PKTCTRL1 0x07 /* Packet automation control */ #define CC1101_PKTCTRL0 0x08 /* Packet automation control */ #define CC1101_ADDR 0x09 /* Device address */ #define CC1101_CHANNR 0x0A /* Channel number */ #define CC1101_FSCTRL1 0x0B /* Frequency synthesizer control */ #define CC1101_FSCTRL0 0x0C /* Frequency synthesizer control */ #define CC1101_FREQ2 0x0D /* Frequency control word, high byte */ #define CC1101_FREQ1 0x0E /* Frequency control word, middle byte */ #define CC1101_FREQ0 0x0F /* Frequency control word, low byte */ #define CC1101_MDMCFG4 0x10 /* Modem configuration */ #define CC1101_MDMCFG3 0x11 /* Modem configuration */ #define CC1101_MDMCFG2 0x12 /* Modem configuration */ #define CC1101_MDMCFG1 0x13 /* Modem configuration */ #define CC1101_MDMCFG0 0x14 /* Modem configuration */ #define CC1101_DEVIATN 0x15 /* Modem deviation setting */ #define CC1101_MCSM2 0x16 /* Main Radio Cntrl State Machine config */ #define CC1101_MCSM1 0x17 /* Main Radio Cntrl State Machine config */ #define CC1101_MCSM0 0x18 /* Main Radio Cntrl State Machine config */ #define CC1101_FOCCFG 0x19 /* Frequency Offset Compensation config */ #define CC1101_BSCFG 0x1A /* Bit Synchronization configuration */ #define CC1101_AGCCTRL2 0x1B /* AGC control */ #define CC1101_AGCCTRL1 0x1C /* AGC control */ #define CC1101_AGCCTRL0 0x1D /* AGC control */ #define CC1101_WOREVT1 0x1E /* High byte Event 0 timeout */ #define CC1101_WOREVT0 0x1F /* Low byte Event 0 timeout */ #define CC1101_WORCTRL 0x20 /* Wake On Radio control */ #define CC1101_FREND1 0x21 /* Front end RX configuration */ #define CC1101_FREND0 0x22 /* Front end TX configuration */ #define CC1101_FSCAL3 0x23 /* Frequency synthesizer calibration */ #define CC1101_FSCAL2 0x24 /* Frequency synthesizer calibration */ #define CC1101_FSCAL1 0x25 /* Frequency synthesizer calibration */ #define CC1101_FSCAL0 0x26 /* Frequency synthesizer calibration */ #define CC1101_RCCTRL1 0x27 /* RC oscillator configuration */ #define CC1101_RCCTRL0 0x28 /* RC oscillator configuration */ #define CC1101_FSTEST 0x29 /* Frequency synthesizer cal control */ #define CC1101_PTEST 0x2A /* Production test */ #define CC1101_AGCTEST 0x2B /* AGC test */ #define CC1101_TEST2 0x2C /* Various test settings */ #define CC1101_TEST1 0x2D /* Various test settings */ #define CC1101_TEST0 0x2E /* Various test settings */ /* Status registers */ #define CC1101_PARTNUM (0x30 | 0xc0) /* Part number */ #define CC1101_VERSION (0x31 | 0xc0) /* Current version number */ #define CC1101_FREQEST (0x32 | 0xc0) /* Frequency offset estimate */ #define CC1101_LQI (0x33 | 0xc0) /* Demodulator estimate for link quality */ #define CC1101_RSSI (0x34 | 0xc0) /* Received signal strength indication */ #define CC1101_MARCSTATE (0x35 | 0xc0) /* Control state machine state */ #define CC1101_WORTIME1 (0x36 | 0xc0) /* High byte of WOR timer */ #define CC1101_WORTIME0 (0x37 | 0xc0) /* Low byte of WOR timer */ #define CC1101_PKTSTATUS (0x38 | 0xc0) /* Current GDOx status and packet status */ #define CC1101_VCO_VC_DAC (0x39 | 0xc0) /* Current setting from PLL cal module */ #define CC1101_TXBYTES (0x3A | 0xc0) /* Underflow and # of bytes in TXFIFO */ #define CC1101_RXBYTES (0x3B | 0xc0) /* Overflow and # of bytes in RXFIFO */ #define CC1101_RCCTRL1_STATUS (0x3C | 0xc0) /* Last RC oscilator calibration results */ #define CC1101_RCCTRL0_STATUS (0x3D | 0xc0) /* Last RC oscilator calibration results */ /* Multi byte memory locations */ #define CC1101_PATABLE 0x3E #define CC1101_TXFIFO 0x3F #define CC1101_RXFIFO 0x3F /* Definitions for burst/single access to registers */ #define CC1101_WRITE_BURST 0x40 #define CC1101_READ_SINGLE 0x80 #define CC1101_READ_BURST 0xC0 /* Strobe commands */ #define CC1101_SRES 0x30 /* Reset chip. */ #define CC1101_SFSTXON 0x31 /* Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1). */ #define CC1101_SXOFF 0x32 /* Turn off crystal oscillator. */ #define CC1101_SCAL 0x33 /* Calibrate frequency synthesizer and turn it off */ #define CC1101_SRX 0x34 /* Enable RX. Perform calibration first if switching from IDLE and MCSM0.FS_AUTOCAL=1. */ #define CC1101_STX 0x35 /* Enable TX. Perform calibration first if IDLE and MCSM0.FS_AUTOCAL=1. */ /* If switching from RX state and CCA is enabled then go directly to TX if channel is clear. */ #define CC1101_SIDLE 0x36 /* Exit RX / TX, turn off frequency synthesizer and exit Wake-On-Radio mode if applicable. */ #define CC1101_SAFC 0x37 /* Perform AFC adjustment of the frequency synthesizer */ #define CC1101_SWOR 0x38 /* Start automatic RX polling sequence (Wake-on-Radio) */ #define CC1101_SPWD 0x39 /* Enter power down mode when CSn goes high. */ #define CC1101_SFRX 0x3A /* Flush the RX FIFO buffer. */ #define CC1101_SFTX 0x3B /* Flush the TX FIFO buffer. */ #define CC1101_SWORRST 0x3C /* Reset real time clock. */ #define CC1101_SNOP 0x3D /* No operation. */ /* Modem Control */ #define CC1101_MCSM0_XOSC_FORCE_ON 0x01 /* Chip Status Byte */ /* Bit fields in the chip status byte */ #define CC1101_STATUS_CHIP_RDYn_BM 0x80 #define CC1101_STATUS_STATE_BM 0x70 #define CC1101_STATUS_FIFO_BYTES_AVAILABLE_BM 0x0F /* Chip states */ #define CC1101_STATE_MASK 0x70 #define CC1101_STATE_IDLE 0x00 #define CC1101_STATE_RX 0x10 #define CC1101_STATE_TX 0x20 #define CC1101_STATE_FSTXON 0x30 #define CC1101_STATE_CALIBRATE 0x40 #define CC1101_STATE_SETTLING 0x50 #define CC1101_STATE_RX_OVERFLOW 0x60 #define CC1101_STATE_TX_UNDERFLOW 0x70 /* Values of the MACRSTATE register */ #define CC1101_MARCSTATE_SLEEP 0x00 #define CC1101_MARCSTATE_IDLE 0x01 #define CC1101_MARCSTATE_XOFF 0x02 #define CC1101_MARCSTATE_VCOON_MC 0x03 #define CC1101_MARCSTATE_REGON_MC 0x04 #define CC1101_MARCSTATE_MANCAL 0x05 #define CC1101_MARCSTATE_VCOON 0x06 #define CC1101_MARCSTATE_REGON 0x07 #define CC1101_MARCSTATE_STARTCAL 0x08 #define CC1101_MARCSTATE_BWBOOST 0x09 #define CC1101_MARCSTATE_FS_LOCK 0x0A #define CC1101_MARCSTATE_IFADCON 0x0B #define CC1101_MARCSTATE_ENDCAL 0x0C #define CC1101_MARCSTATE_RX 0x0D #define CC1101_MARCSTATE_RX_END 0x0E #define CC1101_MARCSTATE_RX_RST 0x0F #define CC1101_MARCSTATE_TXRX_SWITCH 0x10 #define CC1101_MARCSTATE_RXFIFO_OVERFLOW 0x11 #define CC1101_MARCSTATE_FSTXON 0x12 #define CC1101_MARCSTATE_TX 0x13 #define CC1101_MARCSTATE_TX_END 0x14 #define CC1101_MARCSTATE_RXTX_SWITCH 0x15 #define CC1101_MARCSTATE_TXFIFO_UNDERFLOW 0x16 /* Part number and version */ #define CC1101_PARTNUM_VALUE 0x00 #define CC1101_VERSION_VALUE 0x04 /* Others ... */ #define CC1101_LQI_CRC_OK_BM 0x80 #define CC1101_LQI_EST_BM 0x7F /**************************************************************************** * Private Data Types ****************************************************************************/ #define FLAGS_RXONLY 1 /* Indicates receive operation only */ #define FLAGS_XOSCENABLED 2 /* Indicates that one pin is configured as XOSC/n */ struct cc1101_dev_s { const struct c1101_rfsettings_s *rfsettings; struct spi_dev_s *spi; uint8_t isrpin; /* CC1101 pin used to trigger interrupts */ uint32_t pinset; /* GPIO of the MCU */ uint8_t flags; uint8_t channel; uint8_t power; }; /**************************************************************************** * Private Data ****************************************************************************/ static volatile int cc1101_interrupt = 0; /**************************************************************************** * Private Functions ****************************************************************************/ void cc1101_access_begin(FAR struct cc1101_dev_s *dev) { (void)SPI_LOCK(dev->spi, true); SPI_SELECT(dev->spi, SPIDEV_WIRELESS, true); SPI_SETMODE(dev->spi, SPIDEV_MODE0); /* CPOL=0, CPHA=0 */ SPI_SETBITS(dev->spi, 8); (void)SPI_HWFEATURES(dev->spi, 0); } void cc1101_access_end(FAR struct cc1101_dev_s *dev) { SPI_SELECT(dev->spi, SPIDEV_WIRELESS, false); (void)SPI_LOCK(dev->spi, false); } /* CC1101 Access with Range Check * * Input Paramters: * dev CC1101 Private Structure * addr CC1101 Address * buf Pointer to buffer, either for read or write access * length when >0 it denotes read access, when <0 it denotes write * access of -length. abs(length) greater of 1 implies burst mode, * however * * Returned Value: * OK on success or errno is set. */ int cc1101_access(FAR struct cc1101_dev_s *dev, uint8_t addr, FAR uint8_t *buf, int length) { int stabyte; /* Address cannot explicitly define READ command while length WRITE. * Also access to these cells is only permitted as one byte, eventhough * transfer is marked as BURST! */ if ((addr & CC1101_READ_SINGLE) && length != 1) { return ERROR; } /* Prepare SPI */ cc1101_access_begin(dev); if (length > 1 || length < -1) { SPI_SETFREQUENCY(dev->spi, CC1101_SPIFREQ_BURST); } else { SPI_SETFREQUENCY(dev->spi, CC1101_SPIFREQ_SINGLE); } /* Transfer */ if (length <= 0) { /* 0 length are command strobes */ if (length < -1) { addr |= CC1101_WRITE_BURST; } stabyte = SPI_SEND(dev->spi, addr); if (length) { SPI_SNDBLOCK(dev->spi, buf, -length); } } else { addr |= CC1101_READ_SINGLE; if (length > 1) { addr |= CC1101_READ_BURST; } stabyte = SPI_SEND(dev->spi, addr); SPI_RECVBLOCK(dev->spi, buf, length); } cc1101_access_end(dev); return stabyte; } /* Strobes command and returns chip status byte * * By default commands are send as Write. To a command, * CC1101_READ_SINGLE may be OR'ed to obtain the number of RX bytes * pending in RX FIFO. */ inline uint8_t cc1101_strobe(struct cc1101_dev_s *dev, uint8_t command) { uint8_t status; cc1101_access_begin(dev); SPI_SETFREQUENCY(dev->spi, CC1101_SPIFREQ_SINGLE); status = SPI_SEND(dev->spi, command); cc1101_access_end(dev); return status; } int cc1101_reset(struct cc1101_dev_s *dev) { cc1101_strobe(dev, CC1101_SRES); return OK; } int cc1101_checkpart(struct cc1101_dev_s *dev) { uint8_t partnum; uint8_t version; if (cc1101_access(dev, CC1101_PARTNUM, &partnum, 1) < 0 || cc1101_access(dev, CC1101_VERSION, &version, 1) < 0) { return ERROR; } if (partnum == CC1101_PARTNUM_VALUE && version == CC1101_VERSION_VALUE) { return OK; } return ERROR; } void cc1101_dumpregs(struct cc1101_dev_s *dev, uint8_t addr, uint8_t length) { uint8_t buf[0x30], i; cc1101_access(dev, addr, (FAR uint8_t *)buf, length); /* REVISIT: printf() should not be used from within the OS */ printf("CC1101[%2x]: ", addr); for (i = 0; i < length; i++) { printf(" %2x,", buf[i]); } printf("\n"); } void cc1101_setpacketctrl(struct cc1101_dev_s *dev) { uint8_t values[3]; values[0] = 0; /* Rx FIFO threshold = 32, Tx FIFO threshold = 33 */ cc1101_access(dev, CC1101_FIFOTHR, values, -1); /* Packet length * Limit it to 61 bytes in total: pktlen, data[61], rssi, lqi */ values[0] = CC1101_PACKET_MAXDATALEN; cc1101_access(dev, CC1101_PKTLEN, values, -1); /* Packet Control */ values[0] = 0x04; /* Append status: RSSI and LQI at the end of received packet */ /* TODO: CRC Auto Flash bit 0x08 ??? */ values[1] = 0x05; /* CRC in Rx and Tx Enabled: Variable Packet mode, defined by first byte */ /* TODO: Enable data whitening ... */ cc1101_access(dev, CC1101_PKTCTRL1, values, -2); /* Main Radio Control State Machine */ values[0] = 0x07; /* No time-out */ values[1] = 0x00; /* Clear channel if RSSI < thr && !receiving; * TX -> RX, RX -> RX: 0x3F */ values[2] = CC1101_MCSM0_VALUE; /* Calibrate on IDLE -> RX/TX, OSC Timeout = ~500 us * TODO: has XOSC_FORCE_ON */ cc1101_access(dev, CC1101_MCSM2, values, -3); /* Wake-On Radio Control */ /* Not used yet. */ /* WOREVT1:WOREVT0 - 16-bit timeout register */ } /**************************************************************************** * Callbacks ****************************************************************************/ /* External line triggers this callback * * The concept todo is: * - GPIO provides EXTI Interrupt * - It should handle EXTI Interrupts in ISR, to which chipcon can * register a callback (and others). The ISR then foreach() calls a * its callback, and it is up to peripheral to find, whether the cause * of EXTI ISR was itself. **/ int cc1101_eventcb(int irq, FAR void *context) { cc1101_interrupt++; return OK; } /**************************************************************************** * Public Functions ****************************************************************************/ struct cc1101_dev_s *cc1101_init(struct spi_dev_s *spi, uint8_t isrpin, uint32_t pinset, const struct c1101_rfsettings_s *rfsettings) { struct cc1101_dev_s *dev; ASSERT(spi); if ((dev = kmm_malloc(sizeof(struct cc1101_dev_s))) == NULL) { errno = ENOMEM; return NULL; } dev->rfsettings = rfsettings; dev->spi = spi; dev->isrpin = isrpin; dev->pinset = pinset; dev->flags = 0; dev->channel = rfsettings->CHMIN; dev->power = rfsettings->PAMAX; /* Reset chip, check status bytes */ if (cc1101_reset(dev) < 0) { kmm_free(dev); errno = EFAULT; return NULL; } /* Check part compatibility */ if (cc1101_checkpart(dev) < 0) { kmm_free(dev); errno = ENODEV; return NULL; } /* Configure CC1101: * - disable GDOx for best performance * - load RF * - and packet control */ cc1101_setgdo(dev, CC1101_PIN_GDO0, CC1101_GDO_HIZ); cc1101_setgdo(dev, CC1101_PIN_GDO1, CC1101_GDO_HIZ); cc1101_setgdo(dev, CC1101_PIN_GDO2, CC1101_GDO_HIZ); cc1101_setrf(dev, rfsettings); cc1101_setpacketctrl(dev); /* Set the ISR to be triggerred on falling edge of the: * * 6 (0x06) Asserts when sync word has been sent / received, and * de-asserts at the end of the packet. In RX, the pin will de-assert * when the optional address check fails or the RX FIFO overflows. * In TX the pin will de-assert if the TX FIFO underflows. */ cc1101_setgdo(dev, dev->isrpin, CC1101_GDO_SYNC); /* Configure to receive interrupts on the external GPIO interrupt line. * * REVISIT: There is no MCU-independent way to do this in this * context. */ return dev; } int cc1101_deinit(struct cc1101_dev_s *dev) { ASSERT(dev); /* Release the external GPIO interrupt * * REVISIT: There is no MCU-independent way to do this in this * context. */ /* Power down chip */ cc1101_powerdown(dev); /* Release external interrupt line */ kmm_free(dev); return 0; } int cc1101_powerup(struct cc1101_dev_s *dev) { ASSERT(dev); return 0; } int cc1101_powerdown(struct cc1101_dev_s *dev) { ASSERT(dev); return 0; } int cc1101_setgdo(struct cc1101_dev_s *dev, uint8_t pin, uint8_t function) { ASSERT(dev); ASSERT(pin <= CC1101_IOCFG0); if (function >= CC1101_GDO_CLK_XOSC1) { /* Only one pin can be enabled at a time as XOSC/n */ if (dev->flags & FLAGS_XOSCENABLED) { return -EPERM; } /* Force XOSC to stay active even in sleep mode */ int value = CC1101_MCSM0_VALUE | CC1101_MCSM0_XOSC_FORCE_ON; cc1101_access(dev, CC1101_MCSM0, (FAR uint8_t *)&value, -1); dev->flags |= FLAGS_XOSCENABLED; } else if (dev->flags & FLAGS_XOSCENABLED) { /* Disable XOSC in sleep mode */ int value = CC1101_MCSM0_VALUE; cc1101_access(dev, CC1101_MCSM0, (FAR uint8_t *)&value, -1); dev->flags &= ~FLAGS_XOSCENABLED; } return cc1101_access(dev, pin, &function, -1); } int cc1101_setrf(struct cc1101_dev_s *dev, const struct c1101_rfsettings_s *settings) { ASSERT(dev); ASSERT(settings); if (cc1101_access(dev, CC1101_FSCTRL1, (FAR uint8_t *)&settings->FSCTRL1, -11) < 0) { return ERROR; } if (cc1101_access(dev, CC1101_FOCCFG, (FAR uint8_t *)&settings->FOCCFG, -5) < 0) { return ERROR; } if (cc1101_access(dev, CC1101_FREND1, (FAR uint8_t *)&settings->FREND1, -6) < 0) { return ERROR; } /* Load Power Table */ if (cc1101_access(dev, CC1101_PATABLE, (FAR uint8_t *)settings->PA, -8) < 0) { return ERROR; } /* If channel is out of valid range, mark that. Limit power. * We are not allowed to send any data, but are allowed to listen * and receive. */ cc1101_setchannel(dev, dev->channel); cc1101_setpower(dev, dev->power); return OK; } int cc1101_setchannel(struct cc1101_dev_s *dev, uint8_t channel) { ASSERT(dev); /* Store localy in further checks */ dev->channel = channel; /* If channel is out of valid, we are allowed to listen and receive only */ if (channel < dev->rfsettings->CHMIN || channel > dev->rfsettings->CHMAX) { dev->flags |= FLAGS_RXONLY; } else { dev->flags &= ~FLAGS_RXONLY; } cc1101_access(dev, CC1101_CHANNR, &dev->channel, -1); return dev->flags & FLAGS_RXONLY; } uint8_t cc1101_setpower(struct cc1101_dev_s *dev, uint8_t power) { ASSERT(dev); if (power > dev->rfsettings->PAMAX) { power = dev->rfsettings->PAMAX; } dev->power = power; if (power == 0) { dev->flags |= FLAGS_RXONLY; return 0; } else { dev->flags &= ~FLAGS_RXONLY; } /* Add remaining part from RF table (to get rid of readback) */ power--; power |= dev->rfsettings->FREND0; /* On error, report that as zero power */ if (cc1101_access(dev, CC1101_FREND0, &power, -1) < 0) { dev->power = 0; } return dev->power; } int cc1101_calcRSSIdBm(int rssi) { if (rssi >= 128) { rssi -= 256; } return (rssi >> 1) - 74; } int cc1101_receive(struct cc1101_dev_s *dev) { ASSERT(dev); /* \todo Wait for IDLE before going into another state? */ cc1101_interrupt = 0; cc1101_strobe(dev, CC1101_SRX | CC1101_READ_SINGLE); return 0; } int cc1101_read(struct cc1101_dev_s *dev, uint8_t * buf, size_t size) { ASSERT(dev); if (buf == NULL) { if (size == 0) { return 64; } /* else received packet size */ return 0; } if (cc1101_interrupt == 0) { return 0; } int status = cc1101_strobe(dev, CC1101_SNOP | CC1101_READ_SINGLE); if (status & CC1101_STATUS_FIFO_BYTES_AVAILABLE_BM && (status & CC1101_STATE_MASK) == CC1101_STATE_IDLE) { uint8_t nbytes; cc1101_access(dev, CC1101_RXFIFO, &nbytes, 1); nbytes += 2; /* RSSI and LQI */ cc1101_access(dev, CC1101_RXFIFO, buf, (nbytes > size) ? size : nbytes); /* Flush remaining bytes, if there is no room to receive * or if there is a BAD CRC */ if (nbytes > size || (nbytes <= size && !(buf[nbytes-1]&0x80))) { ninfo("Flushing RX FIFO\n"); cc1101_strobe(dev, CC1101_SFRX); } return nbytes; } return 0; } int cc1101_write(struct cc1101_dev_s *dev, const uint8_t *buf, size_t size) { uint8_t packetlen; ASSERT(dev); ASSERT(buf); if (dev->flags & FLAGS_RXONLY) { return -EPERM; } /* Present limit */ if (size > CC1101_PACKET_MAXDATALEN) { packetlen = CC1101_PACKET_MAXDATALEN; } else { packetlen = size; } cc1101_access(dev, CC1101_TXFIFO, &packetlen, -1); cc1101_access(dev, CC1101_TXFIFO, (FAR uint8_t *)buf, -size); return 0; } int cc1101_send(struct cc1101_dev_s *dev) { ASSERT(dev); if (dev->flags & FLAGS_RXONLY) { return -EPERM; } cc1101_interrupt = 0; cc1101_strobe(dev, CC1101_STX); /* wait until send, going to IDLE */ while (cc1101_interrupt == 0); return 0; } int cc1101_idle(struct cc1101_dev_s *dev) { ASSERT(dev); cc1101_strobe(dev, CC1101_SIDLE); return 0; }