/**************************************************************************** * binfmt/libelf/libelf_bind.c * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include "libelf.h" /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ /* CONFIG_DEBUG_FEATURES, CONFIG_DEBUG_INFO, and CONFIG_DEBUG_BINFMT have to * be defined or CONFIG_ELF_DUMPBUFFER does nothing. */ #if !defined(CONFIG_DEBUG_INFO) || !defined (CONFIG_DEBUG_BINFMT) # undef CONFIG_ELF_DUMPBUFFER #endif #ifdef CONFIG_ELF_DUMPBUFFER # define elf_dumpbuffer(m,b,n) binfodumpbuffer(m,b,n) #else # define elf_dumpbuffer(m,b,n) #endif #ifdef ARCH_ELFDATA # define ARCH_ELFDATA_DEF arch_elfdata_t arch_data; \ memset(&arch_data, 0, sizeof(arch_elfdata_t)) # define ARCH_ELFDATA_PARM &arch_data #else # define ARCH_ELFDATA_DEF # define ARCH_ELFDATA_PARM NULL #endif /**************************************************************************** * Private Types ****************************************************************************/ struct elf_symcache_s { dq_entry_t entry; Elf_Sym sym; int idx; }; typedef struct elf_symcache_s elf_symcache_t; /**************************************************************************** * Private Data ****************************************************************************/ /**************************************************************************** * Private Functions ****************************************************************************/ /**************************************************************************** * Name: elf_readrels * * Description: * Read the (ELF_Rel structure * buffer count) into memory. * ****************************************************************************/ static inline int elf_readrels(FAR struct elf_loadinfo_s *loadinfo, FAR const Elf_Shdr *relsec, int index, FAR Elf_Rel *rels, int count) { off_t offset; int size; /* Verify that the symbol table index lies within symbol table */ if (index < 0 || index > (relsec->sh_size / sizeof(Elf_Rel))) { berr("Bad relocation symbol index: %d\n", index); return -EINVAL; } /* Get the file offset to the symbol table entry */ offset = sizeof(Elf_Rel) * index; size = sizeof(Elf_Rel) * count; if (offset + size > relsec->sh_size) { size = relsec->sh_size - offset; } /* And, finally, read the symbol table entry into memory */ return elf_read(loadinfo, (FAR uint8_t *)rels, size, relsec->sh_offset + offset); } /**************************************************************************** * Name: elf_readrelas * * Description: * Read the (ELF_Rela structure * buffer count) into memory. * ****************************************************************************/ static inline int elf_readrelas(FAR struct elf_loadinfo_s *loadinfo, FAR const Elf_Shdr *relsec, int index, FAR Elf_Rela *relas, int count) { off_t offset; int size; /* Verify that the symbol table index lies within symbol table */ if (index < 0 || index > (relsec->sh_size / sizeof(Elf_Rela))) { berr("Bad relocation symbol index: %d\n", index); return -EINVAL; } /* Get the file offset to the symbol table entry */ offset = sizeof(Elf_Rela) * index; size = sizeof(Elf_Rela) * count; if (offset + size > relsec->sh_size) { size = relsec->sh_size - offset; } /* And, finally, read the symbol table entry into memory */ return elf_read(loadinfo, (FAR uint8_t *)relas, size, relsec->sh_offset + offset); } /**************************************************************************** * Name: elf_relocate and elf_relocateadd * * Description: * Perform all relocations associated with a section. * * Returned Value: * 0 (OK) is returned on success and a negated errno is returned on * failure. * ****************************************************************************/ static int elf_relocate(FAR struct elf_loadinfo_s *loadinfo, int relidx, FAR const struct symtab_s *exports, int nexports) { FAR Elf_Shdr *relsec = &loadinfo->shdr[relidx]; FAR Elf_Shdr *dstsec = &loadinfo->shdr[relsec->sh_info]; FAR Elf_Rel *rels; FAR Elf_Rel *rel; FAR elf_symcache_t *cache; FAR Elf_Sym *sym; FAR dq_entry_t *e; dq_queue_t q; uintptr_t addr; int symidx; int ret; int i; int j; /* Define potential architecture specific elf data container */ ARCH_ELFDATA_DEF; rels = kmm_malloc(CONFIG_ELF_RELOCATION_BUFFERCOUNT * sizeof(Elf_Rel)); if (rels == NULL) { berr("Failed to allocate memory for elf relocation\n"); return -ENOMEM; } dq_init(&q); /* Examine each relocation in the section. 'relsec' is the section * containing the relations. 'dstsec' is the section containing the data * to be relocated. */ ret = OK; for (i = j = 0; i < relsec->sh_size / sizeof(Elf_Rel); i++) { /* Read the relocation entry into memory */ rel = &rels[i % CONFIG_ELF_RELOCATION_BUFFERCOUNT]; if (!(i % CONFIG_ELF_RELOCATION_BUFFERCOUNT)) { ret = elf_readrels(loadinfo, relsec, i, rels, CONFIG_ELF_RELOCATION_BUFFERCOUNT); if (ret < 0) { berr("Section %d reloc %d: " "Failed to read relocation entry: %d\n", relidx, i, ret); break; } } /* Get the symbol table index for the relocation. This is contained * in a bit-field within the r_info element. */ symidx = ELF_R_SYM(rel->r_info); /* First try the cache */ sym = NULL; for (e = dq_peek(&q); e; e = dq_next(e)) { cache = (FAR elf_symcache_t *)e; if (cache->idx == symidx) { dq_rem(&cache->entry, &q); dq_addfirst(&cache->entry, &q); sym = &cache->sym; break; } } /* If the symbol was not found in the cache, we will need to read the * symbol from the file. */ if (sym == NULL) { if (j < CONFIG_ELF_SYMBOL_CACHECOUNT) { cache = kmm_malloc(sizeof(elf_symcache_t)); if (!cache) { berr("Failed to allocate memory for elf symbols\n"); ret = -ENOMEM; break; } j++; } else { cache = (FAR elf_symcache_t *)dq_remlast(&q); } sym = &cache->sym; /* Read the symbol table entry into memory */ ret = elf_readsym(loadinfo, symidx, sym); if (ret < 0) { berr("Section %d reloc %d: Failed to read symbol[%d]: %d\n", relidx, i, symidx, ret); kmm_free(cache); break; } /* Get the value of the symbol (in sym.st_value) */ ret = elf_symvalue(loadinfo, sym, exports, nexports); if (ret < 0) { /* The special error -ESRCH is returned only in one condition: * The symbol has no name. * * There are a few relocations for a few architectures that do * no depend upon a named symbol. We don't know if that is the * case here, but we will use a NULL symbol pointer to indicate * that case to up_relocate(). That function can then do what * is best. */ if (ret == -ESRCH) { berr("Section %d reloc %d: " "Undefined symbol[%d] has no name: %d\n", relidx, i, symidx, ret); } else { berr("Section %d reloc %d: " "Failed to get value of symbol[%d]: %d\n", relidx, i, symidx, ret); kmm_free(cache); break; } } cache->idx = symidx; dq_addfirst(&cache->entry, &q); } if (sym->st_shndx == SHN_UNDEF && sym->st_name == 0) { sym = NULL; } /* Calculate the relocation address. */ if (rel->r_offset < 0 || rel->r_offset > dstsec->sh_size - sizeof(uint32_t)) { berr("Section %d reloc %d: Relocation address out of range, " "offset %" PRIdPTR " size %jd\n", relidx, i, (uintptr_t)rel->r_offset, (uintmax_t)dstsec->sh_size); ret = -EINVAL; break; } addr = dstsec->sh_addr + rel->r_offset; /* Now perform the architecture-specific relocation */ ret = up_relocate(rel, sym, addr, ARCH_ELFDATA_PARM); if (ret < 0) { berr("ERROR: Section %d reloc %d: Relocation failed: %d\n", relidx, i, ret); break; } } kmm_free(rels); while ((e = dq_peek(&q))) { dq_rem(e, &q); kmm_free(e); } return ret; } static int elf_relocateadd(FAR struct elf_loadinfo_s *loadinfo, int relidx, FAR const struct symtab_s *exports, int nexports) { FAR Elf_Shdr *relsec = &loadinfo->shdr[relidx]; FAR Elf_Shdr *dstsec = &loadinfo->shdr[relsec->sh_info]; FAR Elf_Rela *relas; FAR Elf_Rela *rela; FAR elf_symcache_t *cache; FAR Elf_Sym *sym; FAR dq_entry_t *e; dq_queue_t q; uintptr_t addr; int symidx; int ret; int i; int j; /* Define potential architecture specific elf data container */ ARCH_ELFDATA_DEF; relas = kmm_malloc(CONFIG_ELF_RELOCATION_BUFFERCOUNT * sizeof(Elf_Rela)); if (relas == NULL) { berr("Failed to allocate memory for elf relocation\n"); return -ENOMEM; } dq_init(&q); /* Examine each relocation in the section. 'relsec' is the section * containing the relations. 'dstsec' is the section containing the data * to be relocated. */ ret = OK; for (i = j = 0; i < relsec->sh_size / sizeof(Elf_Rela); i++) { /* Read the relocation entry into memory */ rela = &relas[i % CONFIG_ELF_RELOCATION_BUFFERCOUNT]; if (!(i % CONFIG_ELF_RELOCATION_BUFFERCOUNT)) { ret = elf_readrelas(loadinfo, relsec, i, relas, CONFIG_ELF_RELOCATION_BUFFERCOUNT); if (ret < 0) { berr("Section %d reloc %d: " "Failed to read relocation entry: %d\n", relidx, i, ret); break; } } /* Get the symbol table index for the relocation. This is contained * in a bit-field within the r_info element. */ symidx = ELF_R_SYM(rela->r_info); /* First try the cache */ sym = NULL; for (e = dq_peek(&q); e; e = dq_next(e)) { cache = (FAR elf_symcache_t *)e; if (cache->idx == symidx) { dq_rem(&cache->entry, &q); dq_addfirst(&cache->entry, &q); sym = &cache->sym; break; } } /* If the symbol was not found in the cache, we will need to read the * symbol from the file. */ if (sym == NULL) { if (j < CONFIG_ELF_SYMBOL_CACHECOUNT) { cache = kmm_malloc(sizeof(elf_symcache_t)); if (!cache) { berr("Failed to allocate memory for elf symbols\n"); ret = -ENOMEM; break; } j++; } else { cache = (FAR elf_symcache_t *)dq_remlast(&q); } sym = &cache->sym; /* Read the symbol table entry into memory */ ret = elf_readsym(loadinfo, symidx, sym); if (ret < 0) { berr("Section %d reloc %d: Failed to read symbol[%d]: %d\n", relidx, i, symidx, ret); kmm_free(cache); break; } /* Get the value of the symbol (in sym.st_value) */ ret = elf_symvalue(loadinfo, sym, exports, nexports); if (ret < 0) { /* The special error -ESRCH is returned only in one condition: * The symbol has no name. * * There are a few relocations for a few architectures that do * no depend upon a named symbol. We don't know if that is the * case here, but we will use a NULL symbol pointer to indicate * that case to up_relocate(). That function can then do what * is best. */ if (ret == -ESRCH) { bwarn("Section %d reloc %d: " "Undefined symbol[%d] has no name: %d\n", relidx, i, symidx, ret); } else { berr("Section %d reloc %d: " "Failed to get value of symbol[%d]: %d\n", relidx, i, symidx, ret); kmm_free(cache); break; } } cache->idx = symidx; dq_addfirst(&cache->entry, &q); } if (sym->st_shndx == SHN_UNDEF && sym->st_name == 0) { sym = NULL; } /* Calculate the relocation address. */ if (rela->r_offset < 0 || rela->r_offset > dstsec->sh_size) { berr("Section %d reloc %d: Relocation address out of range, " "offset %" PRIdPTR " size %jd\n", relidx, i, (uintptr_t)rela->r_offset, (uintmax_t)dstsec->sh_size); ret = -EINVAL; break; } addr = dstsec->sh_addr + rela->r_offset; /* Now perform the architecture-specific relocation */ ret = up_relocateadd(rela, sym, addr, ARCH_ELFDATA_PARM); if (ret < 0) { berr("ERROR: Section %d reloc %d: Relocation failed: %d\n", relidx, i, ret); break; } } kmm_free(relas); while ((e = dq_peek(&q))) { dq_rem(e, &q); kmm_free(e); } return ret; } /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Name: elf_bind * * Description: * Bind the imported symbol names in the loaded module described by * 'loadinfo' using the exported symbol values provided by 'symtab'. * * Returned Value: * 0 (OK) is returned on success and a negated errno is returned on * failure. * ****************************************************************************/ int elf_bind(FAR struct elf_loadinfo_s *loadinfo, FAR const struct symtab_s *exports, int nexports) { #ifdef CONFIG_ARCH_ADDRENV int status; #endif int ret; int i; /* Find the symbol and string tables */ ret = elf_findsymtab(loadinfo); if (ret < 0) { return ret; } #ifdef CONFIG_ARCH_ADDRENV /* If CONFIG_ARCH_ADDRENV=y, then the loaded ELF lies in a virtual address * space that may not be in place now. elf_addrenv_select() will * temporarily instantiate that address space. */ ret = elf_addrenv_select(loadinfo); if (ret < 0) { berr("ERROR: elf_addrenv_select() failed: %d\n", ret); return ret; } #endif /* Process relocations in every allocated section */ for (i = 1; i < loadinfo->ehdr.e_shnum; i++) { /* Get the index to the relocation section */ int infosec = loadinfo->shdr[i].sh_info; if (infosec >= loadinfo->ehdr.e_shnum) { continue; } /* Make sure that the section is allocated. We can't relocated * sections that were not loaded into memory. */ if ((loadinfo->shdr[infosec].sh_flags & SHF_ALLOC) == 0) { continue; } /* Process the relocations by type */ if (loadinfo->shdr[i].sh_type == SHT_REL) { ret = elf_relocate(loadinfo, i, exports, nexports); } else if (loadinfo->shdr[i].sh_type == SHT_RELA) { ret = elf_relocateadd(loadinfo, i, exports, nexports); } if (ret < 0) { break; } } #if defined(CONFIG_ARCH_ADDRENV) /* Ensure that the I and D caches are coherent before starting the newly * loaded module by cleaning the D cache (i.e., flushing the D cache * contents to memory and invalidating the I cache). */ #if 0 /* REVISIT... has some problems */ up_addrenv_coherent(&loadinfo->addrenv.addrenv); #else up_coherent_dcache(loadinfo->textalloc, loadinfo->textsize); up_coherent_dcache(loadinfo->dataalloc, loadinfo->datasize); #endif /* Restore the original address environment */ status = elf_addrenv_restore(loadinfo); if (status < 0) { berr("ERROR: elf_addrenv_restore() failed: %d\n", status); if (ret == OK) { ret = status; } } #else /* Ensure that the I and D caches are coherent before starting the newly * loaded module by cleaning the D cache (i.e., flushing the D cache * contents to memory and invalidating the I cache). */ up_coherent_dcache(loadinfo->textalloc, loadinfo->textsize); up_coherent_dcache(loadinfo->dataalloc, loadinfo->datasize); #endif return ret; }