/**************************************************************************** * drivers/mmcsd/mmcsd_spi.c * * Copyright (C) 2008 Gregory Nutt. All rights reserved. * Author: Gregory Nutt * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name NuttX nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include "mmcsd_spi.h" #include "mmcsd_csd.h" #include "mmcsd_internal.h" /**************************************************************************** * Pre-Processor Definitions ****************************************************************************/ /* Configuration ************************************************************/ #ifndef CONFIG_MMCSD_NSLOTS # warning "CONFIG_MMCSD_NSLOTS not defined" # define CONFIG_MMCSD_NSLOTS 1 #endif #define MMCSD_IDMODE_CLOCK (400000) #if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY) # define MMCSD_MODE 0666 #else # define MMCSD_MODE 0444 #endif /* Slot struct info *********************************************************/ /* Slot status definitions */ #define MMCSD_SLOTSTATUS_NOTREADY 0x01 /* Card not initialized */ #define MMCSD_SLOTSTATUS_NODISK 0x02 /* No card in the slot */ #define MMCSD_SLOTSTATUS_WRPROTECT 0x04 /* Card is write protected */ #define MMCSD_SLOTSTATUS_MEDIACHGD 0x08 /* Media changed in slot */ /* Values in the MMC/SD command table ***************************************/ /* These define the expected arguments of the MMC/SD command */ #define MMCSD_CMDARG_NONE 0 #define MMCSD_CMDARG_BLKLEN 1 #define MMCSD_CMDARG_ADDRESS 2 #define MMCSD_CMDARG_DUMMY 3 /* These define the value returned by the MMC/SD command */ #define MMCSD_CMDRESP_R1 0 #define MMCSD_CMDRESP_R1B 1 #define MMCSD_CMDRESP_R2 2 #define MMCSD_CMDRESP_R3 3 /* Fudge factor for SD read timeout: ~100msec, Write Time out ~250ms. Units * of Hz. */ #define SD_READACCESSHZ 7 #define SD_WRITEACCESSHZ 3 /**************************************************************************** * Private Types ****************************************************************************/ /* This structure represents the state of one card slot */ struct mmcsd_slot_s { FAR struct spi_dev_s *spi; /* SPI port bound to this slot */ sem_t sem; /* Assures mutually exclusive accesss to card and SPI */ ubyte state; /* State of the slot (see MMCSD_SLOTSTATUS_* definitions) */ ubyte type; /* Disk type */ ubyte csd[16]; /* Copy of card CSD */ uint16 sectorsize; /* Media block size (in bytes) */ uint32 nsectors; /* Number of blocks on the media */ uint32 taccess; /* Card access time */ uint32 twrite; /* Card write time */ }; struct mmcsd_cmdinfo_s { ubyte cmd; ubyte arg; ubyte resp; }; /**************************************************************************** * Private Function Prototypes ****************************************************************************/ /* Misc *********************************************************************/ static void mmcsd_semtake(sem_t *sem); /* Card SPI interface *******************************************************/ static int mmcsd_waitready(FAR struct mmcsd_slot_s *slot); static uint32 mmcsd_sendcmd(FAR struct mmcsd_slot_s *slot, const struct mmcsd_cmdinfo_s *cmd, uint32 arg); static void mmcsd_setblklen(FAR struct mmcsd_slot_s *slot, uint32 length); static void mmcsd_decodecsd(FAR struct mmcsd_slot_s *slot, ubyte *csd); static void mmcsd_checkwrprotect(FAR struct mmcsd_slot_s *slot, ubyte *csd); static int mmcsd_getcardinfo(FAR struct mmcsd_slot_s *slot, ubyte *buffer, const struct mmcsd_cmdinfo_s *cmd); #define mmcsd_getcsd(slot, csd) mmcsd_getcardinfo(slot, csd, &g_cmd9); #define mmcsd_getcid(slot, cid) mmcsd_getcardinfo(slot, cid, &g_cmd10); /* Block driver interfaces **************************************************/ static int mmcsd_open(FAR struct inode *inode); static int mmcsd_close(FAR struct inode *inode); static ssize_t mmcsd_read(FAR struct inode *inode, unsigned char *buffer, size_t start_sector, unsigned int nsectors); #if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY) static ssize_t mmcsd_write(FAR struct inode *inode, const unsigned char *buffer, size_t start_sector, unsigned int nsectors); #endif static int mmcsd_geometry(FAR struct inode *inode, struct geometry *geometry); /* Initialization ***********************************************************/ static int mmcsd_mediainitialize(FAR struct mmcsd_slot_s *slot); static void mmcsd_mediachanged(void *arg); /**************************************************************************** * Private Data ****************************************************************************/ /* Driver state *************************************************************/ /* These are the lock driver methods supported by this file */ static const struct block_operations g_bops = { mmcsd_open, /* open */ mmcsd_close, /* close */ mmcsd_read, /* read */ #if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY) mmcsd_write, /* write */ #else NULL, /* write */ #endif mmcsd_geometry, /* geometry */ NULL /* ioctl */ }; /* A slot structure allocated for each configured slot */ static struct mmcsd_slot_s g_mmcsdslot[CONFIG_MMCSD_NSLOTS]; /* Timing *******************************************************************/ /* We will use the TRAN_SPEED from the CSD to determine the maximum SPI * clocking (TRAN_SPEED defines the maximum transfer rate per bit per data * line). * * The CSD TRAN_SPEED is provided as a 3 bit rate unit (RU) and a 4 bit time * value (TU). We need the transfer frequency which is: RU*TU bits/sec * * g_transpeedru holds RU/10 and g_transpeedtu holds TU*10 so that the * correct value is returned in the product */ static const uint32 g_transpeedru[8] = { 10000, /* 0: 10 Kbit/sec / 10 */ 100000, /* 1: 1 Mbit/sec / 10 */ 1000000, /* 2: 10 Mbit/sec / 10 */ 10000000, /* 3: 100 Mbit/sec / 10*/ 0, 0, 0, 0 /* 4-7: Reserved values */ }; static const uint32 g_transpeedtu[16] = { 0, 10, 12, 13, /* 0-3: Reserved, 1.0, 1.1, 1.2, 1.3 */ 15, 20, 25, 30, /* 4-7: 1.5, 2.0, 2.5, 3.0 */ 35, 40, 45, 50, /* 8-11: 3.5, 4.0, 4.5, 5.0 */ 55, 60, 70, 80, /* 12-15: 5.5, 6.0, 7.0, 8.0 */ }; /* The TAAC defines the asynchronous part of the data access time. The * read access time the sum of the TAAC and the NSAC. These define the * time from the end bit of the read command to start bit of the data block. * * The TAAC consists of a 3-bit time unit (TU) and a 4-bit time value (TV). * The access we need time is then given by: * * taccess = spifrequency / (TU*TV) + NAC * * g_taactu holds the (1 / TU / 100 ) and g_taactv holds (100 / TV) so * that taccess can be computed without division. */ static const uint32 g_taactu[8] = { 10000000, /* 0: 1 ns -> 1,000,000,000 Hz / 100 = 10,000,000 */ 1000000, /* 1: 10 ns -> 100,000,000 Hz / 100 = 1,000,000 */ 100000, /* 2: 100 ns -> 10,000,000 Hz / 100 = 100,000 */ 10000, /* 3: 1 us -> 1,000,000 Hz / 100 = 10,000 */ 1000, /* 4: 10 us -> 100,000 Hz / 100 = 1,000 */ 100, /* 5: 100 us -> 10,000 Hz / 100 = 100 */ 10, /* 6: 1 ms -> 1,000 Hz / 100 = 10 */ 1, /* 7: 10 ms -> 100 Hz / 100 = 1 */ }; static const uint32 g_taactv[] = { 0, 100, 83, 77, /* 0-3: Reserved, 100/1.0, 100/1.2, 100/1.3 */ 67, 50, 40, 33, /* 4-7: 100/1.5, 100/2.0, 100/2.5, 100/3.0 */ 29, 25, 22, 20, /* 8-11: 100/3.5, 100/4.0, 100/4.5, 100/5.0 */ 18, 17, 14, 13 /* 12-15: 100/5.5, 100/6.0, 100/7.0, 100/8.0 */ }; /* Commands *****************************************************************/ static const struct mmcsd_cmdinfo_s g_cmd0 = {0x40, MMCSD_CMDARG_NONE, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd1 = {0x41, MMCSD_CMDARG_NONE, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd9 = {0x49, MMCSD_CMDARG_NONE, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd10 = {0x4a, MMCSD_CMDARG_NONE, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd12 = {0x4c, MMCSD_CMDARG_NONE, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd13 = {0x4d, MMCSD_CMDARG_NONE, MMCSD_CMDRESP_R2}; static const struct mmcsd_cmdinfo_s g_cmd16 = {0x50, MMCSD_CMDARG_BLKLEN, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd17 = {0x51, MMCSD_CMDARG_ADDRESS, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd18 = {0x52, MMCSD_CMDARG_ADDRESS, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd24 = {0x58, MMCSD_CMDARG_ADDRESS, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd25 = {0x59, MMCSD_CMDARG_ADDRESS, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd27 = {0x5b, MMCSD_CMDARG_NONE, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd28 = {0x5c, MMCSD_CMDARG_ADDRESS, MMCSD_CMDRESP_R1B}; static const struct mmcsd_cmdinfo_s g_cmd29 = {0x5d, MMCSD_CMDARG_ADDRESS, MMCSD_CMDRESP_R1B}; static const struct mmcsd_cmdinfo_s g_cmd30 = {0x5e, MMCSD_CMDARG_ADDRESS, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd32 = {0x60, MMCSD_CMDARG_ADDRESS, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd33 = {0x61, MMCSD_CMDARG_ADDRESS, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd34 = {0x62, MMCSD_CMDARG_ADDRESS, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd35 = {0x63, MMCSD_CMDARG_ADDRESS, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd36 = {0x64, MMCSD_CMDARG_ADDRESS, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd37 = {0x65, MMCSD_CMDARG_ADDRESS, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd38 = {0x66, MMCSD_CMDARG_DUMMY, MMCSD_CMDRESP_R1B}; static const struct mmcsd_cmdinfo_s g_cmd42 = {0x6a, MMCSD_CMDARG_DUMMY, MMCSD_CMDRESP_R1B}; static const struct mmcsd_cmdinfo_s g_cmd55 = {0x77, MMCSD_CMDARG_NONE, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd56 = {0x78, MMCSD_CMDARG_NONE, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_cmd58 = {0x7a, MMCSD_CMDARG_NONE, MMCSD_CMDRESP_R3}; static const struct mmcsd_cmdinfo_s g_cmd59 = {0x7b, MMCSD_CMDARG_DUMMY, MMCSD_CMDRESP_R1}; static const struct mmcsd_cmdinfo_s g_acmd41 = {0x69, MMCSD_CMDARG_NONE, MMCSD_CMDRESP_R1}; /**************************************************************************** * Private Functions ****************************************************************************/ /**************************************************************************** * Name: mmcsd_semtake ****************************************************************************/ static void mmcsd_semtake(sem_t *sem) { while (sem_wait(sem) != 0) { /* The only case that an error should occur here is if the wait was * awakened by a signal. */ ASSERT(errno == EINTR); } } #define mmcsd_semgive(sem) sem_post(sem) /**************************************************************************** * Name: mmcsd_waitready * * Description: * Wait until the the card is no longer busy * ****************************************************************************/ static int mmcsd_waitready(FAR struct mmcsd_slot_s *slot) { FAR struct spi_dev_s *spi = slot->spi; ubyte response; int i; /* Wait until the card is no longer busy */ for (i = 0; i < slot->twrite; i++) { response = SPI_SNDBYTE(spi, 0xff); if (response == 0xff) { return OK; } } fdbg("Card still busy, last response: %02x\n", response); return -EBUSY; } /**************************************************************************** * Name: mmcsd_sendcmd * * Description: * Send a command to MMC * ****************************************************************************/ static uint32 mmcsd_sendcmd(FAR struct mmcsd_slot_s *slot, const struct mmcsd_cmdinfo_s *cmd, uint32 arg) { FAR struct spi_dev_s *spi = slot->spi; uint32 result; ubyte response = 0xff; int i; /* Select SPI */ SPI_SELECT(spi, TRUE); /* Send command code */ SPI_SNDBYTE(spi, cmd->cmd); /* Send command's arguments */ if (cmd->arg == MMCSD_CMDARG_NONE) { SPI_SNDBYTE(spi, 0x00); SPI_SNDBYTE(spi, 0x00); SPI_SNDBYTE(spi, 0x00); SPI_SNDBYTE(spi, 0x00); } else { SPI_SNDBYTE(spi, arg >> 24); SPI_SNDBYTE(spi, arg >> 16); SPI_SNDBYTE(spi, arg >> 8); SPI_SNDBYTE(spi, arg); } /* Send CRC if needed. The SPI interface is initialized in non-protected * mode. However, the reset command (CMD0) is received by the card while it * is still in SD mode and, therefore, must have a valid CRC field. */ if (cmd->cmd == 0x40) { SPI_SNDBYTE(spi, 0x95); } else { SPI_SNDBYTE(spi, 0xff); } /* Get the response to the command */ for (i = 0; i < 9 && response == 0xff; i++) { response = SPI_SNDBYTE(spi, 0xff); } if (i == 0) { fdbg("Failed: i=%d response=%02x\n", i, response); SPI_SELECT(spi, FALSE); return (uint32)-1; } /* Interpret the response according to the command */ switch (cmd->resp) { case MMCSD_CMDRESP_R1B: { uint32 busy = 0; for (i = 0; i < slot->twrite && busy != 0xff; i++) { busy = SPI_SNDBYTE(spi, 0xff); } fvdbg("Return R1B=%02x\n", response); } return (uint32)response; case MMCSD_CMDRESP_R1: { fvdbg("Return R1=%02x\n", response); } return (uint32)response; case MMCSD_CMDRESP_R2: { result = ((uint32) response << 8) & 0x0000ff00; result |= SPI_SNDBYTE(spi, 0xff) & 0xff; fvdbg("Return R2=%04x\n", result); } return result; case MMCSD_CMDRESP_R3: default: { result = ((uint32) response << 24) & 0xff000000; result |= ((uint32) SPI_SNDBYTE(spi, 0xff) << 16) & 0x00ff0000; result |= ((uint32) SPI_SNDBYTE(spi, 0xff) << 8) & 0x0000ff00; result |= SPI_SNDBYTE(spi, 0xff) & 0xff; fvdbg("Return R3=%08x\n", result); } return result; } } /**************************************************************************** * Name: mmcsd_setblklen * * Description: * Set block length * ****************************************************************************/ static void mmcsd_setblklen(FAR struct mmcsd_slot_s *slot, uint32 length) { FAR struct spi_dev_s *spi = slot->spi; uint32 result; result = mmcsd_sendcmd(slot, &g_cmd16, length); SPI_SELECT(spi, FALSE); } /**************************************************************************** * Name: mmcsd_decodecsd * * Description: * ****************************************************************************/ static void mmcsd_decodecsd(FAR struct mmcsd_slot_s *slot, ubyte *csd) { FAR struct spi_dev_s *spi = slot->spi; uint32 frequency; /* Calculate SPI max clock */ frequency = g_transpeedru[MMCSD_CSD_TRANSPEED_TIMEVALUE(csd)] * g_transpeedtu[MMCSD_CSD_TRANSPEED_TRANSFERRATEUNIT(csd)]; if (frequency > 20000000) { frequency = 20000000; } /* Set the SPI frequency to that value */ frequency = SPI_SETFREQUENCY(spi, frequency); /* Now determine the delay to */ if (slot->type == MMCSD_CARDTYPE_MMC) { slot->taccess = g_taactu[MMCSD_CSD_TAAC_TIMEUNIT(csd)] * g_taactv[MMCSD_CSD_TAAC_TIMEVALUE(csd)]; slot->taccess = frequency / slot->taccess; slot->taccess += 1 << (MMCSD_CSD_NSAC(csd) + 4); slot->taccess *= 10; slot->twrite = slot->taccess * MMCSD_CSD_R2WFACTOR(csd); } else { slot->taccess = frequency / SD_READACCESSHZ; slot->twrite = frequency / SD_WRITEACCESSHZ; } fvdbg("Frequency: %d\n", frequency); fvdbg("Read access time: %d\n", slot->taccess); fvdbg("Write access time: %d\n", slot->twrite); /* Get the physical geometry of the card: sector size and number of * sectors. The card's total capacity is computed from * * capacity = BLOCKNR * BLOCK_LEN * BLOCKNR = (C_SIZE+1)*MULT * MULT = 2**(C_SIZE_MULT+2) (C_SIZE_MULT < 8) * BLOCK_LEN = 2**READD_BL_LEN (READ_BL_LEN < 12) * * Or * * capacity = ((C_SIZE+1) << (READD_BL_LEN + C_SIZE_MULT + 2)) * * In units of the sector size (1 << READ_BL_LEN), then simplifies to * * nsectors = ((C_SIZE+1) << (C_SIZE_MULT + 2)) */ if (MMCSD_CSD_CSDSTRUCT(csd) == 1) { /* SDC ver 2.00 */ /* Note: On SD card WRITE_BL_LEN is always the same as READ_BL_LEN */ slot->sectorsize = 1 << SD20_CSD_READBLLEN(csd); slot->nsectors = (SD20_CSD_CSIZE(csd) + 1) << (SD20_CSD_CSIZEMULT(csd) + 2); } else { /* MMC or SD ver 1.xx */ /* Note: On SD card WRITE_BL_LEN is always the same as READ_BL_LEN */ slot->sectorsize = 1 << MMCSD_CSD_READBLLEN(csd); slot->nsectors = (MMCSD_CSD_CSIZE(csd) + 1) << (MMCSD_CSD_CSIZEMULT(csd) + 2); } fvdbg("Sector size: %d\n", slot->sectorsize); fvdbg("Number of sectors: %d\n", slot->nsectors); } /**************************************************************************** * Name: mmcsd_checkwrprotect * * Description: * ****************************************************************************/ static void mmcsd_checkwrprotect(FAR struct mmcsd_slot_s *slot, ubyte *csd) { FAR struct spi_dev_s *spi = slot->spi; /* Check if (1) the slot is reporting that reporting that write protection * is set, (2) the card reports permanent write protect, or (2) the card * reports temporary write protect. */ if ((SPI_STATUS(spi) & SPI_STATUS_WRPROTECTED) != 0 || MMCSD_CSD_PERMWRITEPROTECT(csd) || MMCSD_CSD_TMPWRITEPROTECT(csd)) { slot->state |= MMCSD_SLOTSTATUS_WRPROTECT; } else { slot->state &= ~MMCSD_SLOTSTATUS_WRPROTECT; } } /**************************************************************************** * Name: mmcsd_getcardinfo * * Description: * Read CSD or CID registers * ****************************************************************************/ static int mmcsd_getcardinfo(FAR struct mmcsd_slot_s *slot, ubyte *buffer, const struct mmcsd_cmdinfo_s *cmd) { FAR struct spi_dev_s *spi = slot->spi; uint32 result; ubyte response; int i; SPI_SELECT(spi, FALSE); SPI_SNDBYTE(spi, 0xff); /* Send the CMD9 or CMD10 */ result = mmcsd_sendcmd(slot, cmd, 0); if (result != MMCSD_SPIR1_OK) { fdbg("CMD9/10 failed: R1=%02x\n", result); goto errout_with_eio; } /* Try up to 8 times to find the start of block (or until an error occurs) */ for (i = 0; i < 8; i++) { response = SPI_SNDBYTE(spi, 0xff); fvdbg("%d. SPI sndbyte returned %02x\n", i, response); /* If a read operation fails and the card cannot provide the requested * data, it will send a data error token instead. The 4 least * significant bits are the same as those in the R2 response. */ if (response != 0 && (response & MMCSD_SPIDET_UPPER) == 0) { fdbg("%d. Data transfer error: %02x\n", i, response); goto errout_with_eio; } else if (response == MMCSD_SPIDT_STARTBLKSNGL) { for (i = 0; i < 16; ++i) { *buffer++ = SPI_SNDBYTE(spi, 0xff); } /* CRC receive */ (void)SPI_SNDBYTE(spi, 0xff); (void)SPI_SNDBYTE(spi, 0xff); SPI_SELECT(spi, FALSE); return OK; } } errout_with_eio: SPI_SELECT(spi, FALSE); return -EIO; } /**************************************************************************** * Block Driver Operations ****************************************************************************/ /**************************************************************************** * Name: mmcsd_open * * Description: Open the block device * ****************************************************************************/ static int mmcsd_open(FAR struct inode *inode) { FAR struct mmcsd_slot_s *slot; FAR struct spi_dev_s *spi; int ret; fvdbg("Entry\n"); #ifdef CONFIG_DEBUG if (!inode || !inode->i_private) { fdbg("Internal confusion\n"); return -EIO; } #endif /* Extract our private data from the inode structure */ slot = (FAR struct mmcsd_slot_s *)inode->i_private; spi = slot->spi; #ifdef CONFIG_DEBUG if (!spi) { fdbg("Internal confusion\n"); return -EIO; } #endif /* Select the slave */ mmcsd_semtake(&slot->sem); SPI_SELECT(spi, FALSE); /* Verify that the MMC/SD card is alive and ready for business */ ret = mmcsd_waitready(slot); SPI_SELECT(spi, FALSE); mmcsd_semgive(&slot->sem); return ret; } /**************************************************************************** * Name: mmcsd_close * * Description: close the block device * ****************************************************************************/ static int mmcsd_close(FAR struct inode *inode) { fvdbg("Entry\n"); return OK; } /**************************************************************************** * Name: mmcsd_read * * Description: Read the specified numer of sectors * ****************************************************************************/ static ssize_t mmcsd_read(FAR struct inode *inode, unsigned char *buffer, size_t start_sector, unsigned int nsectors) { FAR struct mmcsd_slot_s *slot; FAR struct spi_dev_s *spi; size_t nbytes; off_t offset; ubyte response; int i; fvdbg("start_sector=%d nsectors=%d\n", start_sector, nsectors); #ifdef CONFIG_DEBUG if (!buffer) { fdbg("Invalid parameters\n"); return -EINVAL; } if (!inode || !inode->i_private) { fdbg("Internal confusion\n"); return -EIO; } #endif /* Extract our private data from the inode structure */ slot = (FAR struct mmcsd_slot_s *)inode->i_private; spi = slot->spi; #ifdef CONFIG_DEBUG if (!spi) { fdbg("Internal confusion\n"); return -EIO; } #endif /* Verify that card is availabled */ if (slot->state & MMCSD_SLOTSTATUS_NOTREADY) { fdbg("Slot not ready\n"); return -ENODEV; } /* Do nothing on zero-length transfer */ if (nsectors < 1) { return 0; } /* Convert sector and nsectors to nbytes and byte offset */ nbytes = nsectors * slot->sectorsize; offset = start_sector * slot->sectorsize; fvdbg("nbytes=%d offset=%d\n", nbytes, offset); /* Select the slave and synchronize */ mmcsd_semtake(&slot->sem); SPI_SELECT(spi, FALSE); (void)SPI_SNDBYTE(spi, 0xff); /* Send CMD17: Reads a block of the size selected by the SET_BLOCKLEN * command and verify that good R1 status is returned */ response = mmcsd_sendcmd(slot, &g_cmd17, offset); if (response != MMCSD_SPIR1_OK) { fdbg("CMD17 failed: R1=%02x\n", response); goto errout_with_eio; } /* Loop only for the computed timeout */ for (i = 0; i < slot->taccess; i++) { /* Synchronize */ response = SPI_SNDBYTE(spi, 0xff); fvdbg("(%d) SPI sndbyte returned %02x\n", i, response); /* If a read operation fails and the card cannot provide the requested * data, it will send a data error token instead. The 4 least * significant bits are the same as those in the R2 response. */ if (response != 0 && (response & MMCSD_SPIDET_UPPER) == 0) { fdbg("(%d) Data transfer error: %02x\n", i, response); goto errout_with_eio; } else if (response == MMCSD_SPIDT_STARTBLKSNGL) { /* Receive the block of data */ SPI_RECVBLOCK(spi, buffer, nbytes); /* Receive and ignore the two CRC bytes */ (void)SPI_SNDBYTE(spi, 0xff); (void)SPI_SNDBYTE(spi, 0xff); /* On success, return the number of sectors transfer */ SPI_SELECT(spi, FALSE); mmcsd_semgive(&slot->sem); fvdbg("(%d) Read %d bytes:\n", i, nbytes); mmcsd_dumpbuffer(buffer, nbytes); return nsectors; } } errout_with_eio: SPI_SELECT(spi, FALSE); mmcsd_semgive(&slot->sem); return -EIO; } /**************************************************************************** * Name: mmcsd_write * * Description: * Write the specified number of sectors * ****************************************************************************/ #if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY) static ssize_t mmcsd_write(FAR struct inode *inode, const unsigned char *buffer, size_t start_sector, unsigned int nsectors) { FAR struct mmcsd_slot_s *slot; FAR struct spi_dev_s *spi; size_t nbytes; off_t offset; ubyte response; int ret; fvdbg("start_sector=%d nsectors=%d\n", start_sector, nsectors); #ifdef CONFIG_DEBUG if (!buffer) { fdbg("Invalid parameters\n"); return -EINVAL; } if (!inode || !inode->i_private) { fdbg("Internal confusion\n"); return -EIO; } #endif /* Extract our private data from the inode structure */ slot = (FAR struct mmcsd_slot_s *)inode->i_private; spi = slot->spi; #ifdef CONFIG_DEBUG if (!spi) { fdbg("Internal confusion\n"); return -EIO; } #endif /* Verify that card is availabled */ if (slot->state & MMCSD_SLOTSTATUS_NOTREADY) { fdbg("Slot not ready\n"); return -ENODEV; } /* Verify that the card is write enabled */ if (slot->state & MMCSD_SLOTSTATUS_WRPROTECT) { fdbg("Not write enabled\n"); return -EACCES; } /* Do nothing on zero-length transfer */ if (nsectors < 1) { return 0; } /* Convert sector and nsectors to nbytes and byte offset */ nbytes = nsectors * slot->sectorsize; offset = start_sector * slot->sectorsize; fvdbg("Writing %d bytes to offset %d:\n", nbytes, offset); mmcsd_dumpbuffer(buffer, nbytes); /* Select the slave and synchronize */ mmcsd_semtake(&slot->sem); SPI_SELECT(spi, FALSE); (void)SPI_SNDBYTE(spi, 0xff); /* Send CMD24 (WRITE_BLOCK) and verify that good R1 status is returned */ response = mmcsd_sendcmd(slot, &g_cmd24, offset); if (response != MMCSD_SPIR1_OK) { fdbg("CMD24 failed: R1=%02x\n", response); SPI_SELECT(spi, FALSE); ret = -EIO; goto errout_with_sem; } /* Start the block transfer: * 1. 0xff (sync) * 2. 0xfe (start of block) * 3. Followed by the block of data */ (void)SPI_SNDBYTE(spi, 0xff); (void)SPI_SNDBYTE(spi, MMCSD_SPIDT_STARTBLKSNGL); (void)SPI_SNDBLOCK(spi, buffer, nbytes); /* Add the bogus CRC. By default, the SPI interface is initialized in * non-protected mode. However, we still have to send bogus CRC values */ (void)SPI_SNDBYTE(spi, 0xff); (void)SPI_SNDBYTE(spi, 0xff); /* Now get the data response */ response = SPI_SNDBYTE(spi, 0xff); if ((response & MMCSD_SPIDR_MASK) != MMCSD_SPIDR_ACCEPTED) { fdbg("Bad data response: %02x\n", response); ret = -EIO; goto errout_with_sem; } /* Wait until the card is no longer busy */ ret = mmcsd_waitready(slot); SPI_SELECT(spi, FALSE); mmcsd_semgive(&slot->sem); /* Verify that the card successfully became non-busy */ if (ret < 0) { return ret; } /* The success return value is the number of sectors written */ return nsectors; errout_with_sem: mmcsd_semgive(&slot->sem); return ret; } #endif /**************************************************************************** * Name: mmcsd_geometry * * Description: * Return device geometry * ****************************************************************************/ static int mmcsd_geometry(FAR struct inode *inode, struct geometry *geometry) { FAR struct mmcsd_slot_s *slot; FAR struct spi_dev_s *spi; ubyte csd[16]; int ret; #ifdef CONFIG_DEBUG if (!geometry) { fdbg("Invalid parameters\n"); return -EINVAL; } if (!inode || !inode->i_private) { fdbg("Internal confusion\n"); return -EIO; } #endif /* Extract our private data from the inode structure */ slot = (FAR struct mmcsd_slot_s *)inode->i_private; spi = slot->spi; #ifdef CONFIG_DEBUG if (!spi) { fdbg("Internal confusion\n"); return -EIO; } #endif /* Re-sample the CSD */ mmcsd_semtake(&slot->sem); ret = mmcsd_getcsd(slot, csd); if (ret < 0) { mmcsd_semgive(&slot->sem); fdbg("mmcsd_getcsd returned %d\n", ret); return ret; } /* Check for changes related to write protection */ mmcsd_checkwrprotect(slot, csd); /* Then return the card geometry */ geometry->geo_available = ((slot->state & (MMCSD_SLOTSTATUS_NOTREADY|MMCSD_SLOTSTATUS_NODISK)) == 0); geometry->geo_mediachanged = ((slot->state & MMCSD_SLOTSTATUS_MEDIACHGD) != 0); #if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY) geometry->geo_writeenabled = ((slot->state & MMCSD_SLOTSTATUS_WRPROTECT) == 0); #else geometry->geo_writeenabled = FALSE; #endif geometry->geo_nsectors = slot->nsectors; geometry->geo_sectorsize = slot->sectorsize; /* After reporting mediachanged, clear the indication so that it is not * reported again. */ slot->state &= ~MMCSD_SLOTSTATUS_MEDIACHGD; mmcsd_semgive(&slot->sem); fvdbg("geo_available: %d\n", geometry->geo_available); fvdbg("geo_mediachanged: %d\n", geometry->geo_mediachanged); fvdbg("geo_writeenabled: %d\n", geometry->geo_writeenabled); fvdbg("geo_nsectors: %d\n", geometry->geo_nsectors); fvdbg("geo_sectorsize: %d\n", geometry->geo_sectorsize); return OK; } /**************************************************************************** * Initialization ****************************************************************************/ /**************************************************************************** * Name: mmcsd_mediainitialize * * Description: * Detect media and initialize * ****************************************************************************/ static int mmcsd_mediainitialize(FAR struct mmcsd_slot_s *slot) { FAR struct spi_dev_s *spi = slot->spi; ubyte csd[16]; uint32 result; int i, j; /* Assume that the card is not ready (we'll clear this on successful car * initialization. */ slot->state |= MMCSD_SLOTSTATUS_NOTREADY; /* Check if there is a card present in the slot. This is normally a matter is * of GPIO sensing and does not really involve SPI, but by putting this * functionality in the SPI interface, we encapuslate the SPI MMC/SD * interface */ if ((SPI_STATUS(spi) & SPI_STATUS_PRESENT) == 0) { fdbg("No card present\n"); slot->state |= MMCSD_SLOTSTATUS_NODISK; return -ENODEV; } /* Clock Freq. Identification Mode < 400kHz */ SPI_SETFREQUENCY(spi, MMCSD_IDMODE_CLOCK); /* Set the maximum access time out */ slot->taccess = MMCSD_IDMODE_CLOCK / SD_READACCESSHZ; /* The SD card wakes up in SD mode. It will enter SPI mode if the chip select signal is * asserted (negative) during the reception of the reset command (CMD0) and the card is in * IDLE state. */ /* After power up at least 74 clock cycles are required prior to starting bus communication */ fvdbg("Send CMD0\n"); for (i = 0; i < 2; i++) { SPI_SELECT(spi, FALSE); for (j = 10; j; j--) { SPI_SNDBYTE(spi, 0xff); } /* Send CMD0 (GO_TO_IDLE) to put MMC/SD in IDLE/SPI mode */ result = mmcsd_sendcmd(slot, &g_cmd0, 0); SPI_SELECT(spi, FALSE); /* Return from CMD0 is R1 which should now show IDLE STATE */ if (result == MMCSD_SPIR1_IDLESTATE) { fvdbg("Card is in IDLE state\n"); break; } } /* Verify that we exit the above loop with the card reporting IDLE state */ if (result != MMCSD_SPIR1_IDLESTATE) { fdbg("Send CMD0 failed: R1=%02x\n", result); return -EIO; } /* Determinate Card type SD or MMC */ slot->type = MMCSD_CARDTYPE_MMC; for (i = 100; i; --i) { fvdbg("%d. Send CMD55\n", i); SPI_SELECT(spi, FALSE); SPI_SNDBYTE(spi, 0xff); result = mmcsd_sendcmd(slot, &g_cmd55, 0); SPI_SELECT(spi, FALSE); fvdbg("%d. Send ACMD41\n", i); SPI_SELECT(spi, FALSE); SPI_SNDBYTE(spi, 0xff); result = mmcsd_sendcmd(slot, &g_acmd41, 0); SPI_SELECT(spi, FALSE); /* If this is an MMC card, it will response with ILLEGAL COMMAND */ if (result & MMCSD_SPIR1_ILLEGALCMD) { /* MMC card may be CMD1 for MMC Init sequence will be complete within * 500ms */ for (i = 100; i; --i) { fvdbg("%d. Send CMD1\n", i); SPI_SELECT(spi, FALSE); SPI_SNDBYTE(spi, 0xff); result = mmcsd_sendcmd(slot, &g_cmd1, 0); SPI_SELECT(spi, FALSE); if (result == MMCSD_SPIR1_OK) { fvdbg("%d. Identified MMC card\n", i); slot->type = MMCSD_CARDTYPE_MMC; break; } up_mdelay(50); } break; } else if (result == MMCSD_SPIR1_OK) { fvdbg("%d. Identified SD card\n", i); slot->type = MMCSD_CARDTYPE_SD; break; } up_mdelay(50); } if (i == 0) { fdbg("Retry exhausted\n"); return -EIO; } /* Read CSD. CSD must always be valid */ fvdbg("Get CSD\n"); result = mmcsd_getcsd(slot, csd); if (result != OK) { fdbg("mmcsd_getcsd(CMD9) failed: %d\n", result); return -EIO; } #if defined(CONFIG_DEBUG) && defined(CONFIG_DEBUG_FS) if (slot->type == MMCSD_CARDTYPE_MMC) { fdbg("Found MMC card\n"); } else if (MMCSD_CSD_CSDSTRUCT(csd) == 1) { fdbg("Found SDHC card\n"); } else { fdbg("Found SD card\n"); } mmcsd_dmpcsd(csd, slot->type); #endif /* CSD data and set block size */ mmcsd_decodecsd(slot, csd); mmcsd_checkwrprotect(slot, csd); mmcsd_setblklen(slot, slot->sectorsize); slot->state &= ~MMCSD_SLOTSTATUS_NOTREADY; return OK; } /**************************************************************************** * Name: mmcsd_mediachanged * * Description: * Handle initialization/media change events * ****************************************************************************/ static void mmcsd_mediachanged(void *arg) { struct mmcsd_slot_s *slot = (struct mmcsd_slot_s*)arg; FAR struct spi_dev_s *spi; ubyte oldstate; int ret; #ifdef CONFIG_DEBUG if (!slot || !slot->spi) { fdbg("Internal confusion\n"); return; } #endif spi = slot->spi; /* Save the current slot state and reassess the new state */ mmcsd_semtake(&slot->sem); oldstate = slot->state; /* Check if media was removed or inserted */ slot->state &= ~(MMCSD_SLOTSTATUS_NODISK|MMCSD_SLOTSTATUS_NOTREADY|MMCSD_SLOTSTATUS_MEDIACHGD); if ((SPI_STATUS(spi) & SPI_STATUS_PRESENT) == 0) { /* Media is not present */ fdbg("No card present\n"); slot->state |= (MMCSD_SLOTSTATUS_NODISK|MMCSD_SLOTSTATUS_NOTREADY); /* Was media removed? */ if ((oldstate & MMCSD_SLOTSTATUS_NODISK) == 0) { slot->state |= MMCSD_SLOTSTATUS_MEDIACHGD; } } /* Media is present, was it just inserted? Or, if it was previously not ready, * then try re-initializing it */ else if ((oldstate & (MMCSD_SLOTSTATUS_NODISK|MMCSD_SLOTSTATUS_NOTREADY)) != 0) { /* (Re-)ininitialize for the media in the slot */ ret = mmcsd_mediainitialize(slot); if (ret == 0) { fvdbg("mmcsd_mediainitialize returned OK\n"); slot->state |= MMCSD_SLOTSTATUS_MEDIACHGD; } } } /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Name: mmcsd_spislotinitialize * * Description: * Initialize one slot for operation using the SPI MMC/SD interface * * Input Parameters: * minor - The MMC/SD minor device number. The MMC/SD device will be * registered as /dev/mmcsdN where N is the minor number * slotno - The slot number to use. This is only meaningful for architectures * that support multiple MMC/SD slots. This value must be in the range * {0, ..., CONFIG_MMCSD_NSLOTS}. * spi - And instance of an SPI interface obtained by called * up_spiinitialize() with the appropriate port number (see spi.h) * ****************************************************************************/ int mmcsd_spislotinitialize(int minor, int slotno, FAR struct spi_dev_s *spi) { struct mmcsd_slot_s *slot; ubyte devname[16]; int ret; #ifdef CONFIG_DEBUG if ((unsigned)slotno >= CONFIG_MMCSD_NSLOTS || (unsigned)minor > 255 || !spi) { fdbg("Invalid arguments\n"); return -EINVAL; } #endif /* Select the slot structure */ slot = &g_mmcsdslot[slotno]; memset(slot, 0, sizeof(struct mmcsd_slot_s)); sem_init(&slot->sem, 0, 1); #ifdef CONFIG_DEBUG if (slot->spi) { fdbg("Already registered\n"); return -EBUSY; } #endif /* Bind the SPI port to the slot */ slot->spi = spi; /* Ininitialize for the media in the slot (if any) */ ret = mmcsd_mediainitialize(slot); if (ret == 0) { fvdbg("mmcsd_mediainitialize returned OK\n"); slot->state |= MMCSD_SLOTSTATUS_MEDIACHGD; } /* Create a MMC/SD device name */ snprintf(devname, 16, "/dev/mmcsd%d", minor); /* Register the driver, even on a failure condition. A * card may be inserted later, for example. */ ret = register_blockdriver(devname, &g_bops, MMCSD_MODE, slot); if (ret < 0) { fdbg("register_blockdriver failed: %d\n", -ret); slot->spi = NULL; return ret; } /* Register a media change callback to handler insertion and * removal of cards. */ (void)SPI_REGISTERCALLBACK(spi, mmcsd_mediachanged, (void*)slot); return OK; }