/**************************************************************************** * libs/libc/regex/regcomp.c * * regcomp.c - TRE POSIX compatible regex compilation functions. * * Copyright (c) 2001-2009 Ville Laurikari * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include "tre.h" #include /* from tre-compile.h */ /**************************************************************************** * Public Functions ****************************************************************************/ typedef struct { int position; int code_min; int code_max; int *tags; int assertions; tre_ctype_t class; tre_ctype_t *neg_classes; int backref; } tre_pos_and_tags_t; /* from tre-ast.c and tre-ast.h */ /* The different AST node types. */ typedef enum { LITERAL, CATENATION, ITERATION, UNION } tre_ast_type_t; /* Special subtypes of TRE_LITERAL. */ #define EMPTY -1 /* Empty leaf (denotes empty string). */ #define ASSERTION -2 /* Assertion leaf. */ #define TAG -3 /* Tag leaf. */ #define BACKREF -4 /* Back reference leaf. */ #define IS_SPECIAL(x) ((x)->code_min < 0) #define IS_EMPTY(x) ((x)->code_min == EMPTY) #define IS_ASSERTION(x) ((x)->code_min == ASSERTION) #define IS_TAG(x) ((x)->code_min == TAG) #define IS_BACKREF(x) ((x)->code_min == BACKREF) /* A generic AST node. All AST nodes consist of this node on the top * level with `obj' pointing to the actual content. */ typedef struct { tre_ast_type_t type; /* Type of the node. */ void *obj; /* Pointer to actual node. */ int nullable; int submatch_id; int num_submatches; int num_tags; tre_pos_and_tags_t *firstpos; tre_pos_and_tags_t *lastpos; } tre_ast_node_t; /* A "literal" node. These are created for assertions, back references, * tags, matching parameter settings, and all expressions that match one * character. */ typedef struct { long code_min; long code_max; int position; tre_ctype_t class; tre_ctype_t *neg_classes; } tre_literal_t; /* A "catenation" node. These are created when two regexps are concatenated. * If there are more than one subexpressions in sequence, the `left' part * holds all but the last, and `right' part holds the last subexpression * (catenation is left associative). */ typedef struct { tre_ast_node_t *left; tre_ast_node_t *right; } tre_catenation_t; /* An "iteration" node. These are created for the "*", "+", "?", and "{m,n}" * operators. */ typedef struct { /* Subexpression to match. */ tre_ast_node_t *arg; /* Minimum number of consecutive matches. */ int min; /* Maximum number of consecutive matches. */ int max; /* If 0, match as many characters as possible, if 1 match as few as * possible. Note that this does not always mean the same thing as * matching as many/few repetitions as possible. */ unsigned int minimal : 1; } tre_iteration_t; /* An "union" node. These are created for the "|" operator. */ typedef struct { tre_ast_node_t *left; tre_ast_node_t *right; } tre_union_t; static tre_ast_node_t *tre_ast_new_node(tre_mem_t mem, int type, void *obj) { tre_ast_node_t *node = tre_mem_calloc(mem, sizeof *node); if (!node || !obj) { return 0; } node->obj = obj; node->type = type; node->nullable = -1; node->submatch_id = -1; return node; } static tre_ast_node_t *tre_ast_new_literal(tre_mem_t mem, int code_min, int code_max, int position) { tre_ast_node_t *node; tre_literal_t *lit; lit = tre_mem_calloc(mem, sizeof *lit); node = tre_ast_new_node(mem, LITERAL, lit); if (!node) { return 0; } lit->code_min = code_min; lit->code_max = code_max; lit->position = position; return node; } static tre_ast_node_t *tre_ast_new_iter(tre_mem_t mem, tre_ast_node_t *arg, int min, int max, int minimal) { tre_ast_node_t *node; tre_iteration_t *iter; iter = tre_mem_calloc(mem, sizeof *iter); node = tre_ast_new_node(mem, ITERATION, iter); if (!node) { return 0; } iter->arg = arg; iter->min = min; iter->max = max; iter->minimal = minimal; node->num_submatches = arg->num_submatches; return node; } static tre_ast_node_t *tre_ast_new_union(tre_mem_t mem, tre_ast_node_t *left, tre_ast_node_t *right) { tre_ast_node_t *node; tre_union_t *un; if (!left) { return right; } un = tre_mem_calloc(mem, sizeof *un); node = tre_ast_new_node(mem, UNION, un); if (!node || !right) { return 0; } un->left = left; un->right = right; node->num_submatches = left->num_submatches + right->num_submatches; return node; } static tre_ast_node_t *tre_ast_new_catenation(tre_mem_t mem, tre_ast_node_t *left, tre_ast_node_t *right) { tre_ast_node_t *node; tre_catenation_t *cat; if (!left) { return right; } cat = tre_mem_calloc(mem, sizeof *cat); node = tre_ast_new_node(mem, CATENATION, cat); if (!node) { return 0; } cat->left = left; cat->right = right; node->num_submatches = left->num_submatches + right->num_submatches; return node; } /* from tre-stack.c and tre-stack.h */ typedef struct tre_stack_rec tre_stack_t; /* Creates a new stack object. `size' is initial size in bytes, `max_size' * is maximum size, and `increment' specifies how much more space will be * allocated with realloc() if all space gets used up. Returns the stack * object or NULL if out of memory. */ static tre_stack_t *tre_stack_new(int size, int max_size, int increment); /* Frees the stack object. */ static void tre_stack_destroy(tre_stack_t *s); /* Returns the current number of objects in the stack. */ static int tre_stack_num_objects(tre_stack_t *s); /* Each tre_stack_push_*(tre_stack_t *s, value) function pushes * `value' on top of stack `s'. Returns REG_ESPACE if out of memory. * This tries to realloc() more space before failing if maximum size * has not yet been reached. Returns REG_OK if successful. */ #define declare_pushf(typetag, type) \ static reg_errcode_t tre_stack_push_ ## typetag(tre_stack_t * s, type value) declare_pushf(voidptr, void *); declare_pushf(int, int); /* Each tre_stack_pop_*(tre_stack_t *s) function pops the topmost * element off of stack `s' and returns it. The stack must not be * empty. */ #define declare_popf(typetag, type) \ static type tre_stack_pop_ ## typetag(tre_stack_t * s) declare_popf(voidptr, void *); declare_popf(int, int); /* Just to save some typing. */ #define STACK_PUSH(s, typetag, value) \ do \ { \ status = tre_stack_push_ ## typetag(s, value); \ } \ while (/* CONSTCOND */ 0) #define STACK_PUSHX(s, typetag, value) \ { \ status = tre_stack_push_ ## typetag(s, value); \ if (status != REG_OK) \ break; \ } #define STACK_PUSHR(s, typetag, value) \ { \ reg_errcode_t _status; \ _status = tre_stack_push_ ## typetag(s, value); \ if (_status != REG_OK) \ return _status; \ } union tre_stack_item { void *voidptr_value; int int_value; }; struct tre_stack_rec { int size; int max_size; int increment; int ptr; union tre_stack_item *stack; }; static tre_stack_t *tre_stack_new(int size, int max_size, int increment) { tre_stack_t *s; s = xmalloc(sizeof(*s)); if (s != NULL) { s->stack = xmalloc(sizeof(*s->stack) * size); if (s->stack == NULL) { xfree(s); return NULL; } s->size = size; s->max_size = max_size; s->increment = increment; s->ptr = 0; } return s; } static void tre_stack_destroy(tre_stack_t *s) { xfree(s->stack); xfree(s); } static int tre_stack_num_objects(tre_stack_t *s) { return s->ptr; } static reg_errcode_t tre_stack_push(tre_stack_t *s, union tre_stack_item value) { if (s->ptr < s->size) { s->stack[s->ptr] = value; s->ptr++; } else { if (s->size >= s->max_size) { return REG_ESPACE; } else { union tre_stack_item *new_buffer; int new_size; new_size = s->size + s->increment; if (new_size > s->max_size) { new_size = s->max_size; } new_buffer = xrealloc(s->stack, sizeof(*new_buffer) * new_size); if (new_buffer == NULL) { return REG_ESPACE; } ASSERT(new_size > s->size); s->size = new_size; s->stack = new_buffer; tre_stack_push(s, value); } } return REG_OK; } #define define_pushf(typetag, type) \ declare_pushf(typetag, type) { \ union tre_stack_item item; \ item.typetag ## _value = value; \ return tre_stack_push(s, item); \ } define_pushf(int, int) define_pushf(voidptr, void *) #define define_popf(typetag, type) \ declare_popf(typetag, type) { \ return s->stack[--s->ptr].typetag ## _value; \ } define_popf(int, int) define_popf(voidptr, void *) /* from tre-parse.c and tre-parse.h */ /* Parse context. */ typedef struct { /* Memory allocator. The AST is allocated using this. */ tre_mem_t mem; /* Stack used for keeping track of regexp syntax. */ tre_stack_t *stack; /* The parsed node after a parse function returns. */ tre_ast_node_t *n; /* Position in the regexp pattern after a parse function returns. */ const char *s; /* The first character of the regexp. */ const char *re; /* Current submatch ID. */ int submatch_id; /* Current position (number of literal). */ int position; /* The highest back reference or -1 if none seen so far. */ int max_backref; /* Compilation flags. */ int cflags; } tre_parse_ctx_t; /* Some macros for expanding \w, \s, etc. */ typedef struct { char c; const char *expansion; } tre_macro; static const tre_macro tre_macros[] = { { 't', "\t" }, { 'n', "\n" }, { 'r', "\r" }, { 'f', "\f" }, { 'a', "\a" }, { 'e', "\033" }, { 'w', "[[:alnum:]_]" }, { 'W', "[^[:alnum:]_]" }, { 's', "[[:space:]]" }, { 'S', "[^[:space:]]" }, { 'd', "[[:digit:]]" }, { 'D', "[^[:digit:]]" }, { 0, 0 } }; /* Expands a macro delimited by `regex' and `regex_end' to `buf', which * must have at least `len' items. Sets buf[0] to zero if the there * is no match in `tre_macros'. */ static const char *tre_expand_macro(const char *s) { int i; for (i = 0; tre_macros[i].c && tre_macros[i].c != *s; i++) { } return tre_macros[i].expansion; } static int tre_compare_lit(const void *a, const void *b) { const tre_literal_t *const *la = a; const tre_literal_t *const *lb = b; /* assumes the range of valid code_min is < INT_MAX */ return la[0]->code_min - lb[0]->code_min; } struct literals { tre_mem_t mem; tre_literal_t **a; int len; int cap; }; static tre_literal_t *tre_new_lit(struct literals *p) { tre_literal_t **a; if (p->len >= p->cap) { if (p->cap >= 1 << 15) { return 0; } p->cap *= 2; a = xrealloc(p->a, p->cap * sizeof *p->a); if (!a) { return 0; } p->a = a; } a = p->a + p->len++; *a = tre_mem_calloc(p->mem, sizeof **a); return *a; } static int add_icase_literals(struct literals *ls, int min, int max) { tre_literal_t *lit; int b; int e; int c; for (c = min; c <= max; ) { /* assumes islower(c) and isupper(c) are exclusive * and toupper(c)!=c if islower(c). * multiple opposite case characters are not supported */ if (tre_islower(c)) { b = e = tre_toupper(c); for (c++, e++; c <= max; c++, e++) { if (tre_toupper(c) != e) { break; } } } else if (tre_isupper(c)) { b = e = tre_tolower(c); for (c++, e++; c <= max; c++, e++) { if (tre_tolower(c) != e) { break; } } } else { c++; continue; } lit = tre_new_lit(ls); if (!lit) { return -1; } lit->code_min = b; lit->code_max = e - 1; lit->position = -1; } return 0; } /* Maximum number of character classes in a negated bracket expression. */ #define MAX_NEG_CLASSES 64 struct neg { int negate; int len; tre_ctype_t a[MAX_NEG_CLASSES]; }; /* TODO: parse bracket into a set of non-overlapping [lo, hi] ranges */ /* bracket grammar: * Bracket = '[' List ']' | '[^' List ']' * List = Term | List Term * Term = Char | Range | Chclass | Eqclass * Range = Char '-' Char | Char '-' '-' * Char = Coll | coll_single * Meta = ']' | '-' * Coll = '[.' coll_single '.]' | '[.' coll_multi '.]' * | '[.' Meta '.]' * Eqclass = '[=' coll_single '=]' | '[=' coll_multi '=]' * Chclass = '[:' class ':]' * * coll_single is a single char collating element but it can be * '-' only at the beginning or end of a List and * ']' only at the beginning of a List and * '^' anywhere except after the openning '[' */ static reg_errcode_t parse_bracket_terms(tre_parse_ctx_t *ctx, const char *s, struct literals *ls, struct neg *neg) { const char *start = s; tre_ctype_t class; int min; int max; wchar_t wc; int len; for (; ; ) { class = 0; len = mbtowc(&wc, s, -1); if (len <= 0) { return *s ? REG_BADPAT : REG_EBRACK; } if (*s == ']' && s != start) { ctx->s = s + 1; return REG_OK; } if (*s == '-' && s != start && s[1] != ']' && (s[1] != '-' || s[2] == ']')) { /* extension: [a-z--@] is accepted as [a-z]|[--@] */ return REG_ERANGE; } if (*s == '[' && (s[1] == '.' || s[1] == '=')) { /* collating symbols and equivalence classes are not supported */ return REG_ECOLLATE; } if (*s == '[' && s[1] == ':') { char tmp[CHARCLASS_NAME_MAX + 1]; s += 2; for (len = 0; len < CHARCLASS_NAME_MAX && s[len]; len++) { if (s[len] == ':') { memcpy(tmp, s, len); tmp[len] = 0; class = tre_ctype(tmp); break; } } if (!class || s[len + 1] != ']') { return REG_ECTYPE; } min = 0; max = TRE_CHAR_MAX; s += len + 2; } else { min = max = wc; s += len; if (*s == '-' && s[1] != ']') { s++; len = mbtowc(&wc, s, -1); max = wc; /* XXX - Should use collation order instead of * encoding values in character ranges. */ if (len <= 0 || min > max) { return REG_ERANGE; } s += len; } } if (class && neg->negate) { if (neg->len >= MAX_NEG_CLASSES) { return REG_ESPACE; } neg->a[neg->len++] = class; } else { tre_literal_t *lit = tre_new_lit(ls); if (!lit) { return REG_ESPACE; } lit->code_min = min; lit->code_max = max; lit->class = class; lit->position = -1; /* Add opposite-case codepoints if REG_ICASE is present. * It seems that POSIX requires that bracket negation * should happen before case-folding, but most practical * implementations do it the other way around. Changing * the order would need efficient representation of * case-fold ranges and bracket range sets even with * simple patterns so this is ok for now. */ if (ctx->cflags & REG_ICASE && !class) { if (add_icase_literals(ls, min, max)) { return REG_ESPACE; } } } } } static reg_errcode_t parse_bracket(tre_parse_ctx_t *ctx, const char *s) { int i; int max; int min; int negmax; int negmin; tre_ast_node_t *node = 0, *n; tre_ctype_t *nc = 0; tre_literal_t *lit; struct literals ls; struct neg neg; reg_errcode_t err; ls.mem = ctx->mem; ls.len = 0; ls.cap = 32; ls.a = xmalloc(ls.cap * sizeof *ls.a); if (!ls.a) { return REG_ESPACE; } neg.len = 0; neg.negate = *s == '^'; if (neg.negate) { s++; } err = parse_bracket_terms(ctx, s, &ls, &neg); if (err != REG_OK) { goto parse_bracket_done; } if (neg.negate) { /* Sort the array if we need to negate it. */ qsort(ls.a, ls.len, sizeof *ls.a, tre_compare_lit); /* extra lit for the last negated range */ lit = tre_new_lit(&ls); if (!lit) { err = REG_ESPACE; goto parse_bracket_done; } lit->code_min = TRE_CHAR_MAX + 1; lit->code_max = TRE_CHAR_MAX + 1; lit->position = -1; /* negated classes */ if (neg.len) { nc = tre_mem_alloc(ctx->mem, (neg.len + 1) * sizeof *neg.a); if (!nc) { err = REG_ESPACE; goto parse_bracket_done; } memcpy(nc, neg.a, neg.len * sizeof *neg.a); nc[neg.len] = 0; } } /* Build a union of the items in the array, negated if necessary. */ negmax = negmin = 0; for (i = 0; i < ls.len; i++) { lit = ls.a[i]; min = lit->code_min; max = lit->code_max; if (neg.negate) { if (min <= negmin) { /* Overlap. */ negmin = MAX(max + 1, negmin); continue; } negmax = min - 1; lit->code_min = negmin; lit->code_max = negmax; negmin = max + 1; } lit->position = ctx->position; lit->neg_classes = nc; n = tre_ast_new_node(ctx->mem, LITERAL, lit); node = tre_ast_new_union(ctx->mem, node, n); if (!node) { err = REG_ESPACE; break; } } parse_bracket_done: xfree(ls.a); ctx->position++; ctx->n = node; return err; } static const char *parse_dup_count(const char *s, int *n) { *n = -1; if (!isdigit(*s)) { return s; } *n = 0; for (; ; ) { *n = 10 * *n + (*s - '0'); s++; if (!isdigit(*s) || *n > RE_DUP_MAX) { break; } } return s; } static reg_errcode_t parse_dup(tre_parse_ctx_t *ctx, const char *s) { int min; int max; s = parse_dup_count(s, &min); if (*s == ',') { s = parse_dup_count(s + 1, &max); } else { max = min; } if ((max < min && max >= 0) || max > RE_DUP_MAX || min > RE_DUP_MAX || min < 0 || (!(ctx->cflags & REG_EXTENDED) && *s++ != '\\') || *s++ != '}') { return REG_BADBR; } if (min == 0 && max == 0) { ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1); } else { ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0); } if (!ctx->n) { return REG_ESPACE; } ctx->s = s; return REG_OK; } static int hexval(unsigned c) { if (c - '0' < 10) { return c - '0'; } c |= 32; if (c - 'a' < 6) { return c - 'a' + 10; } return -1; } static reg_errcode_t marksub(tre_parse_ctx_t *ctx, tre_ast_node_t *node, int subid) { if (node->submatch_id >= 0) { tre_ast_node_t *n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1); if (!n) { return REG_ESPACE; } n = tre_ast_new_catenation(ctx->mem, n, node); if (!n) { return REG_ESPACE; } n->num_submatches = node->num_submatches; node = n; } node->submatch_id = subid; node->num_submatches++; ctx->n = node; return REG_OK; } /* BRE grammar: * Regex = Branch | '^' | '$' | '^$' | '^' Branch * | Branch '$' | '^' Branch '$' * Branch = Atom | Branch Atom * Atom = char | quoted_char | '.' | Bracket | Atom Dup * | '\(' Branch '\)' | back_ref * Dup = '*' | '\{' Count '\}' | '\{' Count ',\}' * | '\{' Count ',' Count '\}' * * (leading ^ and trailing $ in a sub expr may be an anchor or * literal as well) * * ERE grammar: * Regex = Branch | Regex '|' Branch * Branch = Atom | Branch Atom * Atom = char | quoted_char | '.' | Bracket | Atom Dup * | '(' Regex ')' | '^' | '$' * Dup = '*' | '+' | '?' | '{' Count '}' | '{' Count ',}' * | '{' Count ',' Count '}' * * (a*+?, ^*, $+, \X, {, (|a) are unspecified) */ static reg_errcode_t parse_atom(tre_parse_ctx_t *ctx, const char *s) { int len; int ere = ctx->cflags & REG_EXTENDED; const char *p; tre_ast_node_t *node; wchar_t wc; switch (*s) { case '[': { return parse_bracket(ctx, s + 1); } case '\\': { p = tre_expand_macro(s + 1); if (p) { /* assume \X expansion is a single atom */ reg_errcode_t err = parse_atom(ctx, p); ctx->s = s + 2; return err; } /* extensions: \b, \B, \<, \>, \xHH \x{HHHH} */ switch (*++s) { case 0: { return REG_EESCAPE; } case 'b': { node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB, -1); } break; case 'B': { node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB_NEG, -1); } break; case '<': { node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOW, -1); } break; case '>': { node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOW, -1); } break; case 'x': { s++; int i; int v = 0; int c; len = 2; if (*s == '{') { len = 8; s++; } for (i = 0; i < len && v < 0x110000; i++) { c = hexval(s[i]); if (c < 0) { break; } v = 16 * v + c; } s += i; if (len == 8) { if (*s != '}') { return REG_EBRACE; } s++; } node = tre_ast_new_literal(ctx->mem, v, v, ctx->position); ctx->position++; s--; } break; default: if (isdigit(*s)) { /* back reference */ int val = *s - '0'; node = tre_ast_new_literal(ctx->mem, BACKREF, val, ctx->position); ctx->max_backref = MAX(val, ctx->max_backref); } else { /* extension: accept unknown escaped char * as a literal */ node = tre_ast_new_literal(ctx->mem, *s, *s, ctx->position); } ctx->position++; } s++; } break; case '.': { if (ctx->cflags & REG_NEWLINE) { tre_ast_node_t *tmp1; tre_ast_node_t *tmp2; tmp1 = tre_ast_new_literal(ctx->mem, 0, '\n' - 1, ctx->position++); tmp2 = tre_ast_new_literal(ctx->mem, '\n' + 1, TRE_CHAR_MAX, ctx->position++); if (tmp1 && tmp2) { node = tre_ast_new_union(ctx->mem, tmp1, tmp2); } else { node = 0; } } else { node = tre_ast_new_literal(ctx->mem, 0, TRE_CHAR_MAX, ctx->position++); } s++; } break; case '^': { /* '^' has a special meaning everywhere in EREs, and at beginning of * BRE. */ if (!ere && s != ctx->re) { goto parse_literal; } node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOL, -1); s++; } break; case '$': { /* '$' is special everywhere in EREs, and in the end of the string in * BREs. */ if (!ere && s[1]) { goto parse_literal; } node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOL, -1); s++; } break; case '*': case '|': case '{': case '+': case '?': { if (!ere) { goto parse_literal; } } case 0: { node = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1); } break; default: { parse_literal: len = mbtowc(&wc, s, -1); if (len < 0) { return REG_BADPAT; } if (ctx->cflags & REG_ICASE && (tre_isupper(wc) || tre_islower(wc))) { tre_ast_node_t *tmp1, *tmp2; /* multiple opposite case characters are not supported */ tmp1 = tre_ast_new_literal(ctx->mem, tre_toupper(wc), tre_toupper( wc), ctx->position); tmp2 = tre_ast_new_literal(ctx->mem, tre_tolower(wc), tre_tolower( wc), ctx->position); if (tmp1 && tmp2) { node = tre_ast_new_union(ctx->mem, tmp1, tmp2); } else { node = 0; } } else { node = tre_ast_new_literal(ctx->mem, wc, wc, ctx->position); } ctx->position++; s += len; } break; } if (!node) { return REG_ESPACE; } ctx->n = node; ctx->s = s; return REG_OK; } #define PUSHPTR(err, s, v) do { \ if ((err = tre_stack_push_voidptr(s, v)) != REG_OK) \ return err; \ } while (0) #define PUSHINT(err, s, v) do { \ if ((err = tre_stack_push_int(s, v)) != REG_OK) \ return err; \ } while (0) static reg_errcode_t tre_parse(tre_parse_ctx_t *ctx) { tre_ast_node_t *nbranch = 0; tre_ast_node_t *nunion = 0; int ere = ctx->cflags & REG_EXTENDED; const char *s = ctx->re; int subid = 0; int depth = 0; reg_errcode_t err; tre_stack_t *stack = ctx->stack; PUSHINT(err, stack, subid++); for (; ; ) { if ((!ere && *s == '\\' && s[1] == '(') || (ere && *s == '(')) { PUSHPTR(err, stack, nunion); PUSHPTR(err, stack, nbranch); PUSHINT(err, stack, subid++); s++; if (!ere) { s++; } depth++; nbranch = nunion = 0; continue; } if ((!ere && *s == '\\' && s[1] == ')') || (ere && *s == ')' && depth)) { ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1); if (!ctx->n) { return REG_ESPACE; } } else { err = parse_atom(ctx, s); if (err != REG_OK) { return err; } s = ctx->s; } parse_iter: /* extension: repetitions are accepted after an empty node * eg. (+), ^*, a$?, a|{2} */ switch (*s) { case '+': case '?': { if (!ere) { break; } /* fallthrough */ } case '*': { int min = 0; int max = -1; if (*s == '+') { min = 1; } if (*s == '?') { max = 1; } s++; ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0); if (!ctx->n) { return REG_ESPACE; } /* extension: multiple consecutive *+?{,} is unspecified, * but (a+)+ has to be supported so accepting a++ makes * sense, note however that the RE_DUP_MAX limit can be * circumvented: (a{255}){255} uses a lot of memory.. */ goto parse_iter; } case '\\': { if (ere || s[1] != '{') { break; } s++; goto parse_brace; } case '{': if (!ere) { break; } parse_brace: err = parse_dup(ctx, s + 1); if (err != REG_OK) { return err; } s = ctx->s; goto parse_iter; } nbranch = tre_ast_new_catenation(ctx->mem, nbranch, ctx->n); if ((ere && *s == '|') || (ere && *s == ')' && depth) || (!ere && *s == '\\' && s[1] == ')') || !*s) { /* extension: empty branch is unspecified (), (|a), (a|) * here they are not rejected but match on empty string */ int c = *s; nunion = tre_ast_new_union(ctx->mem, nunion, nbranch); nbranch = 0; if (c != '|') { if (c == '\\') { if (!depth) { return REG_EPAREN; } s += 2; } else if (c == ')') { s++; } depth--; err = marksub(ctx, nunion, tre_stack_pop_int(stack)); if (err != REG_OK) { return err; } if (!c && depth < 0) { ctx->submatch_id = subid; return REG_OK; } if (!c || depth < 0) { return REG_EPAREN; } nbranch = tre_stack_pop_voidptr(stack); nunion = tre_stack_pop_voidptr(stack); goto parse_iter; } s++; } } } /* from tre-compile.c */ /* TODO: * - Fix tre_ast_to_tnfa() to recurse using a stack instead of recursive * function calls. */ /* Algorithms to setup tags so that submatch addressing can be done. */ /* Inserts a catenation node to the root of the tree given in `node'. * As the left child a new tag with number `tag_id' to `node' is added, * and the right child is the old root. */ static reg_errcode_t tre_add_tag_left(tre_mem_t mem, tre_ast_node_t *node, int tag_id) { tre_catenation_t *c; c = tre_mem_alloc(mem, sizeof(*c)); if (c == NULL) { return REG_ESPACE; } c->left = tre_ast_new_literal(mem, TAG, tag_id, -1); if (c->left == NULL) { return REG_ESPACE; } c->right = tre_mem_alloc(mem, sizeof(tre_ast_node_t)); if (c->right == NULL) { return REG_ESPACE; } c->right->obj = node->obj; c->right->type = node->type; c->right->nullable = -1; c->right->submatch_id = -1; c->right->firstpos = NULL; c->right->lastpos = NULL; c->right->num_tags = 0; node->obj = c; node->type = CATENATION; return REG_OK; } /* Inserts a catenation node to the root of the tree given in `node'. * As the right child a new tag with number `tag_id' to `node' is added, * and the left child is the old root. */ static reg_errcode_t tre_add_tag_right(tre_mem_t mem, tre_ast_node_t *node, int tag_id) { tre_catenation_t *c; c = tre_mem_alloc(mem, sizeof(*c)); if (c == NULL) { return REG_ESPACE; } c->right = tre_ast_new_literal(mem, TAG, tag_id, -1); if (c->right == NULL) { return REG_ESPACE; } c->left = tre_mem_alloc(mem, sizeof(tre_ast_node_t)); if (c->left == NULL) { return REG_ESPACE; } c->left->obj = node->obj; c->left->type = node->type; c->left->nullable = -1; c->left->submatch_id = -1; c->left->firstpos = NULL; c->left->lastpos = NULL; c->left->num_tags = 0; node->obj = c; node->type = CATENATION; return REG_OK; } typedef enum { ADDTAGS_RECURSE, ADDTAGS_AFTER_ITERATION, ADDTAGS_AFTER_UNION_LEFT, ADDTAGS_AFTER_UNION_RIGHT, ADDTAGS_AFTER_CAT_LEFT, ADDTAGS_AFTER_CAT_RIGHT, ADDTAGS_SET_SUBMATCH_END } tre_addtags_symbol_t; typedef struct { int tag; int next_tag; } tre_tag_states_t; /* Go through `regset' and set submatch data for submatches that are * using this tag. */ static void tre_purge_regset(int *regset, tre_tnfa_t *tnfa, int tag) { int i; for (i = 0; regset[i] >= 0; i++) { int id = regset[i] / 2; int start = !(regset[i] % 2); if (start) { tnfa->submatch_data[id].so_tag = tag; } else { tnfa->submatch_data[id].eo_tag = tag; } } regset[0] = -1; } /* Adds tags to appropriate locations in the parse tree in `tree', so that * subexpressions marked for submatch addressing can be traced. */ static reg_errcode_t tre_add_tags(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree, tre_tnfa_t *tnfa) { reg_errcode_t status = REG_OK; tre_addtags_symbol_t symbol; tre_ast_node_t *node = tree; /* Tree node we are currently looking * at. */ int bottom = tre_stack_num_objects(stack); /* True for first pass (counting number of needed tags) */ int first_pass = (mem == NULL || tnfa == NULL); int *regset; int *orig_regset; /* num_tags: Total number of tags. * num_minimals: Number of special minimal tags. * tag: The tag that is to be added next. * next_tag: Next tag to use after this one. * parents: Stack of submatches the current submatch is contained in. * minimal_tag: Tag that marks the beginning of a minimal match. */ int num_tags = 0; int num_minimals = 0; int tag = 0; int next_tag = 1; int *parents; int minimal_tag = -1; tre_tag_states_t *saved_states; tre_tag_direction_t direction = TRE_TAG_MINIMIZE; if (!first_pass) { tnfa->end_tag = 0; tnfa->minimal_tags[0] = -1; } regset = xmalloc(sizeof(*regset) * ((tnfa->num_submatches + 1) * 2)); if (regset == NULL) { return REG_ESPACE; } regset[0] = -1; orig_regset = regset; parents = xmalloc(sizeof(*parents) * (tnfa->num_submatches + 1)); if (parents == NULL) { xfree(regset); return REG_ESPACE; } parents[0] = -1; saved_states = xmalloc(sizeof(*saved_states) * (tnfa->num_submatches + 1)); if (saved_states == NULL) { xfree(regset); xfree(parents); return REG_ESPACE; } else { unsigned int i; for (i = 0; i <= tnfa->num_submatches; i++) { saved_states[i].tag = -1; } } STACK_PUSH(stack, voidptr, node); STACK_PUSH(stack, int, ADDTAGS_RECURSE); while (tre_stack_num_objects(stack) > bottom) { if (status != REG_OK) { break; } symbol = (tre_addtags_symbol_t)tre_stack_pop_int(stack); switch (symbol) { case ADDTAGS_SET_SUBMATCH_END: { int id = tre_stack_pop_int(stack); int i; /* Add end of this submatch to regset. */ for (i = 0; regset[i] >= 0; i++) { } regset[i] = id * 2 + 1; regset[i + 1] = -1; /* Pop this submatch from the parents stack. */ for (i = 0; parents[i] >= 0; i++) { } parents[i - 1] = -1; break; } case ADDTAGS_RECURSE: { node = tre_stack_pop_voidptr(stack); if (node->submatch_id >= 0) { int id = node->submatch_id; int i; /* Add start of this submatch to regset. */ for (i = 0; regset[i] >= 0; i++) { } regset[i] = id * 2; regset[i + 1] = -1; if (!first_pass) { for (i = 0; parents[i] >= 0; i++) { } tnfa->submatch_data[id].parents = NULL; if (i > 0) { int *p = xmalloc(sizeof(*p) * (i + 1)); if (p == NULL) { status = REG_ESPACE; break; } ASSERT(tnfa->submatch_data[id].parents == NULL); tnfa->submatch_data[id].parents = p; for (i = 0; parents[i] >= 0; i++) { p[i] = parents[i]; } p[i] = -1; } } /* Add end of this submatch to regset after processing this * node. */ STACK_PUSHX(stack, int, node->submatch_id); STACK_PUSHX(stack, int, ADDTAGS_SET_SUBMATCH_END); } switch (node->type) { case LITERAL: { tre_literal_t *lit = node->obj; if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) { int i; if (regset[0] >= 0) { /* Regset is not empty, so add a tag before the * literal or backref. */ if (!first_pass) { status = tre_add_tag_left(mem, node, tag); tnfa->tag_directions[tag] = direction; if (minimal_tag >= 0) { for (i = 0; tnfa->minimal_tags[i] >= 0; i++) { } tnfa->minimal_tags[i] = tag; tnfa->minimal_tags[i + 1] = minimal_tag; tnfa->minimal_tags[i + 2] = -1; minimal_tag = -1; num_minimals++; } tre_purge_regset(regset, tnfa, tag); } else { node->num_tags = 1; } regset[0] = -1; tag = next_tag; num_tags++; next_tag++; } } else { ASSERT(!IS_TAG(lit)); } break; } case CATENATION: { tre_catenation_t *cat = node->obj; tre_ast_node_t *left = cat->left; tre_ast_node_t *right = cat->right; int reserved_tag = -1; /* After processing right child. */ STACK_PUSHX(stack, voidptr, node); STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_RIGHT); /* Process right child. */ STACK_PUSHX(stack, voidptr, right); STACK_PUSHX(stack, int, ADDTAGS_RECURSE); /* After processing left child. */ STACK_PUSHX(stack, int, next_tag + left->num_tags); if (left->num_tags > 0 && right->num_tags > 0) { /* Reserve the next tag to the right child. */ reserved_tag = next_tag; next_tag++; } STACK_PUSHX(stack, int, reserved_tag); STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_LEFT); /* Process left child. */ STACK_PUSHX(stack, voidptr, left); STACK_PUSHX(stack, int, ADDTAGS_RECURSE); } break; case ITERATION: { tre_iteration_t *iter = node->obj; if (first_pass) { STACK_PUSHX(stack, int, regset[0] >= 0 || iter->minimal); } else { STACK_PUSHX(stack, int, tag); STACK_PUSHX(stack, int, iter->minimal); } STACK_PUSHX(stack, voidptr, node); STACK_PUSHX(stack, int, ADDTAGS_AFTER_ITERATION); STACK_PUSHX(stack, voidptr, iter->arg); STACK_PUSHX(stack, int, ADDTAGS_RECURSE); /* Regset is not empty, so add a tag here. */ if (regset[0] >= 0 || iter->minimal) { if (!first_pass) { int i; status = tre_add_tag_left(mem, node, tag); if (iter->minimal) { tnfa->tag_directions[tag] = TRE_TAG_MAXIMIZE; } else { tnfa->tag_directions[tag] = direction; } if (minimal_tag >= 0) { for (i = 0; tnfa->minimal_tags[i] >= 0; i++) { } tnfa->minimal_tags[i] = tag; tnfa->minimal_tags[i + 1] = minimal_tag; tnfa->minimal_tags[i + 2] = -1; minimal_tag = -1; num_minimals++; } tre_purge_regset(regset, tnfa, tag); } regset[0] = -1; tag = next_tag; num_tags++; next_tag++; } direction = TRE_TAG_MINIMIZE; } break; case UNION: { tre_union_t *uni = node->obj; tre_ast_node_t *left = uni->left; tre_ast_node_t *right = uni->right; int left_tag; int right_tag; if (regset[0] >= 0) { left_tag = next_tag; right_tag = next_tag + 1; } else { left_tag = tag; right_tag = next_tag; } /* After processing right child. */ STACK_PUSHX(stack, int, right_tag); STACK_PUSHX(stack, int, left_tag); STACK_PUSHX(stack, voidptr, regset); STACK_PUSHX(stack, int, regset[0] >= 0); STACK_PUSHX(stack, voidptr, node); STACK_PUSHX(stack, voidptr, right); STACK_PUSHX(stack, voidptr, left); STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_RIGHT); /* Process right child. */ STACK_PUSHX(stack, voidptr, right); STACK_PUSHX(stack, int, ADDTAGS_RECURSE); /* After processing left child. */ STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_LEFT); /* Process left child. */ STACK_PUSHX(stack, voidptr, left); STACK_PUSHX(stack, int, ADDTAGS_RECURSE); /* Regset is not empty, so add a tag here. */ if (regset[0] >= 0) { if (!first_pass) { int i; status = tre_add_tag_left(mem, node, tag); tnfa->tag_directions[tag] = direction; if (minimal_tag >= 0) { for (i = 0; tnfa->minimal_tags[i] >= 0; i++) { } tnfa->minimal_tags[i] = tag; tnfa->minimal_tags[i + 1] = minimal_tag; tnfa->minimal_tags[i + 2] = -1; minimal_tag = -1; num_minimals++; } tre_purge_regset(regset, tnfa, tag); } regset[0] = -1; tag = next_tag; num_tags++; next_tag++; } if (node->num_submatches > 0) { /* The next two tags are reserved for markers. */ next_tag++; tag = next_tag; next_tag++; } break; } } if (node->submatch_id >= 0) { int i; /* Push this submatch on the parents stack. */ for (i = 0; parents[i] >= 0; i++) { } parents[i] = node->submatch_id; parents[i + 1] = -1; } } break; /* end case: ADDTAGS_RECURSE */ case ADDTAGS_AFTER_ITERATION: { int minimal = 0; int enter_tag; node = tre_stack_pop_voidptr(stack); if (first_pass) { node->num_tags = ((tre_iteration_t *)node->obj)->arg->num_tags + tre_stack_pop_int( stack); minimal_tag = -1; } else { minimal = tre_stack_pop_int(stack); enter_tag = tre_stack_pop_int(stack); if (minimal) { minimal_tag = enter_tag; } } if (!first_pass) { if (minimal) { direction = TRE_TAG_MINIMIZE; } else { direction = TRE_TAG_MAXIMIZE; } } break; } case ADDTAGS_AFTER_CAT_LEFT: { int new_tag = tre_stack_pop_int(stack); next_tag = tre_stack_pop_int(stack); if (new_tag >= 0) { tag = new_tag; } break; } case ADDTAGS_AFTER_CAT_RIGHT: { node = tre_stack_pop_voidptr(stack); if (first_pass) { node->num_tags = ((tre_catenation_t *)node->obj)->left->num_tags + ((tre_catenation_t *)node->obj)->right->num_tags; } } break; case ADDTAGS_AFTER_UNION_LEFT: { /* Lift the bottom of the `regset' array so that when processing * the right operand the items currently in the array are * invisible. The original bottom was saved at ADDTAGS_UNION * and * will be restored at ADDTAGS_AFTER_UNION_RIGHT below. */ while (*regset >= 0) { regset++; } } break; case ADDTAGS_AFTER_UNION_RIGHT: { int added_tags; int tag_left; int tag_right; tre_ast_node_t *left = tre_stack_pop_voidptr(stack); tre_ast_node_t *right = tre_stack_pop_voidptr(stack); node = tre_stack_pop_voidptr(stack); added_tags = tre_stack_pop_int(stack); if (first_pass) { node->num_tags = ((tre_union_t *)node->obj)->left->num_tags + ((tre_union_t *)node->obj)->right->num_tags + added_tags + ((node->num_submatches > 0) ? 2 : 0); } regset = tre_stack_pop_voidptr(stack); tag_left = tre_stack_pop_int(stack); tag_right = tre_stack_pop_int(stack); /* Add tags after both children, the left child gets a smaller * tag than the right child. This guarantees that we prefer * the left child over the right child. */ /* XXX - This is not always necessary (if the children have * tags which must be seen for every match of that child). */ /* XXX - Check if this is the only place where tre_add_tag_right * is used. If so, use tre_add_tag_left (putting the tag before * the child as opposed after the child) and throw away * tre_add_tag_right. */ if (node->num_submatches > 0) { if (!first_pass) { status = tre_add_tag_right(mem, left, tag_left); tnfa->tag_directions[tag_left] = TRE_TAG_MAXIMIZE; status = tre_add_tag_right( mem, right, tag_right); tnfa->tag_directions[tag_right] = TRE_TAG_MAXIMIZE; } num_tags += 2; } direction = TRE_TAG_MAXIMIZE; break; } default: { ASSERT(0); } break; /* end switch(symbol) */ } /* end while(tre_stack_num_objects(stack) > bottom) */ } if (!first_pass) { tre_purge_regset(regset, tnfa, tag); } if (!first_pass && minimal_tag >= 0) { int i; for (i = 0; tnfa->minimal_tags[i] >= 0; i++) { } tnfa->minimal_tags[i] = tag; tnfa->minimal_tags[i + 1] = minimal_tag; tnfa->minimal_tags[i + 2] = -1; minimal_tag = -1; num_minimals++; } ASSERT(tree->num_tags == num_tags); tnfa->end_tag = num_tags; tnfa->num_tags = num_tags; tnfa->num_minimals = num_minimals; xfree(orig_regset); xfree(parents); xfree(saved_states); return status; } /* AST to TNFA compilation routines. */ typedef enum { COPY_RECURSE, COPY_SET_RESULT_PTR } tre_copyast_symbol_t; /* Flags for tre_copy_ast(). */ #define COPY_REMOVE_TAGS 1 #define COPY_MAXIMIZE_FIRST_TAG 2 static reg_errcode_t tre_copy_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast, int flags, int *pos_add, tre_tag_direction_t *tag_directions, tre_ast_node_t **copy, int *max_pos) { reg_errcode_t status = REG_OK; int bottom = tre_stack_num_objects(stack); int num_copied = 0; int first_tag = 1; tre_ast_node_t **result = copy; tre_copyast_symbol_t symbol; STACK_PUSH(stack, voidptr, ast); STACK_PUSH(stack, int, COPY_RECURSE); while (status == REG_OK && tre_stack_num_objects(stack) > bottom) { tre_ast_node_t *node; if (status != REG_OK) { break; } symbol = (tre_copyast_symbol_t)tre_stack_pop_int(stack); switch (symbol) { case COPY_SET_RESULT_PTR: { result = tre_stack_pop_voidptr(stack); } break; case COPY_RECURSE: { node = tre_stack_pop_voidptr(stack); switch (node->type) { case LITERAL: { tre_literal_t *lit = node->obj; int pos = lit->position; int min = lit->code_min; int max = lit->code_max; if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) { /* XXX - e.g. [ab] has only one position but two * nodes, so we are creating holes in the state space * here. Not fatal, just wastes memory. */ pos += *pos_add; num_copied++; } else if (IS_TAG(lit) && (flags & COPY_REMOVE_TAGS)) { /* Change this tag to empty. */ min = EMPTY; max = pos = -1; } else if (IS_TAG(lit) && (flags & COPY_MAXIMIZE_FIRST_TAG) && first_tag) { /* Maximize the first tag. */ tag_directions[max] = TRE_TAG_MAXIMIZE; first_tag = 0; } *result = tre_ast_new_literal(mem, min, max, pos); if (*result == NULL) { status = REG_ESPACE; } if (pos > *max_pos) { *max_pos = pos; } break; } case UNION: { tre_union_t *uni = node->obj; tre_union_t *tmp; *result = tre_ast_new_union(mem, uni->left, uni->right); if (*result == NULL) { status = REG_ESPACE; break; } tmp = (*result)->obj; result = &tmp->left; STACK_PUSHX(stack, voidptr, uni->right); STACK_PUSHX(stack, int, COPY_RECURSE); STACK_PUSHX(stack, voidptr, &tmp->right); STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR); STACK_PUSHX(stack, voidptr, uni->left); STACK_PUSHX(stack, int, COPY_RECURSE); break; } case CATENATION: { tre_catenation_t *cat = node->obj; tre_catenation_t *tmp; *result = tre_ast_new_catenation(mem, cat->left, cat->right); if (*result == NULL) { status = REG_ESPACE; break; } tmp = (*result)->obj; tmp->left = NULL; tmp->right = NULL; result = &tmp->left; STACK_PUSHX(stack, voidptr, cat->right); STACK_PUSHX(stack, int, COPY_RECURSE); STACK_PUSHX(stack, voidptr, &tmp->right); STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR); STACK_PUSHX(stack, voidptr, cat->left); STACK_PUSHX(stack, int, COPY_RECURSE); break; } case ITERATION: { tre_iteration_t *iter = node->obj; STACK_PUSHX(stack, voidptr, iter->arg); STACK_PUSHX(stack, int, COPY_RECURSE); *result = tre_ast_new_iter(mem, iter->arg, iter->min, iter->max, iter->minimal); if (*result == NULL) { status = REG_ESPACE; break; } iter = (*result)->obj; result = &iter->arg; break; } default: { ASSERT(0); break; } } } break; } } *pos_add += num_copied; return status; } typedef enum { EXPAND_RECURSE, EXPAND_AFTER_ITER } tre_expand_ast_symbol_t; /* Expands each iteration node that has a finite nonzero minimum or maximum * iteration count to a catenated sequence of copies of the node. */ static reg_errcode_t tre_expand_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast, int *position, tre_tag_direction_t *tag_directions) { reg_errcode_t status = REG_OK; int bottom = tre_stack_num_objects(stack); int pos_add = 0; int pos_add_total = 0; int max_pos = 0; int iter_depth = 0; STACK_PUSHR(stack, voidptr, ast); STACK_PUSHR(stack, int, EXPAND_RECURSE); while (status == REG_OK && tre_stack_num_objects(stack) > bottom) { tre_ast_node_t *node; tre_expand_ast_symbol_t symbol; if (status != REG_OK) { break; } symbol = (tre_expand_ast_symbol_t)tre_stack_pop_int(stack); node = tre_stack_pop_voidptr(stack); switch (symbol) { case EXPAND_RECURSE: { switch (node->type) { case LITERAL: { tre_literal_t *lit = node->obj; if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) { lit->position += pos_add; if (lit->position > max_pos) { max_pos = lit->position; } } break; } case UNION: { tre_union_t *uni = node->obj; STACK_PUSHX(stack, voidptr, uni->right); STACK_PUSHX(stack, int, EXPAND_RECURSE); STACK_PUSHX(stack, voidptr, uni->left); STACK_PUSHX(stack, int, EXPAND_RECURSE); break; } case CATENATION: { tre_catenation_t *cat = node->obj; STACK_PUSHX(stack, voidptr, cat->right); STACK_PUSHX(stack, int, EXPAND_RECURSE); STACK_PUSHX(stack, voidptr, cat->left); STACK_PUSHX(stack, int, EXPAND_RECURSE); break; } case ITERATION: { tre_iteration_t *iter = node->obj; STACK_PUSHX(stack, int, pos_add); STACK_PUSHX(stack, voidptr, node); STACK_PUSHX(stack, int, EXPAND_AFTER_ITER); STACK_PUSHX(stack, voidptr, iter->arg); STACK_PUSHX(stack, int, EXPAND_RECURSE); /* If we are going to expand this node at EXPAND_AFTER_ITER * then don't increase the `pos' fields of the nodes now, it * will get done when expanding. */ if (iter->min > 1 || iter->max > 1) { pos_add = 0; } iter_depth++; break; } default: { ASSERT(0); break; } } } break; case EXPAND_AFTER_ITER: { tre_iteration_t *iter = node->obj; int pos_add_last; pos_add = tre_stack_pop_int(stack); pos_add_last = pos_add; if (iter->min > 1 || iter->max > 1) { tre_ast_node_t *seq1 = NULL, *seq2 = NULL; int j; int pos_add_save = pos_add; /* Create a catenated sequence of copies of the node. */ for (j = 0; j < iter->min; j++) { tre_ast_node_t *copy; /* Remove tags from all but the last copy. */ int flags = ((j + 1 < iter->min) ? COPY_REMOVE_TAGS : COPY_MAXIMIZE_FIRST_TAG); pos_add_save = pos_add; status = tre_copy_ast(mem, stack, iter->arg, flags, &pos_add, tag_directions, ©, &max_pos); if (status != REG_OK) { return status; } if (seq1 != NULL) { seq1 = tre_ast_new_catenation(mem, seq1, copy); } else { seq1 = copy; } if (seq1 == NULL) { return REG_ESPACE; } } if (iter->max == -1) { /* No upper limit. */ pos_add_save = pos_add; status = tre_copy_ast(mem, stack, iter->arg, 0, &pos_add, NULL, &seq2, &max_pos); if (status != REG_OK) { return status; } seq2 = tre_ast_new_iter(mem, seq2, 0, -1, 0); if (seq2 == NULL) { return REG_ESPACE; } } else { for (j = iter->min; j < iter->max; j++) { tre_ast_node_t *tmp, *copy; pos_add_save = pos_add; status = tre_copy_ast(mem, stack, iter->arg, 0, &pos_add, NULL, ©, &max_pos); if (status != REG_OK) { return status; } if (seq2 != NULL) { seq2 = tre_ast_new_catenation(mem, copy, seq2); } else { seq2 = copy; } if (seq2 == NULL) { return REG_ESPACE; } tmp = tre_ast_new_literal(mem, EMPTY, -1, -1); if (tmp == NULL) { return REG_ESPACE; } seq2 = tre_ast_new_union(mem, tmp, seq2); if (seq2 == NULL) { return REG_ESPACE; } } } pos_add = pos_add_save; if (seq1 == NULL) { seq1 = seq2; } else if (seq2 != NULL) { seq1 = tre_ast_new_catenation(mem, seq1, seq2); } if (seq1 == NULL) { return REG_ESPACE; } node->obj = seq1->obj; node->type = seq1->type; } iter_depth--; pos_add_total += pos_add - pos_add_last; if (iter_depth == 0) { pos_add = pos_add_total; } break; } default: { ASSERT(0); break; } } } *position += pos_add_total; /* `max_pos' should never be larger than `*position' if the above * code works, but just an extra safeguard let's make sure * `*position' is set large enough so enough memory will be * allocated for the transition table. */ if (max_pos > *position) { *position = max_pos; } return status; } static tre_pos_and_tags_t *tre_set_empty(tre_mem_t mem) { tre_pos_and_tags_t *new_set; new_set = tre_mem_calloc(mem, sizeof(*new_set)); if (new_set == NULL) { return NULL; } new_set[0].position = -1; new_set[0].code_min = -1; new_set[0].code_max = -1; return new_set; } static tre_pos_and_tags_t *tre_set_one(tre_mem_t mem, int position, int code_min, int code_max, tre_ctype_t class, tre_ctype_t *neg_classes, int backref) { tre_pos_and_tags_t *new_set; new_set = tre_mem_calloc(mem, sizeof(*new_set) * 2); if (new_set == NULL) { return NULL; } new_set[0].position = position; new_set[0].code_min = code_min; new_set[0].code_max = code_max; new_set[0].class = class; new_set[0].neg_classes = neg_classes; new_set[0].backref = backref; new_set[1].position = -1; new_set[1].code_min = -1; new_set[1].code_max = -1; return new_set; } static tre_pos_and_tags_t *tre_set_union(tre_mem_t mem, tre_pos_and_tags_t *set1, tre_pos_and_tags_t *set2, int *tags, int assertions) { int s1; int s2; int i; int j; tre_pos_and_tags_t *new_set; int *new_tags; int num_tags; for (num_tags = 0; tags != NULL && tags[num_tags] >= 0; num_tags++) { } for (s1 = 0; set1[s1].position >= 0; s1++) { } for (s2 = 0; set2[s2].position >= 0; s2++) { } new_set = tre_mem_calloc(mem, sizeof(*new_set) * (s1 + s2 + 1)); if (!new_set) { return NULL; } for (s1 = 0; set1[s1].position >= 0; s1++) { new_set[s1].position = set1[s1].position; new_set[s1].code_min = set1[s1].code_min; new_set[s1].code_max = set1[s1].code_max; new_set[s1].assertions = set1[s1].assertions | assertions; new_set[s1].class = set1[s1].class; new_set[s1].neg_classes = set1[s1].neg_classes; new_set[s1].backref = set1[s1].backref; if (set1[s1].tags == NULL && tags == NULL) { new_set[s1].tags = NULL; } else { for (i = 0; set1[s1].tags != NULL && set1[s1].tags[i] >= 0; i++) { } new_tags = tre_mem_alloc(mem, (sizeof(*new_tags) * (i + num_tags + 1))); if (new_tags == NULL) { return NULL; } for (j = 0; j < i; j++) { new_tags[j] = set1[s1].tags[j]; } for (i = 0; i < num_tags; i++) { new_tags[j + i] = tags[i]; } new_tags[j + i] = -1; new_set[s1].tags = new_tags; } } for (s2 = 0; set2[s2].position >= 0; s2++) { new_set[s1 + s2].position = set2[s2].position; new_set[s1 + s2].code_min = set2[s2].code_min; new_set[s1 + s2].code_max = set2[s2].code_max; /* XXX - why not | assertions here as well? */ new_set[s1 + s2].assertions = set2[s2].assertions; new_set[s1 + s2].class = set2[s2].class; new_set[s1 + s2].neg_classes = set2[s2].neg_classes; new_set[s1 + s2].backref = set2[s2].backref; if (set2[s2].tags == NULL) { new_set[s1 + s2].tags = NULL; } else { for (i = 0; set2[s2].tags[i] >= 0; i++) { } new_tags = tre_mem_alloc(mem, sizeof(*new_tags) * (i + 1)); if (new_tags == NULL) { return NULL; } for (j = 0; j < i; j++) { new_tags[j] = set2[s2].tags[j]; } new_tags[j] = -1; new_set[s1 + s2].tags = new_tags; } } new_set[s1 + s2].position = -1; return new_set; } /* Finds the empty path through `node' which is the one that should be * taken according to POSIX.2 rules, and adds the tags on that path to * `tags'. `tags' may be NULL. If `num_tags_seen' is not NULL, it is * set to the number of tags seen on the path. */ static reg_errcode_t tre_match_empty(tre_stack_t *stack, tre_ast_node_t *node, int *tags, int *assertions, int *num_tags_seen) { tre_literal_t *lit; tre_union_t *uni; tre_catenation_t *cat; tre_iteration_t *iter; int i; int bottom = tre_stack_num_objects(stack); reg_errcode_t status = REG_OK; if (num_tags_seen) { *num_tags_seen = 0; } status = tre_stack_push_voidptr(stack, node); /* Walk through the tree recursively. */ while (status == REG_OK && tre_stack_num_objects(stack) > bottom) { node = tre_stack_pop_voidptr(stack); switch (node->type) { case LITERAL: { lit = (tre_literal_t *)node->obj; switch (lit->code_min) { case TAG: { if (lit->code_max >= 0) { if (tags != NULL) { /* Add the tag to `tags'. */ for (i = 0; tags[i] >= 0; i++) { if (tags[i] == lit->code_max) { break; } } if (tags[i] < 0) { tags[i] = lit->code_max; tags[i + 1] = -1; } } if (num_tags_seen) { (*num_tags_seen)++; } } } break; case ASSERTION: { ASSERT(lit->code_max >= 1 || lit->code_max <= ASSERT_LAST); if (assertions != NULL) { *assertions |= lit->code_max; } } break; case EMPTY: { } break; default: { ASSERT(0); } break; } } break; case UNION: { /* Subexpressions starting earlier take priority over ones * starting later, so we prefer the left subexpression over the * right subexpression. */ uni = (tre_union_t *)node->obj; if (uni->left->nullable) STACK_PUSHX(stack, voidptr, uni->left) else if (uni->right->nullable) STACK_PUSHX(stack, voidptr, uni->right) else ASSERT(0); } break; case CATENATION: { /* The path must go through both children. */ cat = (tre_catenation_t *)node->obj; ASSERT(cat->left->nullable); ASSERT(cat->right->nullable); STACK_PUSHX(stack, voidptr, cat->left); STACK_PUSHX(stack, voidptr, cat->right); } break; case ITERATION: { /* A match with an empty string is preferred over no match at * all, so we go through the argument if possible. */ iter = (tre_iteration_t *)node->obj; if (iter->arg->nullable) { STACK_PUSHX(stack, voidptr, iter->arg); } } break; default: { ASSERT(0); } break; } } return status; } typedef enum { NFL_RECURSE, NFL_POST_UNION, NFL_POST_CATENATION, NFL_POST_ITERATION } tre_nfl_stack_symbol_t; /* Computes and fills in the fields `nullable', `firstpos', and `lastpos' for * the nodes of the AST `tree'. */ static reg_errcode_t tre_compute_nfl(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree) { int bottom = tre_stack_num_objects(stack); STACK_PUSHR(stack, voidptr, tree); STACK_PUSHR(stack, int, NFL_RECURSE); while (tre_stack_num_objects(stack) > bottom) { tre_nfl_stack_symbol_t symbol; tre_ast_node_t *node; symbol = (tre_nfl_stack_symbol_t)tre_stack_pop_int(stack); node = tre_stack_pop_voidptr(stack); switch (symbol) { case NFL_RECURSE: { switch (node->type) { case LITERAL: { tre_literal_t *lit = (tre_literal_t *)node->obj; if (IS_BACKREF(lit)) { /* Back references: nullable = false, firstpos = {i}, * lastpos = {i}. */ node->nullable = 0; node->firstpos = tre_set_one(mem, lit->position, 0, TRE_CHAR_MAX, 0, NULL, -1); if (!node->firstpos) { return REG_ESPACE; } node->lastpos = tre_set_one(mem, lit->position, 0, TRE_CHAR_MAX, 0, NULL, (int)lit->code_max); if (!node->lastpos) { return REG_ESPACE; } } else if (lit->code_min < 0) { /* Tags, empty strings, params, and zero width assertions: * nullable = true, firstpos = {}, and lastpos = {}. */ node->nullable = 1; node->firstpos = tre_set_empty(mem); if (!node->firstpos) { return REG_ESPACE; } node->lastpos = tre_set_empty(mem); if (!node->lastpos) { return REG_ESPACE; } } else { /* Literal at position i: nullable = false, firstpos = {i}, * lastpos = {i}. */ node->nullable = 0; node->firstpos = tre_set_one(mem, lit->position, (int)lit->code_min, (int)lit->code_max, 0, NULL, -1); if (!node->firstpos) { return REG_ESPACE; } node->lastpos = tre_set_one(mem, lit->position, (int)lit->code_min, (int)lit->code_max, lit->class, lit->neg_classes, -1); if (!node->lastpos) { return REG_ESPACE; } } break; } case UNION: { /* Compute the attributes for the two subtrees, and after that * for this node. */ STACK_PUSHR(stack, voidptr, node); STACK_PUSHR(stack, int, NFL_POST_UNION); STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->right); STACK_PUSHR(stack, int, NFL_RECURSE); STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->left); STACK_PUSHR(stack, int, NFL_RECURSE); } break; case CATENATION: { /* Compute the attributes for the two subtrees, and after that * for this node. */ STACK_PUSHR(stack, voidptr, node); STACK_PUSHR(stack, int, NFL_POST_CATENATION); STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->right); STACK_PUSHR(stack, int, NFL_RECURSE); STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->left); STACK_PUSHR(stack, int, NFL_RECURSE); } break; case ITERATION: { /* Compute the attributes for the subtree, and after that for * this node. */ STACK_PUSHR(stack, voidptr, node); STACK_PUSHR(stack, int, NFL_POST_ITERATION); STACK_PUSHR(stack, voidptr, ((tre_iteration_t *)node->obj)->arg); STACK_PUSHR(stack, int, NFL_RECURSE); } break; } } break; /* end case: NFL_RECURSE */ case NFL_POST_UNION: { tre_union_t *uni = (tre_union_t *)node->obj; node->nullable = uni->left->nullable || uni->right->nullable; node->firstpos = tre_set_union(mem, uni->left->firstpos, uni->right->firstpos, NULL, 0); if (!node->firstpos) { return REG_ESPACE; } node->lastpos = tre_set_union(mem, uni->left->lastpos, uni->right->lastpos, NULL, 0); if (!node->lastpos) { return REG_ESPACE; } break; } case NFL_POST_ITERATION: { tre_iteration_t *iter = (tre_iteration_t *)node->obj; if (iter->min == 0 || iter->arg->nullable) { node->nullable = 1; } else { node->nullable = 0; } node->firstpos = iter->arg->firstpos; node->lastpos = iter->arg->lastpos; break; } case NFL_POST_CATENATION: { int num_tags; int *tags; int assertions; reg_errcode_t status; tre_catenation_t *cat = node->obj; node->nullable = cat->left->nullable && cat->right->nullable; /* Compute firstpos. */ if (cat->left->nullable) { /* The left side matches the empty string. Make a first pass * with tre_match_empty() to get the number of tags and * parameters. */ status = tre_match_empty(stack, cat->left, NULL, NULL, &num_tags); if (status != REG_OK) { return status; } /* Allocate arrays for the tags and parameters. */ tags = xmalloc(sizeof(*tags) * (num_tags + 1)); if (!tags) { return REG_ESPACE; } tags[0] = -1; assertions = 0; /* Second pass with tre_mach_empty() to get the list of * tags and parameters. */ status = tre_match_empty(stack, cat->left, tags, &assertions, NULL); if (status != REG_OK) { xfree(tags); return status; } node->firstpos = tre_set_union(mem, cat->right->firstpos, cat->left->firstpos, tags, assertions); xfree(tags); if (!node->firstpos) { return REG_ESPACE; } } else { node->firstpos = cat->left->firstpos; } /* Compute lastpos. */ if (cat->right->nullable) { /* The right side matches the empty string. Make a first pass * with tre_match_empty() to get the number of tags and * parameters. */ status = tre_match_empty(stack, cat->right, NULL, NULL, &num_tags); if (status != REG_OK) { return status; } /* Allocate arrays for the tags and parameters. */ tags = xmalloc(sizeof(int) * (num_tags + 1)); if (!tags) { return REG_ESPACE; } tags[0] = -1; assertions = 0; /* Second pass with tre_mach_empty() to get the list of * tags and parameters. */ status = tre_match_empty(stack, cat->right, tags, &assertions, NULL); if (status != REG_OK) { xfree(tags); return status; } node->lastpos = tre_set_union(mem, cat->left->lastpos, cat->right->lastpos, tags, assertions); xfree(tags); if (!node->lastpos) { return REG_ESPACE; } } else { node->lastpos = cat->right->lastpos; } break; } default: { ASSERT(0); } break; } } return REG_OK; } /* Adds a transition from each position in `p1' to each position in `p2'. */ static reg_errcode_t tre_make_trans(tre_pos_and_tags_t *p1, tre_pos_and_tags_t *p2, tre_tnfa_transition_t *transitions, int *counts, int *offs) { tre_pos_and_tags_t *orig_p2 = p2; tre_tnfa_transition_t *trans; int i; int j; int k; int l; int dup; int prev_p2_pos; if (transitions != NULL) { while (p1->position >= 0) { p2 = orig_p2; prev_p2_pos = -1; while (p2->position >= 0) { /* Optimization: if this position was already handled, skip it. */ if (p2->position == prev_p2_pos) { p2++; continue; } prev_p2_pos = p2->position; /* Set `trans' to point to the next unused transition from * position `p1->position'. */ trans = transitions + offs[p1->position]; while (trans->state != NULL) { #if 0 /* If we find a previous transition from `p1->position' to * `p2->position', it is overwritten. This can happen only * if there are nested loops in the regexp, like in * "((a)*)*". In POSIX.2 repetition using the outer loop * is always preferred over using the inner loop. * Therefore the transition for the inner loop is useless * and can be thrown away. */ /* XXX - The same position is used for all nodes in a * bracket expression, so this optimization cannot be * used (it will break bracket expressions) unless I * figure out a way to detect it here. */ if (trans->state_id == p2->position) { break; } #endif trans++; } if (trans->state == NULL) { (trans + 1)->state = NULL; } /* Use the character ranges, assertions, etc. from `p1' for * the transition from `p1' to `p2'. */ trans->code_min = p1->code_min; trans->code_max = p1->code_max; trans->state = transitions + offs[p2->position]; trans->state_id = p2->position; trans->assertions = p1->assertions | p2->assertions | (p1->class ? ASSERT_CHAR_CLASS : 0) | (p1->neg_classes != NULL ? ASSERT_CHAR_CLASS_NEG : 0); if (p1->backref >= 0) { ASSERT((trans->assertions & ASSERT_CHAR_CLASS) == 0); ASSERT(p2->backref < 0); trans->u.backref = p1->backref; trans->assertions |= ASSERT_BACKREF; } else { trans->u.class = p1->class; } if (p1->neg_classes != NULL) { for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++) { } trans->neg_classes = xmalloc(sizeof(*trans->neg_classes) * (i + 1)); if (trans->neg_classes == NULL) { return REG_ESPACE; } for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++) { trans->neg_classes[i] = p1->neg_classes[i]; } trans->neg_classes[i] = (tre_ctype_t)0; } else { trans->neg_classes = NULL; } /* Find out how many tags this transition has. */ i = 0; if (p1->tags != NULL) { while (p1->tags[i] >= 0) { i++; } } j = 0; if (p2->tags != NULL) { while (p2->tags[j] >= 0) { j++; } } /* If we are overwriting a transition, free the old tag array. */ if (trans->tags != NULL) { xfree(trans->tags); } trans->tags = NULL; /* If there were any tags, allocate an array and fill it. */ if (i + j > 0) { trans->tags = xmalloc(sizeof(*trans->tags) * (i + j + 1)); if (!trans->tags) { return REG_ESPACE; } i = 0; if (p1->tags != NULL) { while (p1->tags[i] >= 0) { trans->tags[i] = p1->tags[i]; i++; } } l = i; j = 0; if (p2->tags != NULL) { while (p2->tags[j] >= 0) { /* Don't add duplicates. */ dup = 0; for (k = 0; k < i; k++) { if (trans->tags[k] == p2->tags[j]) { dup = 1; break; } } if (!dup) { trans->tags[l++] = p2->tags[j]; } j++; } } trans->tags[l] = -1; } p2++; } p1++; } } else { /* Compute a maximum limit for the number of transitions leaving * from each state. */ while (p1->position >= 0) { p2 = orig_p2; while (p2->position >= 0) { counts[p1->position]++; p2++; } p1++; } } return REG_OK; } /* Converts the syntax tree to a TNFA. All the transitions in the TNFA are * labelled with one character range (there are no transitions on empty * strings). The TNFA takes O(n^2) space in the worst case, `n' is size of * the regexp. */ static reg_errcode_t tre_ast_to_tnfa(tre_ast_node_t *node, tre_tnfa_transition_t *transitions, int *counts, int *offs) { tre_union_t *uni; tre_catenation_t *cat; tre_iteration_t *iter; reg_errcode_t errcode = REG_OK; /* XXX - recurse using a stack!. */ switch (node->type) { case LITERAL: { } break; case UNION: { uni = (tre_union_t *)node->obj; errcode = tre_ast_to_tnfa(uni->left, transitions, counts, offs); if (errcode != REG_OK) { return errcode; } errcode = tre_ast_to_tnfa(uni->right, transitions, counts, offs); } break; case CATENATION: { cat = (tre_catenation_t *)node->obj; /* Add a transition from each position in cat->left->lastpos * to each position in cat->right->firstpos. */ errcode = tre_make_trans(cat->left->lastpos, cat->right->firstpos, transitions, counts, offs); if (errcode != REG_OK) { return errcode; } errcode = tre_ast_to_tnfa(cat->left, transitions, counts, offs); if (errcode != REG_OK) { return errcode; } errcode = tre_ast_to_tnfa(cat->right, transitions, counts, offs); } break; case ITERATION: { iter = (tre_iteration_t *)node->obj; ASSERT(iter->max == -1 || iter->max == 1); if (iter->max == -1) { ASSERT(iter->min == 0 || iter->min == 1); /* Add a transition from each last position in the iterated * expression to each first position. */ errcode = tre_make_trans(iter->arg->lastpos, iter->arg->firstpos, transitions, counts, offs); if (errcode != REG_OK) { return errcode; } } errcode = tre_ast_to_tnfa(iter->arg, transitions, counts, offs); } break; } return errcode; } #define ERROR_EXIT(err) \ do \ { \ errcode = err; \ if (/* CONSTCOND */ 1) \ goto error_exit; \ } \ while (/* CONSTCOND */ 0) int regcomp(regex_t *restrict preg, const char *restrict regex, int cflags) { tre_stack_t *stack; tre_ast_node_t *tree, *tmp_ast_l, *tmp_ast_r; tre_pos_and_tags_t *p; int *counts = NULL; int *offs = NULL; int i; int add = 0; tre_tnfa_transition_t *transitions, *initial; tre_tnfa_t *tnfa = NULL; tre_submatch_data_t *submatch_data; tre_tag_direction_t *tag_directions = NULL; reg_errcode_t errcode; tre_mem_t mem; /* Parse context. */ tre_parse_ctx_t parse_ctx; /* Allocate a stack used throughout the compilation process for various * purposes. */ stack = tre_stack_new(512, 10240, 128); if (!stack) { return REG_ESPACE; } /* Allocate a fast memory allocator. */ mem = tre_mem_new(); if (!mem) { tre_stack_destroy(stack); return REG_ESPACE; } /* Parse the regexp. */ memset(&parse_ctx, 0, sizeof(parse_ctx)); parse_ctx.mem = mem; parse_ctx.stack = stack; parse_ctx.re = regex; parse_ctx.cflags = cflags; parse_ctx.max_backref = -1; errcode = tre_parse(&parse_ctx); if (errcode != REG_OK) { ERROR_EXIT(errcode); } preg->re_nsub = parse_ctx.submatch_id - 1; tree = parse_ctx.n; #ifdef TRE_DEBUG tre_ast_print(tree); #endif /* TRE_DEBUG */ /* Referring to nonexistent subexpressions is illegal. */ if (parse_ctx.max_backref > (int)preg->re_nsub) { ERROR_EXIT(REG_ESUBREG); } /* Allocate the TNFA struct. */ tnfa = xcalloc(1, sizeof(tre_tnfa_t)); if (tnfa == NULL) { ERROR_EXIT(REG_ESPACE); } tnfa->have_backrefs = parse_ctx.max_backref >= 0; tnfa->have_approx = 0; tnfa->num_submatches = parse_ctx.submatch_id; /* Set up tags for submatch addressing. If REG_NOSUB is set and the * regexp does not have back references, this can be skipped. */ if (tnfa->have_backrefs || !(cflags & REG_NOSUB)) { /* Figure out how many tags we will need. */ errcode = tre_add_tags(NULL, stack, tree, tnfa); if (errcode != REG_OK) { ERROR_EXIT(errcode); } if (tnfa->num_tags > 0) { tag_directions = xmalloc(sizeof(*tag_directions) * (tnfa->num_tags + 1)); if (tag_directions == NULL) { ERROR_EXIT(REG_ESPACE); } tnfa->tag_directions = tag_directions; memset(tag_directions, -1, sizeof(*tag_directions) * (tnfa->num_tags + 1)); } tnfa->minimal_tags = xcalloc((unsigned)tnfa->num_tags * 2 + 1, sizeof(*tnfa->minimal_tags)); if (tnfa->minimal_tags == NULL) { ERROR_EXIT(REG_ESPACE); } submatch_data = xcalloc((unsigned)parse_ctx.submatch_id, sizeof(*submatch_data)); if (submatch_data == NULL) { ERROR_EXIT(REG_ESPACE); } tnfa->submatch_data = submatch_data; errcode = tre_add_tags(mem, stack, tree, tnfa); if (errcode != REG_OK) { ERROR_EXIT(errcode); } } /* Expand iteration nodes. */ errcode = tre_expand_ast(mem, stack, tree, &parse_ctx.position, tag_directions); if (errcode != REG_OK) { ERROR_EXIT(errcode); } /* Add a dummy node for the final state. * XXX - For certain patterns this dummy node can be optimized away, * for example "a*" or "ab*". Figure out a simple way to detect * this possibility. */ tmp_ast_l = tree; tmp_ast_r = tre_ast_new_literal(mem, 0, 0, parse_ctx.position++); if (tmp_ast_r == NULL) { ERROR_EXIT(REG_ESPACE); } tree = tre_ast_new_catenation(mem, tmp_ast_l, tmp_ast_r); if (tree == NULL) { ERROR_EXIT(REG_ESPACE); } errcode = tre_compute_nfl(mem, stack, tree); if (errcode != REG_OK) { ERROR_EXIT(errcode); } counts = xmalloc(sizeof(int) * parse_ctx.position); if (counts == NULL) { ERROR_EXIT(REG_ESPACE); } offs = xmalloc(sizeof(int) * parse_ctx.position); if (offs == NULL) { ERROR_EXIT(REG_ESPACE); } for (i = 0; i < parse_ctx.position; i++) { counts[i] = 0; } tre_ast_to_tnfa(tree, NULL, counts, NULL); add = 0; for (i = 0; i < parse_ctx.position; i++) { offs[i] = add; add += counts[i] + 1; counts[i] = 0; } transitions = xcalloc((unsigned)add + 1, sizeof(*transitions)); if (transitions == NULL) { ERROR_EXIT(REG_ESPACE); } tnfa->transitions = transitions; tnfa->num_transitions = add; errcode = tre_ast_to_tnfa(tree, transitions, counts, offs); if (errcode != REG_OK) { ERROR_EXIT(errcode); } tnfa->firstpos_chars = NULL; p = tree->firstpos; i = 0; while (p->position >= 0) { i++; p++; } initial = xcalloc((unsigned)i + 1, sizeof(tre_tnfa_transition_t)); if (initial == NULL) { ERROR_EXIT(REG_ESPACE); } tnfa->initial = initial; i = 0; for (p = tree->firstpos; p->position >= 0; p++) { initial[i].state = transitions + offs[p->position]; initial[i].state_id = p->position; initial[i].tags = NULL; /* Copy the arrays p->tags, and p->params, they are allocated * from a tre_mem object. */ if (p->tags) { int j; for (j = 0; p->tags[j] >= 0; j++) { } initial[i].tags = xmalloc(sizeof(*p->tags) * (j + 1)); if (!initial[i].tags) { ERROR_EXIT(REG_ESPACE); } memcpy(initial[i].tags, p->tags, sizeof(*p->tags) * (j + 1)); } initial[i].assertions = p->assertions; i++; } initial[i].state = NULL; tnfa->num_transitions = add; tnfa->final = transitions + offs[tree->lastpos[0].position]; tnfa->num_states = parse_ctx.position; tnfa->cflags = cflags; tre_mem_destroy(mem); tre_stack_destroy(stack); xfree(counts); xfree(offs); preg->TRE_REGEX_T_FIELD = (void *)tnfa; return REG_OK; error_exit: /* Free everything that was allocated and return the error code. */ tre_mem_destroy(mem); if (stack != NULL) { tre_stack_destroy(stack); } if (counts != NULL) { xfree(counts); } if (offs != NULL) { xfree(offs); } preg->TRE_REGEX_T_FIELD = (void *)tnfa; regfree(preg); return errcode; } void regfree(regex_t *preg) { tre_tnfa_t *tnfa; unsigned int i; tre_tnfa_transition_t *trans; tnfa = (void *)preg->TRE_REGEX_T_FIELD; if (!tnfa) { return; } for (i = 0; i < tnfa->num_transitions; i++) { if (tnfa->transitions[i].state) { if (tnfa->transitions[i].tags) { xfree(tnfa->transitions[i].tags); } if (tnfa->transitions[i].neg_classes) { xfree(tnfa->transitions[i].neg_classes); } } } if (tnfa->transitions) { xfree(tnfa->transitions); } if (tnfa->initial) { for (trans = tnfa->initial; trans->state; trans++) { if (trans->tags) { xfree(trans->tags); } } xfree(tnfa->initial); } if (tnfa->submatch_data) { for (i = 0; i < tnfa->num_submatches; i++) { if (tnfa->submatch_data[i].parents) { xfree(tnfa->submatch_data[i].parents); } } xfree(tnfa->submatch_data); } if (tnfa->tag_directions) { xfree(tnfa->tag_directions); } if (tnfa->firstpos_chars) { xfree(tnfa->firstpos_chars); } if (tnfa->minimal_tags) { xfree(tnfa->minimal_tags); } xfree(tnfa); }