/**************************************************************************** * mm/mm_heap/mm_initialize.c * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include "mm_heap/mm.h" /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Name: mm_addregion * * Description: * This function adds a region of contiguous memory to the selected heap. * * Input Parameters: * heap - The selected heap * heapstart - Start of the heap region * heapsize - Size of the heap region * * Returned Value: * None * * Assumptions: * ****************************************************************************/ void mm_addregion(FAR struct mm_heap_s *heap, FAR void *heapstart, size_t heapsize) { FAR struct mm_heap_impl_s *heap_impl; FAR struct mm_freenode_s *node; uintptr_t heapbase; uintptr_t heapend; #if CONFIG_MM_REGIONS > 1 int IDX; DEBUGASSERT(MM_IS_VALID(heap)); heap_impl = heap->mm_impl; IDX = heap_impl->mm_nregions; /* Writing past CONFIG_MM_REGIONS would have catastrophic consequences */ DEBUGASSERT(IDX < CONFIG_MM_REGIONS); if (IDX >= CONFIG_MM_REGIONS) { return; } #else # define IDX 0 DEBUGASSERT(MM_IS_VALID(heap)); heap_impl = heap->mm_impl; #endif #if defined(CONFIG_MM_SMALL) && !defined(CONFIG_SMALL_MEMORY) /* If the MCU handles wide addresses but the memory manager is configured * for a small heap, then verify that the caller is not doing something * crazy. */ DEBUGASSERT(heapsize <= MMSIZE_MAX + 1); #endif mm_takesemaphore(heap); /* Adjust the provide heap start and size so that they are both aligned * with the MM_MIN_CHUNK size. */ heapbase = MM_ALIGN_UP((uintptr_t)heapstart); heapend = MM_ALIGN_DOWN((uintptr_t)heapstart + (uintptr_t)heapsize); heapsize = heapend - heapbase; minfo("Region %d: base=%p size=%zu\n", IDX + 1, heapstart, heapsize); /* Add the size of this region to the total size of the heap */ heap_impl->mm_heapsize += heapsize; /* Create two "allocated" guard nodes at the beginning and end of * the heap. These only serve to keep us from allocating outside * of the heap. * * And create one free node between the guard nodes that contains * all available memory. */ heap_impl->mm_heapstart[IDX] = (FAR struct mm_allocnode_s *) heapbase; heap_impl->mm_heapstart[IDX]->size = SIZEOF_MM_ALLOCNODE; heap_impl->mm_heapstart[IDX]->preceding = MM_ALLOC_BIT; node = (FAR struct mm_freenode_s *) (heapbase + SIZEOF_MM_ALLOCNODE); node->size = heapsize - 2*SIZEOF_MM_ALLOCNODE; node->preceding = SIZEOF_MM_ALLOCNODE; heap_impl->mm_heapend[IDX] = (FAR struct mm_allocnode_s *) (heapend - SIZEOF_MM_ALLOCNODE); heap_impl->mm_heapend[IDX]->size = SIZEOF_MM_ALLOCNODE; heap_impl->mm_heapend[IDX]->preceding = node->size | MM_ALLOC_BIT; #undef IDX #if CONFIG_MM_REGIONS > 1 heap_impl->mm_nregions++; #endif /* Add the single, large free node to the nodelist */ mm_addfreechunk(heap, node); mm_givesemaphore(heap); } /**************************************************************************** * Name: mm_initialize * * Description: * Initialize the selected heap data structures, providing the initial * heap region. * * Input Parameters: * heap - The selected heap * heapstart - Start of the initial heap region * heapsize - Size of the initial heap region * * Returned Value: * None * * Assumptions: * ****************************************************************************/ void mm_initialize(FAR struct mm_heap_s *heap, FAR void *heapstart, size_t heapsize) { FAR struct mm_heap_impl_s *heap_impl; uintptr_t heap_adj; int i; minfo("Heap: start=%p size=%zu\n", heapstart, heapsize); /* First ensure the memory to be used is aligned */ heap_adj = MM_ALIGN_UP((uintptr_t) heapstart); heapsize -= heap_adj - (uintptr_t) heapstart; /* Reserve a block space for mm_heap_impl_s context */ DEBUGASSERT(heapsize > sizeof(struct mm_heap_impl_s)); heap->mm_impl = (FAR struct mm_heap_impl_s *)heap_adj; heap_impl = heap->mm_impl; heapsize -= sizeof(struct mm_heap_impl_s); heapstart = (FAR char *)heap_adj + sizeof(struct mm_heap_impl_s); /* The following two lines have cause problems for some older ZiLog * compilers in the past (but not the more recent). Life is easier if we * just the suppress them altogther for those tools. */ #ifndef __ZILOG__ CHECK_ALLOCNODE_SIZE; CHECK_FREENODE_SIZE; #endif DEBUGASSERT(MM_MIN_CHUNK >= SIZEOF_MM_FREENODE); DEBUGASSERT(MM_MIN_CHUNK >= SIZEOF_MM_ALLOCNODE); /* Set up global variables */ heap_impl->mm_heapsize = 0; #if CONFIG_MM_REGIONS > 1 heap_impl->mm_nregions = 0; #endif /* Initialize mm_delaylist */ heap_impl->mm_delaylist = NULL; /* Initialize the node array */ memset(heap_impl->mm_nodelist, 0, sizeof(struct mm_freenode_s) * MM_NNODES); for (i = 1; i < MM_NNODES; i++) { heap_impl->mm_nodelist[i - 1].flink = &heap_impl->mm_nodelist[i]; heap_impl->mm_nodelist[i].blink = &heap_impl->mm_nodelist[i - 1]; } /* Initialize the malloc semaphore to one (to support one-at- * a-time access to private data sets). */ mm_seminitialize(heap); /* Add the initial region of memory to the heap */ mm_addregion(heap, heapstart, heapsize); }