Optimal 6loWPAN Configuration ----------------------------- 1. Link local IP addresses: 128 112 96 80 64 48 32 16 fe80 0000 0000 0000 xxxx xxxx xxxx xxxx 2. MAC-based IP addresses: 128 112 96 80 64 48 32 16 ---- ---- ---- ---- ---- ---- ---- ---- AAAA xxxx xxxx xxxx xxxx 00ff fe00 MMMM 2-byte Rime address IEEE 48-bit MAC AAAA 0000 0000 0000 NNNN NNNN NNNN NNNN 8-byte Rime address IEEE EUI-64 Where MMM is the 2-byte rime address XORed 0x0200. For example, the MAC address of 0xabcd would be 0xa9cd. And NNNN NNNN NNNN NNNN is the 8-byte rime address address XOR 02000 0000 0000 0000. For link-local address, AAAA is 0xfe80 3. MAC based link-local addresses 128 112 96 80 64 48 32 16 ---- ---- ---- ---- ---- ---- ---- ---- fe80 0000 0000 0000 0000 00ff fe00 MMMM 2-byte Rime address IEEE 48-bit MAC fe80 0000 0000 0000 NNNN NNNN NNNN NNNN 8-byte Rime address IEEE EUI-64 4. Compressable port numbers in the rangs 0xf0b0-0xf0bf 5. IOBs: Must be big enough to hold one IEEE802.15.4 frame (CONFIG_NET_6LOWPAN_FRAMELEN, typically 127). There must be enough IOBs to decompose the largest IPv6 packet (CONFIG_NET_6LOWPAN_MTU, default 1294, plus per frame overhead). Fragmentation Headers --------------------- A fragment header is placed at the beginning of the outgoing packet just after the MAC header when the payload is too large to fit in a single IEEE 802.15.4 frame. The fragment header contains three fields: Datagram size, datagram tag and datagram offset. 1. Datagram size describes the total (un-fragmented) payload. 2. Datagram tag identifies the set of fragments and is used to match fragments of the same payload. 3. Datagram offset identifies the fragment’s offset within the un- fragmented payload (in units of 8 bytes). The length of the fragment header length is four bytes for the first header (FRAG1) and five bytes for all subsequent headers (FRAGN). For example, this is a HC1 compressed first frame of a packet 41 88 2a cefa 3412 cdab ### 9-byte MAC header c50e 000b ### 4-byte FRAG1 header 42 ### SIXLOWPAN_DISPATCH_HC1 fb ### RIME_HC1_HC_UDP_HC1_ENCODING e0 ### RIME_HC1_HC_UDP_UDP_ENCODING 00 ### RIME_HC1_HC_UDP_TTL 10 ### RIME_HC1_HC_UDP_PORTS 0000 ### RIME_HC1_HC_UDP_CHKSUM 104 byte Payload follows: 4f4e452064617920 48656e6e792d7065 6e6e792077617320 7069636b696e6720 757020636f726e20 696e207468652063 6f726e7961726420 7768656e2d2d7768 61636b212d2d736f 6d657468696e6720 6869742068657220 75706f6e20746865 20686561642e2027 This is the second frame of the same transfer: 41 88 2b cefa 3412 cdab ### 9-byte MAC header e50e 000b 0d ### 5 byte FRAGN header 42 ### SIXLOWPAN_DISPATCH_HC1 fb ### RIME_HC1_HC_UDP_HC1_ENCODING e0 ### RIME_HC1_HC_UDP_UDP_ENCODING 00 ### RIME_HC1_HC_UDP_TTL 10 ### RIME_HC1_HC_UDP_PORTS 0000 ### RIME_HC1_HC_UDP_CHKSUM 104 byte Payload follows: 476f6f646e657373 2067726163696f75 73206d6521272073 6169642048656e6e 792d70656e6e793b 202774686520736b 79277320612d676f 696e6720746f2066 616c6c3b2049206d 75737420676f2061 6e642074656c6c20 746865206b696e67 2e270a0a536f2073 The payload length is encoded in the LS 11-bits of the first 16-bit value: In this example the payload size is 0x050e or 1,294. The tag is 0x000b. In the second frame, the fifth byte contains the offset 0x0d which is 13 << 3 = 104 bytes, the size of the payload on the first packet.