# # For a description of the syntax of this configuration file, # see the file kconfig-language.txt in the NuttX tools repository. # menu "TCP/IP Networking" config NET_TCP bool "TCP/IP Networking" default n select NET_READAHEAD if !NET_TCP_NO_STACK ---help--- Enable or disable TCP networking support. config NET_TCP_NO_STACK bool "Disable TCP/IP Stack" default n select NET_TCP ---help--- Build without TCP/IP stack even if TCP networking support enabled. if NET_TCP && !NET_TCP_NO_STACK config NET_TCP_DELAYED_ACK bool "TCP/IP Delayed ACK" default n ---help--- RFC 1122: A host that is receiving a stream of TCP data segments can increase efficiency in both the Internet and the hosts by sending fewer than one ACK (acknowledgment) segment per data segment received; this is known as a "delayed ACK". TCP should implement a delayed ACK, but an ACK should not be excessively delayed; in particular, the delay MUST be less than 0.5 seconds, and in a stream of full-sized segments there should be an ACK for at least every second segments. config NET_TCP_KEEPALIVE bool "TCP/IP Keep-alive support" default n select NET_TCPPROTO_OPTIONS ---help--- Enable support for the SO_KEEPALIVE socket option config NET_TCPURGDATA bool "Urgent data" default n ---help--- Determines if support for TCP urgent data notification should be compiled in. Urgent data (out-of-band data) is a rarely used TCP feature that is very seldom would be required. config NET_TCP_CONNS int "Number of TCP/IP connections" default 8 ---help--- Maximum number of TCP/IP connections (all tasks) config NET_TCP_NPOLLWAITERS int "Number of TCP poll waiters" default 1 config NET_TCP_RTO int "RTO of TCP/IP connections" default 3 ---help--- RTO of TCP/IP connections (all tasks) config NET_TCP_WAIT_TIMEOUT int "TIME_WAIT Length of TCP/IP connections" default 120 ---help--- TIME_WAIT Length of TCP/IP connections (all tasks). In units of seconds. config NET_MAX_LISTENPORTS int "Number of listening ports" default 20 ---help--- Maximum number of listening TCP/IP ports (all tasks). Default: 20 config NET_TCP_FAST_RETRANSMIT_WATERMARK int "WaterMark to trigger Fast Retransmission" default 3 ---help--- RFC2001: 3. Fast Retransmit Modifications to the congestion avoidance algorithm were proposed in 1990 [3]. Before describing the change, realize that TCP may generate an immediate acknowledgment (a duplicate ACK) when an out- of-order segment is received (Section 4.2.2.21 of [1], with a note that one reason for doing so was for the experimental fast- retransmit algorithm). This duplicate ACK should not be delayed. The purpose of this duplicate ACK is to let the other end know that a segment was received out of order, and to tell it what sequence number is expected. Since TCP does not know whether a duplicate ACK is caused by a lost segment or just a reordering of segments, it waits for a small number of duplicate ACKs to be received. It is assumed that if there is just a reordering of the segments, there will be only one or two duplicate ACKs before the reordered segment is processed, which will then generate a new ACK. If three or more duplicate ACKs are received in a row, it is a strong indication that a segment has been lost. TCP then performs a retransmission of what appears to be the missing segment, without waiting for a retransmission timer to expire. config NET_TCP_WINDOW_SCALE bool "Enable TCP/IP Window Scale Option" default n ---help--- RFC1323: 2. TCP WINDOW SCALE OPTION The window scale extension expands the definition of the TCP window to 32 bits and then uses a scale factor to carry this 32- bit value in the 16-bit Window field of the TCP header (SEG.WND in RFC-793). if NET_TCP_WINDOW_SCALE config NET_TCP_WINDOW_SCALE_FACTOR int "TCP/IP Window Scale Factor" default 0 ---help--- This is the default value for window scale factor. endif # NET_TCP_WINDOW_SCALE config NET_TCP_NOTIFIER bool "Support TCP notifications" default n depends on SCHED_WORKQUEUE select WQUEUE_NOTIFIER ---help--- Enable building of TCP notifier logic that will execute a worker function on the low priority work queue when read-ahead data is available or when a TCP connection is lost. This is is a general purpose notifier, but was developed specifically to support poll() logic where the poll must wait for these events. config NET_TCP_WRITE_BUFFERS bool "Enable TCP/IP write buffering" default n select NET_WRITE_BUFFERS ---help--- Write buffers allows buffering of ongoing TCP/IP packets, providing for higher performance, streamed output. You might want to disable TCP/IP write buffering on a highly memory memory constrained system where there are no performance issues. if NET_TCP_WRITE_BUFFERS config NET_TCP_NWRBCHAINS int "Number of pre-allocated I/O buffer chain heads" default 8 ---help--- These tiny nodes are used as "containers" to support queuing of TCP write buffers. This setting will limit the number of TCP write operations that can be "in-flight" at any give time. So a good choice for this value would be the same as the maximum number of TCP connections. config NET_TCP_WRBUFFER_DEBUG bool "Force write buffer debug" default n depends on DEBUG_FEATURES select IOB_DEBUG ---help--- This option will force debug output from TCP write buffer logic, even without network debug output. This is not normally something that would want to do but is convenient if you are debugging the write buffer logic and do not want to get overloaded with other network-related debug output. config NET_TCP_WRBUFFER_DUMP bool "Force write buffer dump" default n depends on DEBUG_NET || NET_TCP_WRBUFFER_DEBUG select IOB_DEBUG ---help--- Dump the contents of the write buffers. You do not want to do this unless you really want to analyze the write buffer transfers in detail. endif # NET_TCP_WRITE_BUFFERS config NET_TCPBACKLOG bool "TCP/IP backlog support" default n ---help--- Incoming connections pend in a backlog until accept() is called. The size of the backlog is selected when listen() is called. if NET_TCPBACKLOG config NET_TCPBACKLOG_CONNS int "TCP backlog conns threshold" default 8 ---help--- Maximum number of TCP backlog connections (all tasks). endif # NET_TCPBACKLOG config NET_TCP_SPLIT bool "Enable packet splitting" default n depends on !NET_TCP_WRITE_BUFFERS ---help--- send() will not return until the transfer has been ACKed by the recipient. But under RFC 1122, the host need not ACK each packet immediately; the host may wait for 500 MS before ACKing. This combination can cause very slow performance with small transfers are made to an RFC 1122 client. However, the RFC 1122 must ACK at least every second (odd) packet. This option enables logic to trick the RFC 1122 host be exploiting this last RFC 1122 requirement: If an odd number of packets were to be sent, then send() will split the last even packet to guarantee that an even number of packets will be sent and the RFC 1122 host will ACK the final packet immediately. if NET_TCP_SPLIT config NET_TCP_SPLIT_SIZE int "Split size threshold" default 40 ---help--- Packets of this size or smaller than this will not be split. endif # NET_TCP_SPLIT config NET_SENDFILE bool "Optimized network sendfile()" default n ---help--- Support larger, higher performance sendfile() for transferring files out a TCP connection. endif # NET_TCP && !NET_TCP_NO_STACK endmenu # TCP/IP Networking