/************************************************************************************ * drivers/mtd/sst26.c * Driver for SPI-based or QSPI-based SST26VF parts of 32 or 64MBit. * * For smaller SST25 parts, use the sst25.c driver instead as support * a different program mechanism (byte or word writing vs page writing * supported in this driver). * * For SST25VF064, see sst25cxx.c driver instead. * * Copyright (C) 2009-2011, 2013, 2016-2017, 2019 Gregory Nutt. All rights * reserved. * Author: Ken Pettit * Author: Sebastien Lorquet * * Copied from / based on sst25.c driver written by * Gregory Nutt * Ken Pettit * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name NuttX nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ************************************************************************************/ /************************************************************************************ * Included Files ************************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include /************************************************************************************ * Pre-processor Definitions ************************************************************************************/ /* Configuration ********************************************************************/ /* Per the data sheet, SST26 parts can be driven with either SPI mode 0 (CPOL=0 and * CPHA=0) or mode 3 (CPOL=1 and CPHA=1). So you may need to specify * CONFIG_SST26_SPIMODE to select the best mode for your device. If * CONFIG_SST26_SPIMODE is not defined, mode 0 will be used. */ #ifndef CONFIG_SST26_SPIMODE # define CONFIG_SST26_SPIMODE SPIDEV_MODE0 #endif /* SPI Frequency. May be up to 104 MHz. */ #ifndef CONFIG_SST26_SPIFREQUENCY # define CONFIG_SST26_SPIFREQUENCY 20000000 #endif /* Various manufacturers may have produced the parts. 0xBF is the manufacturer ID * for the SST serial FLASH. */ #ifndef CONFIG_SST26_MANUFACTURER # define CONFIG_SST26_MANUFACTURER 0xBF #endif #ifndef CONFIG_SST26_MEMORY_TYPE # define CONFIG_SST26_MEMORY_TYPE 0x25 #endif /* SST26 Registers *******************************************************************/ /* Identification register values */ #define SST26_MANUFACTURER CONFIG_SST26_MANUFACTURER #define SST26_MEMORY_TYPE CONFIG_SST26_MEMORY_TYPE #define SST26_SST26VF016_CAPACITY 0x41 /* 16 M-bit */ #define SST26_SST26VF032_CAPACITY 0x42 /* 32 M-bit */ #define SST26_SST26VF064_CAPACITY 0x43 /* 64 M-bit */ /* SST26VF016 capacity is 2,097,152 bytes: * (512 sectors) * (4,096 bytes per sector) * (8192 pages) * (256 bytes per page) */ #define SST26_SST26VF016_SECTOR_SHIFT 12 /* Sector size 1 << 15 = 65,536 */ #define SST26_SST26VF016_NSECTORS 512 #define SST26_SST26VF016_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ #define SST26_SST26VF016_NPAGES 8192 /* SST26VF032 capacity is 4,194,304 bytes: * (1,024 sectors) * (4,096 bytes per sector) * (16,384 pages) * (256 bytes per page) */ #define SST26_SST26VF032_SECTOR_SHIFT 12 /* Sector size 1 << 15 = 65,536 */ #define SST26_SST26VF032_NSECTORS 1024 #define SST26_SST26VF032_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ #define SST26_SST26VF032_NPAGES 16384 /* SST26VF064 capacity is 8,388,608 bytes: * (2,048 sectors) * (4,096 bytes per sector) * (32,768 pages) * (256 bytes per page) */ #define SST26_SST26VF064_SECTOR_SHIFT 12 /* Sector size 1 << 15 = 65,536 */ #define SST26_SST26VF064_NSECTORS 2048 #define SST26_SST26VF064_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ #define SST26_SST26VF064_NPAGES 32768 /* Instructions */ /* Command Value NN Description Addr Dummy Data */ #define SST26_NOP 0x00 /* 14 No Operation 0 0 0 */ #define SST26_RSTEN 0x66 /* 14 Reset Enable 0 0 0 */ #define SST26_RST 0x99 /* 14 Reset Memory 0 0 0 */ #define SST26_EQIO 0x38 /* 1 Enable Quad I/O 0 0 0 */ #define SST26_RSTQIO 0xFF /* 4 Reset Quad I/O 0 0 0 */ #define SST26_RDSR 0x05 /* 1 Read Status Register 0 0 >=1 */ /* 4 Read Status Register 0 1 >=1 */ #define SST26_WRSR 0x01 /* 14 Write Status Register 0 0 2 */ #define SST26_RDCR 0x35 /* 1 Read Config Register 0 0 >=1 */ /* 4 Read Config Register 0 1 >=1 */ #define SST26_READ 0x03 /* 1 Read Data Bytes 3 0 >=1 */ #define SST26_FAST_READ 0x0b /* 1 Higher speed read 3 1 >=1 */ /* 4 Higher speed read 3 3 >=1 */ #define SST26_SQOR 0x6b /* 1 SQI Output Read 3 1 >=1 */ #define SST26_SQIOR 0xeb /* 1 SQI I/O Read 3 3 >=1 */ #define SST26_SDOR 0x3b /* 1 SDI Output Read 3 1 >=1 */ #define SST26_SDIOR 0xbb /* 1 SDI I/O Read 3 1 >=1 */ #define SST26_SB 0xc0 /* 14 Set Burst Length 0 0 1 */ #define SST26_RBSQI 0x0c /* 4 SQI Read Burst w/ Wrap 3 3 >=1 */ #define SST26_RBSPI 0xec /* 1 SPI Read Burst w/ Wrap 3 3 >=1 */ #define SST26_RDID 0x9f /* 1 Read Identification 0 0 >=3 */ #define SST26_QRDID 0xaf /* 4 Quad Read Identification 0 1 >=3 */ #define SST26_SFDP 0x5a /* 1 Serial Flash Discov. Par. 3 1 >=1 */ #define SST26_WREN 0x06 /* 14 Write Enable 0 0 0 */ #define SST26_WRDI 0x04 /* 14 Write Disable 0 0 0 */ #define SST26_SE 0x20 /* 14 Sector Erase 3 0 0 */ #define SST26_BE 0xd8 /* 14 8/32/64K Block Erase 3 0 0 */ #define SST26_CE 0xc7 /* 14 Chip Erase 0 0 0 */ #define SST26_PP 0x02 /* 1 Page Program 3 0 1-256 */ #define SST26_QPP 0x32 /* 1 Quad Page Program 3 0 1-256 */ #define SST26_WRSU 0xb0 /* 14 Suspend Program/Erase 0 0 0 */ #define SST26_WRRE 0x30 /* 14 Resume Program/Erase 0 0 0 */ #define SST26_RBPR 0x72 /* 1 Read Block-Protection reg 0 0 1-18 */ /* 4 Read Block-Protection reg 0 1 1-18 */ #define SST26_WBPR 0x42 /* 14 Write Block-Protection reg 0 0 1-18 */ #define SST26_LBPR 0x8d /* 14 Lock down Block-Prot. reg 0 0 0 */ #define SST26_NVWLDR 0xe8 /* 14 non-Volatile Write L-D reg 0 0 1-18 */ #define SST26_ULBPR 0x98 /* 14 Global Block Protection unlock 0 0 0 */ #define SST26_RSID 0x88 /* 14 Read Security ID 2 1 1-2048*/ /* 4 Read Security ID 2 3 1-2048*/ #define SST26_PSID 0xa5 /* 14 Program User Security ID area 2 0 1-256 */ #define SST26_LSID 0x85 /* 14 Lockout Security ID programming 0 0 0 */ /* NOTE 1: All parts. * NOTE 2: In SST26VF064 terminology, 0xd8 is block erase and 0x20 * is a sector erase. Block erase provides a faster way to erase * multiple 4K sectors at once. */ /* Status register bit definitions */ #define SST26_SR_WIP (1 << 0) /* Bit 0: Write in progress */ #define SST26_SR_WEL (1 << 1) /* Bit 1: Write enable latch */ #define SST26_SR_WSE (1 << 2) /* Bit 2: Write Suspend-Erase Status */ #define SST26_SR_WSP (1 << 3) /* Bit 3: Write Suspend-Program Status */ #define SST26_SR_WPLD (1 << 4) /* Bit 4: Write Protection Lock-Down Status */ #define SST26_SR_SEC (1 << 5) /* Bit 5: Security ID status */ #define SST26_SR_RES (1 << 6) /* Bit 6: RFU */ #define SST26_SR_WIP2 (1 << 7) /* Bit 7: Write in progress */ #define SST26_DUMMY 0xa5 /* Debug ****************************************************************************/ #ifdef CONFIG_SST26_DEBUG # define ssterr(format, ...) _err(format, ##__VA_ARGS__) # define sstinfo(format, ...) _info(format, ##__VA_ARGS__) #else # define ssterr(x...) # define sstinfo(x...) #endif /************************************************************************************ * Private Types ************************************************************************************/ /* This type represents the state of the MTD device. The struct mtd_dev_s * must appear at the beginning of the definition so that you can freely * cast between pointers to struct mtd_dev_s and struct sst26_dev_s. */ struct sst26_dev_s { struct mtd_dev_s mtd; /* MTD interface */ FAR struct spi_dev_s *dev; /* Saved SPI interface instance */ bool lastwaswrite; uint8_t sectorshift; uint8_t pageshift; uint16_t nsectors; uint32_t npages; }; /************************************************************************************ * Private Function Prototypes ************************************************************************************/ /* Helpers */ static void sst26_lock(FAR struct spi_dev_s *dev); static inline void sst26_unlock(FAR struct spi_dev_s *dev); static inline int sst26_readid(struct sst26_dev_s *priv); static void sst26_waitwritecomplete(struct sst26_dev_s *priv); static void sst26_writeenable(struct sst26_dev_s *priv); static void sst26_writedisable(struct sst26_dev_s *priv); static void sst26_globalunlock(struct sst26_dev_s *priv); static inline void sst26_sectorerase(struct sst26_dev_s *priv, off_t offset, uint8_t type); static inline int sst26_chiperase(struct sst26_dev_s *priv); static inline void sst26_pagewrite(struct sst26_dev_s *priv, FAR const uint8_t *buffer, off_t offset); /* MTD driver methods */ static int sst26_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks); static ssize_t sst26_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR uint8_t *buf); static ssize_t sst26_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buf); static ssize_t sst26_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer); #ifdef CONFIG_MTD_BYTE_WRITE static ssize_t sst26_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR const uint8_t *buffer); #endif static int sst26_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg); /************************************************************************************ * Private Functions ************************************************************************************/ /************************************************************************************ * Name: sst26_lock ************************************************************************************/ static void sst26_lock(FAR struct spi_dev_s *dev) { /* On SPI busses where there are multiple devices, it will be necessary to * lock SPI to have exclusive access to the busses for a sequence of * transfers. The bus should be locked before the chip is selected. * * This is a blocking call and will not return until we have exclusiv access to * the SPI buss. We will retain that exclusive access until the bus is unlocked. */ (void)SPI_LOCK(dev, true); /* After locking the SPI bus, then we also need to call the setfrequency, setbits, * and setmode methods to make sure that the SPI is properly configured for the * device. If the SPI bus is being shared, then it may have been left in an * incompatible state. */ SPI_SETMODE(dev, CONFIG_SST26_SPIMODE); SPI_SETBITS(dev, 8); (void)SPI_HWFEATURES(dev, 0); (void)SPI_SETFREQUENCY(dev, CONFIG_SST26_SPIFREQUENCY); } /************************************************************************************ * Name: sst26_unlock ************************************************************************************/ static inline void sst26_unlock(FAR struct spi_dev_s *dev) { (void)SPI_LOCK(dev, false); } /************************************************************************************ * Name: sst26_readid ************************************************************************************/ static inline int sst26_readid(struct sst26_dev_s *priv) { uint16_t manufacturer; uint16_t memory; uint16_t capacity; sstinfo("priv: %p\n", priv); /* Lock the SPI bus, configure the bus, and select this FLASH part. */ sst26_lock(priv->dev); SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the "Read ID (RDID)" command and read the first three ID bytes */ (void)SPI_SEND(priv->dev, SST26_RDID); manufacturer = SPI_SEND(priv->dev, SST26_DUMMY); memory = SPI_SEND(priv->dev, SST26_DUMMY); capacity = SPI_SEND(priv->dev, SST26_DUMMY); /* De-select the FLASH and unlock the bus */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); sst26_unlock(priv->dev); sstinfo("manufacturer: %02x memory: %02x capacity: %02x\n", manufacturer, memory, capacity); /* Check for a valid manufacturer and memory type */ if (manufacturer == SST26_MANUFACTURER && memory == SST26_MEMORY_TYPE) { /* Okay.. is it a FLASH capacity that we understand? */ if (capacity == SST26_SST26VF064_CAPACITY) { /* Save the FLASH geometry */ priv->sectorshift = SST26_SST26VF064_SECTOR_SHIFT; priv->nsectors = SST26_SST26VF064_NSECTORS; priv->pageshift = SST26_SST26VF064_PAGE_SHIFT; priv->npages = SST26_SST26VF064_NPAGES; return OK; } else if (capacity == SST26_SST26VF032_CAPACITY) { /* Save the FLASH geometry */ priv->sectorshift = SST26_SST26VF032_SECTOR_SHIFT; priv->nsectors = SST26_SST26VF032_NSECTORS; priv->pageshift = SST26_SST26VF032_PAGE_SHIFT; priv->npages = SST26_SST26VF032_NPAGES; return OK; } else if (capacity == SST26_SST26VF016_CAPACITY) { /* Save the FLASH geometry */ priv->sectorshift = SST26_SST26VF016_SECTOR_SHIFT; priv->nsectors = SST26_SST26VF016_NSECTORS; priv->pageshift = SST26_SST26VF016_PAGE_SHIFT; priv->npages = SST26_SST26VF016_NPAGES; return OK; } } return -ENODEV; } /************************************************************************************ * Name: sst26_waitwritecomplete ************************************************************************************/ static void sst26_waitwritecomplete(struct sst26_dev_s *priv) { uint8_t status; /* Loop as long as the memory is busy with a write cycle */ do { /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Read Status Register (RDSR)" command */ (void)SPI_SEND(priv->dev, SST26_RDSR); /* Send a dummy byte to generate the clock needed to shift out the status */ status = SPI_SEND(priv->dev, SST26_DUMMY); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); /* Given that writing could take up to few tens of milliseconds, and erasing * could take more. The following short delay in the "busy" case will allow * other peripherals to access the SPI bus. */ if ((status & SST26_SR_WIP) != 0) { sst26_unlock(priv->dev); nxsig_usleep(1000); sst26_lock(priv->dev); } } while ((status & SST26_SR_WIP) != 0); sstinfo("Complete\n"); } /************************************************************************************ * Name: sst26_globalunlock * Description: SST26 flashes are globally locked after startup. To allow writing, * this command must be sent once. ************************************************************************************/ static void sst26_globalunlock(struct sst26_dev_s *priv) { /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Global Unlock (ULBPR)" command */ (void)SPI_SEND(priv->dev, SST26_ULBPR); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); sstinfo("Device unlocked.\n"); } /************************************************************************************ * Name: sst26_writeenable ************************************************************************************/ static void sst26_writeenable(struct sst26_dev_s *priv) { /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Write Enable (WREN)" command */ (void)SPI_SEND(priv->dev, SST26_WREN); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); sstinfo("Enabled\n"); } /************************************************************************************ * Name: sst26_writedisable ************************************************************************************/ static void sst26_writedisable(struct sst26_dev_s *priv) { /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Write Disable (WRDI)" command */ (void)SPI_SEND(priv->dev, SST26_WRDI); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); sstinfo("Disabled\n"); } /************************************************************************************ * Name: sst26_sectorerase (4k) ************************************************************************************/ static void sst26_sectorerase(struct sst26_dev_s *priv, off_t sector, uint8_t type) { off_t offset; offset = sector << priv->sectorshift; sstinfo("sector: %08lx\n", (long)sector); /* Send write enable instruction */ sst26_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the "Sector Erase (SE)" or "Block Erase (BE)" instruction * that was passed in as the erase type. */ (void)SPI_SEND(priv->dev, type); /* Send the sector offset high byte first. For all of the supported * parts, the sector number is completely contained in the first byte * and the values used in the following two bytes don't really matter. */ (void)SPI_SEND(priv->dev, (offset >> 16) & 0xff); (void)SPI_SEND(priv->dev, (offset >> 8) & 0xff); (void)SPI_SEND(priv->dev, offset & 0xff); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); sst26_waitwritecomplete(priv); sstinfo("Erased\n"); } /************************************************************************************ * Name: sst26_chiperase ************************************************************************************/ static inline int sst26_chiperase(struct sst26_dev_s *priv) { sstinfo("priv: %p\n", priv); /* Send write enable instruction */ sst26_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the "Chip Erase (CE)" instruction */ (void)SPI_SEND(priv->dev, SST26_CE); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); sst26_waitwritecomplete(priv); sstinfo("Return: OK\n"); return OK; } /************************************************************************************ * Name: sst26_pagewrite ************************************************************************************/ static inline void sst26_pagewrite(struct sst26_dev_s *priv, FAR const uint8_t *buffer, off_t page) { off_t offset = page << priv->pageshift; sstinfo("page: %08lx offset: %08lx\n", (long)page, (long)offset); /* Enable the write access to the FLASH */ sst26_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Page Program (PP)" command */ (void)SPI_SEND(priv->dev, SST26_PP); /* Send the page offset high byte first. */ (void)SPI_SEND(priv->dev, (offset >> 16) & 0xff); (void)SPI_SEND(priv->dev, (offset >> 8) & 0xff); (void)SPI_SEND(priv->dev, offset & 0xff); /* Then write the specified number of bytes */ SPI_SNDBLOCK(priv->dev, buffer, 1 << priv->pageshift); /* Deselect the FLASH: Chip Select high */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); sst26_waitwritecomplete(priv); sstinfo("Written\n"); } /************************************************************************************ * Name: sst26_bytewrite ************************************************************************************/ #ifdef CONFIG_MTD_BYTE_WRITE static inline void sst26_bytewrite(struct sst26_dev_s *priv, FAR const uint8_t *buffer, off_t offset, uint16_t count) { sstinfo("offset: %08lx count:%d\n", (long)offset, count); /* Enable the write access to the FLASH */ sst26_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Page Program (PP)" command */ (void)SPI_SEND(priv->dev, SST26_PP); /* Send the page offset high byte first. */ (void)SPI_SEND(priv->dev, (offset >> 16) & 0xff); (void)SPI_SEND(priv->dev, (offset >> 8) & 0xff); (void)SPI_SEND(priv->dev, offset & 0xff); /* Then write the specified number of bytes */ SPI_SNDBLOCK(priv->dev, buffer, count); priv->lastwaswrite = true; /* Deselect the FLASH: Chip Select high */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); sst26_waitwritecomplete(priv); sstinfo("Written\n"); } #endif /* Driver routines */ /************************************************************************************ * Name: sst26_erase ************************************************************************************/ static int sst26_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks) { FAR struct sst26_dev_s *priv = (FAR struct sst26_dev_s *)dev; size_t blocksleft = nblocks; sstinfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* Lock access to the SPI bus until we complete the erase */ sst26_lock(priv->dev); while (blocksleft > 0) { /* SST26VF parts have complex block overlay structure for the moment * we just erase in 4k blocks. */ sst26_sectorerase(priv, startblock, SST26_SE); startblock++; blocksleft--; } sst26_unlock(priv->dev); return (int)nblocks; } /************************************************************************************ * Name: sst26_bread ************************************************************************************/ static ssize_t sst26_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR uint8_t *buffer) { FAR struct sst26_dev_s *priv = (FAR struct sst26_dev_s *)dev; ssize_t nbytes; sstinfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* On this device, we can handle the block read just like the byte-oriented read */ nbytes = sst26_read(dev, startblock << priv->pageshift, nblocks << priv->pageshift, buffer); if (nbytes > 0) { return nbytes >> priv->pageshift; } return (int)nbytes; } /************************************************************************************ * Name: sst26_bwrite ************************************************************************************/ static ssize_t sst26_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buffer) { FAR struct sst26_dev_s *priv = (FAR struct sst26_dev_s *)dev; size_t blocksleft = nblocks; size_t pagesize = 1 << priv->pageshift; sstinfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* Lock the SPI bus and write each page to FLASH */ sst26_lock(priv->dev); while (blocksleft-- > 0) { sst26_pagewrite(priv, buffer, startblock); buffer += pagesize; startblock++; } sst26_unlock(priv->dev); return nblocks; } /************************************************************************************ * Name: sst26_read ************************************************************************************/ static ssize_t sst26_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer) { FAR struct sst26_dev_s *priv = (FAR struct sst26_dev_s *)dev; sstinfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); /* Lock the SPI bus and select this FLASH part */ sst26_lock(priv->dev); SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Read from Memory " instruction */ (void)SPI_SEND(priv->dev, SST26_FAST_READ); /* Send the page offset high byte first. */ (void)SPI_SEND(priv->dev, (offset >> 16) & 0xff); (void)SPI_SEND(priv->dev, (offset >> 8) & 0xff); (void)SPI_SEND(priv->dev, offset & 0xff); /* Dummy read */ (void)SPI_SEND(priv->dev, SST26_DUMMY); /* Then read all of the requested bytes */ SPI_RECVBLOCK(priv->dev, buffer, nbytes); /* Deselect the FLASH and unlock the SPI bus */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); sst26_unlock(priv->dev); sstinfo("return nbytes: %d\n", (int)nbytes); return nbytes; } /************************************************************************************ * Name: sst26_write ************************************************************************************/ #ifdef CONFIG_MTD_BYTE_WRITE static ssize_t sst26_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR const uint8_t *buffer) { FAR struct sst26_dev_s *priv = (FAR struct sst26_dev_s *)dev; int startpage; int endpage; int count; int index; int pagesize; int bytestowrite; sstinfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); /* We must test if the offset + count crosses one or more pages * and perform individual writes. The devices can only write in * page increments. */ startpage = offset / (1 << priv->pageshift); endpage = (offset + nbytes) / (1 << priv->pageshift); sst26_lock(priv->dev); if (startpage == endpage) { /* All bytes within one programmable page. Just do the write. */ sst26_bytewrite(priv, buffer, offset, nbytes); } else { /* Write the 1st partial-page */ count = nbytes; pagesize = (1 << priv->pageshift); bytestowrite = pagesize - (offset & (pagesize - 1)); sst26_bytewrite(priv, buffer, offset, bytestowrite); /* Update offset and count */ offset += bytestowrite; count -= bytestowrite; index = bytestowrite; /* Write full pages */ while (count >= pagesize) { sst26_bytewrite(priv, &buffer[index], offset, pagesize); /* Update offset and count */ offset += pagesize; count -= pagesize; index += pagesize; } /* Now write any partial page at the end */ if (count > 0) { sst26_bytewrite(priv, &buffer[index], offset, count); } priv->lastwaswrite = true; } sst26_unlock(priv->dev); return nbytes; } #endif /* CONFIG_MTD_BYTE_WRITE */ /************************************************************************************ * Name: sst26_ioctl ************************************************************************************/ static int sst26_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg) { FAR struct sst26_dev_s *priv = (FAR struct sst26_dev_s *)dev; int ret = -EINVAL; /* Assume good command with bad parameters */ sstinfo("cmd: %d \n", cmd); switch (cmd) { case MTDIOC_GEOMETRY: { FAR struct mtd_geometry_s *geo = (FAR struct mtd_geometry_s *)((uintptr_t)arg); if (geo != NULL) { /* Populate the geometry structure with information need to know * the capacity and how to access the device. * * NOTE: that the device is treated as though it where just an array * of fixed size blocks. That is most likely not true, but the client * will expect the device logic to do whatever is necessary to make it * appear so. */ geo->blocksize = (1 << priv->pageshift); geo->erasesize = (1 << priv->sectorshift); geo->neraseblocks = priv->nsectors; ret = OK; sstinfo("blocksize: %d erasesize: %d neraseblocks: %d\n", geo->blocksize, geo->erasesize, geo->neraseblocks); } } break; case MTDIOC_BULKERASE: { /* Erase the entire device */ sst26_lock(priv->dev); ret = sst26_chiperase(priv); sst26_unlock(priv->dev); } break; case MTDIOC_XIPBASE: default: ret = -ENOTTY; /* Bad command */ break; } sstinfo("return %d\n", ret); return ret; } /************************************************************************************ * Public Functions ************************************************************************************/ /************************************************************************************ * Name: sst26_initialize * * Description: * Create an initialize MTD device instance. MTD devices are not registered * in the file system, but are created as instances that can be bound to * other functions (such as a block or character driver front end). * ************************************************************************************/ FAR struct mtd_dev_s *sst26_initialize_spi(FAR struct spi_dev_s *dev) { FAR struct sst26_dev_s *priv; int ret; sstinfo("dev: %p\n", dev); /* Allocate a state structure (we allocate the structure instead of using * a fixed, static allocation so that we can handle multiple FLASH devices. * The current implementation would handle only one FLASH part per SPI * device (only because of the SPIDEV_FLASH(0) definition) and so would have * to be extended to handle multiple FLASH parts on the same SPI bus. */ priv = (FAR struct sst26_dev_s *)kmm_zalloc(sizeof(struct sst26_dev_s)); if (priv) { /* Initialize the allocated structure. (unsupported methods were * nullified by kmm_zalloc). */ priv->mtd.erase = sst26_erase; priv->mtd.bread = sst26_bread; priv->mtd.bwrite = sst26_bwrite; priv->mtd.read = sst26_read; #ifdef CONFIG_MTD_BYTE_WRITE priv->mtd.write = sst26_write; #endif priv->mtd.ioctl = sst26_ioctl; priv->mtd.name = "sst26"; priv->dev = dev; /* Deselect the FLASH */ SPI_SELECT(dev, SPIDEV_FLASH(0), false); /* Identify the FLASH chip and get its capacity */ ret = sst26_readid(priv); if (ret != OK) { /* Unrecognized! Discard all of that work we just did and return NULL */ ssterr("ERROR: Unrecognized\n"); kmm_free(priv); return NULL; } else { /* Make sure that the FLASH is unprotected so that we can write into it */ sst26_writeenable(priv); sst26_globalunlock(priv); sst26_writedisable(priv); } } /* Return the implementation-specific state structure as the MTD device */ sstinfo("Return %p\n", priv); return (FAR struct mtd_dev_s *)priv; }