/**************************************************************************** * net/uip/uip.h * * The uIP header file contains definitions for a number of C macros that * are used by uIP programs as well as internal uIP structures and function * declarations. * * Copyright (C) 2007 Gregory Nutt. All rights reserved. * Author: Gregory Nutt * * This logic was leveraged from uIP which also has a BSD-style license: * * Author Adam Dunkels * Copyright (c) 2001-2003, Adam Dunkels. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ #ifndef __NET_UIP_UIP_H #define __NET_UIP_UIP_H /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include /**************************************************************************** * Definitions ****************************************************************************/ /* The following flags may be set in the set of flags before calling the * application callback. The UIP_ACKDATA, UIP_NEWDATA, and UIP_CLOSE flags * may be set at the same time, whereas the others are mutualy exclusive. */ #define UIP_ACKDATA (1 << 0) /* Signifies that the outstanding data was acked and the * application should send out new data instead of retransmitting * the last data */ #define UIP_NEWDATA (1 << 1) /* Flags the fact that the peer has sent us new data */ #define UIP_REXMIT (1 << 2) /* Tells the application to retransmit the data that was last * sent */ #define UIP_POLL (1 << 3) /* Used for polling the application, to check if the application * has data that it wants to send */ #define UIP_CLOSE (1 << 4) /* The remote host has closed the connection, thus the connection * has gone away. Or the application signals that it wants to * close the connection */ #define UIP_ABORT (1 << 5) /* The remote host has aborted the connection, thus the connection * has gone away. Or the application signals that it wants to * abort the connection */ #define UIP_CONNECTED (1 << 6) /* We have got a connection from a remote host and have set up a * new connection for it, or an active connection has been * successfully established */ #define UIP_TIMEDOUT (1 << 7) /* The connection has been aborted due to too many retransmissions */ #define UIP_DATA_EVENTS (UIP_ACKDATA|UIP_NEWDATA|UIP_REXMIT|UIP_POLL) #define UIP_CONN_EVENTS (UIP_CLOSE|UIP_ABORT|UIP_CONNECTED|UIP_TIMEDOUT) /* The buffer size available for user data in the d_buf buffer. * * This macro holds the available size for user data in the * d_buf buffer. The macro is intended to be used for checking * bounds of available user data. * * Example: * * snprintf(dev->d_appdata, UIP_APPDATA_SIZE, "%u\n", i); */ #define UIP_APPDATA_SIZE (CONFIG_NET_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN) #define UIP_PROTO_ICMP 1 #define UIP_PROTO_TCP 6 #define UIP_PROTO_UDP 17 #define UIP_PROTO_ICMP6 58 /* Header sizes */ #ifdef CONFIG_NET_IPv6 # define UIP_IPH_LEN 40 /* Size of IP header */ #else # define UIP_IPH_LEN 20 /* Size of IP header */ #endif /**************************************************************************** * Public Type Definitions ****************************************************************************/ /* Repressentation of an IP address */ typedef in_addr_t uip_ip4addr_t; typedef uint16 uip_ip6addr_t[8]; #ifdef CONFIG_NET_IPv6 typedef uip_ip6addr_t uip_ipaddr_t; #else typedef uip_ip4addr_t uip_ipaddr_t; #endif /* The IP header */ struct uip_ip_hdr { #ifdef CONFIG_NET_IPv6 /* IPv6 Ip header */ uint8 vtc; /* Bits 0-3: version, bits 4-7: traffic class (MS) */ uint8 tcf; /* Bits 0-3: traffic class (LS), 4-bits: flow label (MS) */ uint16 flow; /* 16-bit flow label (LS) */ uint8 len[2]; /* 16-bit Payload length */ uint8 proto; /* 8-bit Next header (same as IPv4 protocol field) */ uint8 ttl; /* 8-bit Hop limit (like IPv4 TTL field) */ uip_ip6addr_t srcipaddr; /* 128-bit Source address */ uip_ip6addr_t destipaddr; /* 128-bit Destination address */ #else /* CONFIG_NET_IPv6 */ /* IPv4 IP header */ uint8 vhl; /* 8-bit Version (4) and header length (5 or 6) */ uint8 tos; /* 8-bit Type of service (e.g., 6=TCP) */ uint8 len[2]; /* 16-bit Total length */ uint8 ipid[2]; /* 16-bit Identification */ uint8 ipoffset[2]; /* 16-bit IP flags + fragment offset */ uint8 ttl; /* 8-bit Time to Live */ uint8 proto; /* 8-bit Protocol */ uint16 ipchksum; /* 16-bit Header checksum */ uint16 srcipaddr[2]; /* 32-bit Source IP address */ uint16 destipaddr[2]; /* 32-bit Destination IP address */ #endif /* CONFIG_NET_IPv6 */ }; /* Protocol-specific support */ #include #include #include /* The structure holding the uIP statistics that are gathered if * CONFIG_NET_STATISTICS is defined. */ #ifdef CONFIG_NET_STATISTICS struct uip_ip_stats_s { uip_stats_t drop; /* Number of dropped packets at the IP layer */ uip_stats_t recv; /* Number of received packets at the IP layer */ uip_stats_t sent; /* Number of sent packets at the IP layer */ uip_stats_t vhlerr; /* Number of packets dropped due to wrong IP version or header length */ uip_stats_t hblenerr; /* Number of packets dropped due to wrong IP length, high byte */ uip_stats_t lblenerr; /* Number of packets dropped due to wrong IP length, low byte */ uip_stats_t fragerr; /* Number of packets dropped since they were IP fragments */ uip_stats_t chkerr; /* Number of packets dropped due to IP checksum errors */ uip_stats_t protoerr; /* Number of packets dropped since they were neither ICMP, UDP nor TCP */ }; struct uip_stats { struct uip_ip_stats_s ip; /* IP statistics */ #ifdef CONFIG_NET_ICMP struct uip_icmp_stats_s icmp; /* ICMP statistics */ #endif #ifdef CONFIG_NET_TCP struct uip_tcp_stats_s tcp; /* TCP statistics */ #endif #ifdef CONFIG_NET_UDP struct uip_udp_stats_s udp; /* UDP statistics */ #endif }; #endif /* CONFIG_NET_STATISTICS */ /* Representation of a 48-bit Ethernet address */ struct uip_eth_addr { uint8 addr[6]; }; /**************************************************************************** * Public Data ****************************************************************************/ /* This is the structure in which the statistics are gathered. */ #ifdef CONFIG_NET_STATISTICS extern struct uip_stats uip_stat; #endif /**************************************************************************** * Public Function Prototypes ****************************************************************************/ /* uIP initialization functions * * The uIP initialization functions are used for booting uIP. * * This function should be called at boot up to initilize the uIP * TCP/IP stack. */ extern void uip_initialize(void); /* This function may be used at boot time to set the initial ip_id.*/ extern void uip_setipid(uint16 id); /* uIP application functions * * Functions used by an application running of top of uIP. This includes * functions for opening and closing connections, sending and receiving * data, etc. */ /* Send data on the current connection. * * This function is used to send out a single segment of TCP * data. Only applications that have been invoked by uIP for event * processing can send data. * * The amount of data that actually is sent out after a call to this * funcion is determined by the maximum amount of data TCP allows. uIP * will automatically crop the data so that only the appropriate * amount of data is sent. The function uip_mss() can be used to query * uIP for the amount of data that actually will be sent. * * Note: This function does not guarantee that the sent data will * arrive at the destination. If the data is lost in the network, the * application will be invoked with the uip_rexmit_event() event being * set. The application will then have to resend the data using this * function. * * data A pointer to the data which is to be sent. * * len The maximum amount of data bytes to be sent. */ extern void uip_send(struct uip_driver_s *dev, const void *buf, int len); /* The length of any incoming data that is currently avaliable (if avaliable) * in the d_appdata buffer. * * The test function uip_data() must first be used to check if there * is any data available at all. */ #define uip_datalen(dev) ((dev)->d_len) /* uIP tests that can be made to determine in what state the current * connection is, and what the application function should do. * * Is new incoming data available? * * Will reduce to non-zero if there is new data for the application * present at the d_appdata pointer. The size of the data is * avaliable through the d_len element. */ #define uip_newdata_event(f) ((f) & UIP_NEWDATA) /* Has previously sent data been acknowledged? * * Will reduce to non-zero if the previously sent data has been * acknowledged by the remote host. This means that the application * can send new data. */ #define uip_ack_event(f) ((f) & UIP_ACKDATA) /* Has the connection just been connected? * * Reduces to non-zero if the current connenetutils/telnetd/telnetd.cction has been connected to * a remote host. This will happen both if the connection has been * actively opened (with uip_connect()) or passively opened (with * uip_listen()). */ #define uip_connected_event(f) ((f) & UIP_CONNECTED) /* Has the connection been closed by the other end? * * Is non-zero if the connection has been closed by the remote * host. The application may then do the necessary clean-ups. */ #define uip_close_event(f) ((f) & UIP_CLOSE) /* Has the connection been aborted by the other end? * * Non-zero if the current connection has been aborted (reset) by the * remote host. */ #define uip_abort_event(f) ((f) & UIP_ABORT) /* Has the connection timed out? * * Non-zero if the current connection has been aborted due to too many * retransmissions. */ #define uip_timeout_event(f) ((f) & UIP_TIMEDOUT) /* Do we need to retransmit previously data? * * Reduces to non-zero if the previously sent data has been lost in * the network, and the application should retransmit it. The * application should send the exact same data as it did the last * time, using the uip_send() function. */ #define uip_rexmit_event(f) ((f) & UIP_REXMIT) /* Is the connection being polled by uIP? * * Is non-zero if the reason the application is invoked is that the * current connection has been idle for a while and should be * polled. * * The polling event can be used for sending data without having to * wait for the remote host to send data. */ #define uip_poll_event(f) ((f) & UIP_POLL) /* uIP convenience and converting functions. * * These functions can be used for converting between different data * formats used by uIP. * * Construct an IP address from four bytes. * * This function constructs an IPv4 address in network byte order. * * addr A pointer to a uip_ipaddr_t variable that will be * filled in with the IPv4 address. * addr0 The first octet of the IPv4 address. * addr1 The second octet of the IPv4 address. * addr2 The third octet of the IPv4 address. * addr3 The forth octet of the IPv4 address. */ #define uip_ipaddr(addr, addr0, addr1, addr2, addr3) \ do { \ addr = HTONL((addr0) << 24 | (addr1) << 16 | (addr2) << 8 | (addr3)); \ } while(0) /* Convert an IPv4 address of the form uint16[2] to an in_addr_t */ #ifdef CONFIG_ENDIAN_BIG # define uip_ip4addr_conv(addr) (((in_addr_t)((uint16*)addr)[0] << 16) | (in_addr_t)((uint16*)addr)[1]) #else # define uip_ip4addr_conv(addr) (((in_addr_t)((uint16*)addr)[1] << 16) | (in_addr_t)((uint16*)addr)[0]) #endif /* Construct an IPv6 address from eight 16-bit words. * * This function constructs an IPv6 address. */ #define uip_ip6addr(addr, addr0,addr1,addr2,addr3,addr4,addr5,addr6,addr7) \ do { \ ((uint16*)(addr))[0] = HTONS((addr0)); \ ((uint16*)(addr))[1] = HTONS((addr1)); \ ((uint16*)(addr))[2] = HTONS((addr2)); \ ((uint16*)(addr))[3] = HTONS((addr3)); \ ((uint16*)(addr))[4] = HTONS((addr4)); \ ((uint16*)(addr))[5] = HTONS((addr5)); \ ((uint16*)(addr))[6] = HTONS((addr6)); \ ((uint16*)(addr))[7] = HTONS((addr7)); \ } while(0) /* Copy an IP address to another IP address. * * Copies an IP address from one place to another. * * Example: * * uip_ipaddr_t ipaddr1, ipaddr2; * * uip_ipaddr(&ipaddr1, 192,16,1,2); * uip_ipaddr_copy(&ipaddr2, &ipaddr1); * * dest The destination for the copy. * src The source from where to copy. */ #ifndef CONFIG_NET_IPv6 # define uip_ipaddr_copy(dest, src) \ do { \ (dest) = (in_addr_t)(src); \ } while(0) # define uiphdr_ipaddr_copy(dest, src) \ do { \ ((uint16*)(dest))[0] = ((uint16*)(src))[0]; \ ((uint16*)(dest))[1] = ((uint16*)(src))[1]; \ } while(0) #else /* !CONFIG_NET_IPv6 */ # define uip_ipaddr_copy(dest, src) memcpy(&dest, &src, sizeof(uip_ip6addr_t)) # define uiphdr_ipaddr_copy(dest, src) uip_ipaddr_copy(dest, src) #endif /* !CONFIG_NET_IPv6 */ /* Compare two IP addresses * * Example: * * uip_ipaddr_t ipaddr1, ipaddr2; * * uip_ipaddr(&ipaddr1, 192,16,1,2); * if(uip_ipaddr_cmp(&ipaddr2, &ipaddr1)) { * printf("They are the same"); * } * * addr1 The first IP address. * addr2 The second IP address. */ #ifndef CONFIG_NET_IPv6 # define uip_ipaddr_cmp(addr1, addr2) (addr1 == addr2) # define uiphdr_ipaddr_cmp(addr1, addr2) uip_ipaddr_cmp(uip_ip4addr_conv(addr1), uip_ip4addr_conv(addr2)) #else /* !CONFIG_NET_IPv6 */ # define uip_ipaddr_cmp(addr1, addr2) (memcmp(&addr1, &addr2, sizeof(uip_ip6addr_t)) == 0) # define uiphdr_ipaddr_cmp(addr1, addr2) uip_ipaddr_cmp(addr, addr2) #endif /* !CONFIG_NET_IPv6 */ /* Compare two IP addresses with netmasks * * Compares two IP addresses with netmasks. The masks are used to mask * out the bits that are to be compared. * * Example: * * uip_ipaddr_t ipaddr1, ipaddr2, mask; * * uip_ipaddr(&mask, 255,255,255,0); * uip_ipaddr(&ipaddr1, 192,16,1,2); * uip_ipaddr(&ipaddr2, 192,16,1,3); * if(uip_ipaddr_maskcmp(ipaddr1, ipaddr2, &mask)) * { * printf("They are the same"); * } * * addr1 The first IP address. * addr2 The second IP address. * mask The netmask. */ #ifndef CONFIG_NET_IPv6 # define uip_ipaddr_maskcmp(addr1, addr2, mask) \ (((in_addr_t)(addr1) & (in_addr_t)(mask)) == \ ((in_addr_t)(addr2) & (in_addr_t)(mask))) #else extern boolean uip_ipaddr_maskcmp(uip_addr_t addr1, uip_addr_t addr2, uip_addr_t mask); #endif /* Mask out the network part of an IP address. * * Masks out the network part of an IP address, given the address and * the netmask. * * Example: * * uip_ipaddr_t ipaddr1, ipaddr2, netmask; * * uip_ipaddr(&ipaddr1, 192,16,1,2); * uip_ipaddr(&netmask, 255,255,255,0); * uip_ipaddr_mask(&ipaddr2, &ipaddr1, &netmask); * * In the example above, the variable "ipaddr2" will contain the IP * address 192.168.1.0. * * dest Where the result is to be placed. * src The IP address. * mask The netmask. */ #define uip_ipaddr_mask(dest, src, mask) \ do { \ (in_addr_t)(dest) = (in_addr_t)(src) & (in_addr_t)(mask); \ } while(0) #endif /* __NET_UIP_UIP_H */