/**************************************************************************** * drivers/sensors/sensor.c * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ /* Device naming ************************************************************/ #define ROUND_DOWN(x, y) (((x) / (y)) * (y)) #define DEVNAME_FMT "/dev/uorb/sensor_%s%s%d" #define DEVNAME_UNCAL "_uncal" #define TIMING_BUF_ESIZE (sizeof(unsigned long)) /**************************************************************************** * Private Types ****************************************************************************/ /* This structure describes sensor info */ struct sensor_info_s { unsigned long esize; FAR char *name; }; /* This structure describes user info of sensor, the user may be * advertiser or subscriber */ struct sensor_user_s { /* The common info */ struct list_node node; /* Node of users list */ struct pollfd *fds; /* The poll structure of thread waiting events */ bool changed; /* This is used to indicate event happens and need to * asynchronous notify other users */ sem_t buffersem; /* Wakeup user waiting for data in circular buffer */ size_t bufferpos; /* The index of user generation in buffer */ /* The subscriber info * Support multi advertisers to subscribe their own data when they * appear in dual role */ struct sensor_ustate_s state; }; /* This structure describes the state of the upper half driver */ struct sensor_upperhalf_s { FAR struct sensor_lowerhalf_s *lower; /* The handle of lower half driver */ struct sensor_state_s state; /* The state of sensor device */ struct circbuf_s timing; /* The circular buffer of generation */ struct circbuf_s buffer; /* The circular buffer of data */ rmutex_t lock; /* Manages exclusive access to file operations */ struct list_node userlist; /* List of users */ }; /**************************************************************************** * Private Function Prototypes ****************************************************************************/ static void sensor_pollnotify(FAR struct sensor_upperhalf_s *upper, pollevent_t eventset); static int sensor_open(FAR struct file *filep); static int sensor_close(FAR struct file *filep); static ssize_t sensor_read(FAR struct file *filep, FAR char *buffer, size_t buflen); static ssize_t sensor_write(FAR struct file *filep, FAR const char *buffer, size_t buflen); static int sensor_ioctl(FAR struct file *filep, int cmd, unsigned long arg); static int sensor_poll(FAR struct file *filep, FAR struct pollfd *fds, bool setup); static ssize_t sensor_push_event(FAR void *priv, FAR const void *data, size_t bytes); /**************************************************************************** * Private Data ****************************************************************************/ static const struct sensor_info_s g_sensor_info[] = { {0, NULL}, {sizeof(struct sensor_accel), "accel"}, {sizeof(struct sensor_mag), "mag"}, {sizeof(struct sensor_gyro), "gyro"}, {sizeof(struct sensor_light), "light"}, {sizeof(struct sensor_baro), "baro"}, {sizeof(struct sensor_prox), "prox"}, {sizeof(struct sensor_humi), "humi"}, {sizeof(struct sensor_temp), "temp"}, {sizeof(struct sensor_rgb), "rgb"}, {sizeof(struct sensor_hall), "hall"}, {sizeof(struct sensor_ir), "ir"}, {sizeof(struct sensor_gps), "gps"}, {sizeof(struct sensor_uv), "uv"}, {sizeof(struct sensor_noise), "noise"}, {sizeof(struct sensor_pm25), "pm25"}, {sizeof(struct sensor_pm1p0), "pm1p0"}, {sizeof(struct sensor_pm10), "pm10"}, {sizeof(struct sensor_co2), "co2"}, {sizeof(struct sensor_hcho), "hcho"}, {sizeof(struct sensor_tvoc), "tvoc"}, {sizeof(struct sensor_ph), "ph"}, {sizeof(struct sensor_dust), "dust"}, {sizeof(struct sensor_hrate), "hrate"}, {sizeof(struct sensor_hbeat), "hbeat"}, {sizeof(struct sensor_ecg), "ecg"}, {sizeof(struct sensor_ppgd), "ppgd"}, {sizeof(struct sensor_ppgq), "ppgq"}, {sizeof(struct sensor_impd), "impd"}, {sizeof(struct sensor_ots), "ots"}, {sizeof(struct sensor_gps_satellite), "gps_satellite"}, {sizeof(struct sensor_wake_gesture), "wake_gesture"}, {sizeof(struct sensor_cap), "cap"}, }; static const struct file_operations g_sensor_fops = { sensor_open, /* open */ sensor_close, /* close */ sensor_read, /* read */ sensor_write, /* write */ NULL, /* seek */ sensor_ioctl, /* ioctl */ sensor_poll /* poll */ #ifndef CONFIG_DISABLE_PSEUDOFS_OPERATIONS , NULL /* unlink */ #endif }; /**************************************************************************** * Private Functions ****************************************************************************/ static void sensor_lock(FAR void *priv) { FAR struct sensor_upperhalf_s *upper = priv; nxrmutex_lock(&upper->lock); } static void sensor_unlock(FAR void *priv) { FAR struct sensor_upperhalf_s *upper = priv; nxrmutex_unlock(&upper->lock); } static int sensor_update_interval(FAR struct file *filep, FAR struct sensor_upperhalf_s *upper, FAR struct sensor_user_s *user, unsigned long interval) { FAR struct sensor_lowerhalf_s *lower = upper->lower; FAR struct sensor_user_s *tmp; unsigned long min_interval = interval; unsigned long min_latency = interval != ULONG_MAX ? user->state.latency : ULONG_MAX; int ret = 0; if (interval == user->state.interval) { return 0; } list_for_every_entry(&upper->userlist, tmp, struct sensor_user_s, node) { if (tmp == user || tmp->state.interval == ULONG_MAX) { continue; } if (min_interval > tmp->state.interval) { min_interval = tmp->state.interval; } if (min_latency > tmp->state.latency) { min_latency = tmp->state.latency; } } if (lower->ops->set_interval) { if (min_interval != ULONG_MAX && min_interval != upper->state.min_interval) { unsigned long expected_interval = min_interval; ret = lower->ops->set_interval(lower, filep, &min_interval); if (ret < 0) { return ret; } else if (min_interval > expected_interval) { return -EINVAL; } } if (min_latency == ULONG_MAX) { min_latency = 0; } if (lower->ops->batch && (min_latency != upper->state.min_latency || (min_interval != upper->state.min_interval && min_latency))) { ret = lower->ops->batch(lower, filep, &min_latency); if (ret >= 0) { upper->state.min_latency = min_latency; } } } upper->state.min_interval = min_interval; user->state.interval = interval; sensor_pollnotify(upper, POLLPRI); return ret; } static int sensor_update_latency(FAR struct file *filep, FAR struct sensor_upperhalf_s *upper, FAR struct sensor_user_s *user, unsigned long latency) { FAR struct sensor_lowerhalf_s *lower = upper->lower; FAR struct sensor_user_s *tmp; unsigned long min_latency = latency; int ret = 0; if (latency == user->state.latency) { return 0; } if (user->state.interval == ULONG_MAX) { user->state.latency = latency; return 0; } if (latency <= upper->state.min_latency) { goto update; } list_for_every_entry(&upper->userlist, tmp, struct sensor_user_s, node) { if (tmp == user || tmp->state.interval == ULONG_MAX) { continue; } if (min_latency > tmp->state.latency) { min_latency = tmp->state.latency; } } update: if (min_latency == ULONG_MAX) { min_latency = 0; } if (min_latency == upper->state.min_latency) { user->state.latency = latency; return ret; } if (lower->ops->batch) { ret = lower->ops->batch(lower, filep, &min_latency); if (ret < 0) { return ret; } } upper->state.min_latency = min_latency; user->state.latency = latency; sensor_pollnotify(upper, POLLPRI); return ret; } static void sensor_generate_timing(FAR struct sensor_upperhalf_s *upper, unsigned long nums) { unsigned long interval = upper->state.min_interval != ULONG_MAX ? upper->state.min_interval : 1; while (nums-- > 0) { upper->state.generation += interval; circbuf_overwrite(&upper->timing, &upper->state.generation, TIMING_BUF_ESIZE); } } static bool sensor_is_updated(FAR struct sensor_upperhalf_s *upper, FAR struct sensor_user_s *user) { long delta = upper->state.generation - user->state.generation; if (delta <= 0) { return false; } else if (user->state.interval == ULONG_MAX) { return true; } else { /* Check whether next generation user want in buffer. * generation next generation(not published yet) * ____v_____________v * ////|//////^ | * ^ middle point * next generation user want */ return delta >= user->state.interval - (upper->state.min_interval >> 1); } } static void sensor_catch_up(FAR struct sensor_upperhalf_s *upper, FAR struct sensor_user_s *user) { unsigned long generation; long delta; circbuf_peek(&upper->timing, &generation, TIMING_BUF_ESIZE); delta = generation - user->state.generation; if (delta > 0) { user->bufferpos = upper->timing.tail / TIMING_BUF_ESIZE; if (user->state.interval == ULONG_MAX) { user->state.generation = generation - 1; } else { delta -= upper->state.min_interval >> 1; user->state.generation += ROUND_DOWN(delta, user->state.interval); } } } static ssize_t sensor_do_samples(FAR struct sensor_upperhalf_s *upper, FAR struct sensor_user_s *user, FAR char *buffer, size_t len) { unsigned long generation; ssize_t ret = 0; size_t nums; size_t pos; size_t end; sensor_catch_up(upper, user); nums = upper->timing.head / TIMING_BUF_ESIZE - user->bufferpos; if (len < nums * upper->state.esize) { nums = len / upper->state.esize; } len = nums * upper->state.esize; /* Take samples continuously */ if (user->state.interval == ULONG_MAX) { ret = circbuf_peekat(&upper->buffer, user->bufferpos * upper->state.esize, buffer, len); user->bufferpos += nums; circbuf_peekat(&upper->timing, (user->bufferpos - 1) * TIMING_BUF_ESIZE, &user->state.generation, TIMING_BUF_ESIZE); return ret; } /* Take samples one-bye-one, to determine whether a sample needed: * * If user's next generation is on the left side of middle point, * we should copy this sample for user. * next_generation(or end) * ________________v____ * timing buffer: //|//////. | * ^ middle * generation * next sample(or end) * ________________v____ * data buffer: | | * ^ * sample */ pos = user->bufferpos; end = upper->timing.head / TIMING_BUF_ESIZE; circbuf_peekat(&upper->timing, pos * TIMING_BUF_ESIZE, &generation, TIMING_BUF_ESIZE); while (pos++ != end) { unsigned long next_generation; long delta; if (pos * TIMING_BUF_ESIZE == upper->timing.head) { next_generation = upper->state.generation + upper->state.min_interval; } else { circbuf_peekat(&upper->timing, pos * TIMING_BUF_ESIZE, &next_generation, TIMING_BUF_ESIZE); } delta = next_generation + generation - ((user->state.generation + user->state.interval) << 1); if (delta >= 0) { ret += circbuf_peekat(&upper->buffer, (pos - 1) * upper->state.esize, buffer + ret, upper->state.esize); user->bufferpos = pos; user->state.generation += user->state.interval; if (ret >= len) { break; } } generation = next_generation; } return ret; } static void sensor_pollnotify_one(FAR struct sensor_user_s *user, pollevent_t eventset) { if (eventset == POLLPRI) { user->changed = true; } poll_notify(&user->fds, 1, eventset); } static void sensor_pollnotify(FAR struct sensor_upperhalf_s *upper, pollevent_t eventset) { FAR struct sensor_user_s *user; list_for_every_entry(&upper->userlist, user, struct sensor_user_s, node) { sensor_pollnotify_one(user, eventset); } } static int sensor_open(FAR struct file *filep) { FAR struct inode *inode = filep->f_inode; FAR struct sensor_upperhalf_s *upper = inode->i_private; FAR struct sensor_lowerhalf_s *lower = upper->lower; FAR struct sensor_user_s *user; int ret = 0; nxrmutex_lock(&upper->lock); user = kmm_zalloc(sizeof(struct sensor_user_s)); if (user == NULL) { ret = -ENOMEM; goto errout_with_lock; } if (lower->ops->open) { ret = lower->ops->open(lower, filep); if (ret < 0) { goto errout_with_user; } } if (filep->f_oflags & O_RDOK) { if (upper->state.nsubscribers == 0 && lower->ops->activate) { ret = lower->ops->activate(lower, filep, true); if (ret < 0) { goto errout_with_open; } } upper->state.nsubscribers++; } if (filep->f_oflags & O_WROK) { upper->state.nadvertisers++; if (filep->f_oflags & SENSOR_PERSIST) { lower->persist = true; } } if (upper->state.generation && lower->persist) { user->state.generation = upper->state.generation - 1; user->bufferpos = upper->timing.head / TIMING_BUF_ESIZE - 1; } else { user->state.generation = upper->state.generation; user->bufferpos = upper->timing.head / TIMING_BUF_ESIZE; } user->state.interval = ULONG_MAX; user->state.esize = upper->state.esize; nxsem_init(&user->buffersem, 0, 0); list_add_tail(&upper->userlist, &user->node); /* The new user generation, notify to other users */ sensor_pollnotify(upper, POLLPRI); filep->f_priv = user; goto errout_with_lock; errout_with_open: if (lower->ops->close) { lower->ops->close(lower, filep); } errout_with_user: kmm_free(user); errout_with_lock: nxrmutex_unlock(&upper->lock); return ret; } static int sensor_close(FAR struct file *filep) { FAR struct inode *inode = filep->f_inode; FAR struct sensor_upperhalf_s *upper = inode->i_private; FAR struct sensor_lowerhalf_s *lower = upper->lower; FAR struct sensor_user_s *user = filep->f_priv; int ret = 0; nxrmutex_lock(&upper->lock); if (lower->ops->close) { ret = lower->ops->close(lower, filep); if (ret < 0) { nxrmutex_unlock(&upper->lock); return ret; } } if (filep->f_oflags & O_RDOK) { upper->state.nsubscribers--; if (upper->state.nsubscribers == 0 && lower->ops->activate) { lower->ops->activate(lower, filep, false); } } if (filep->f_oflags & O_WROK) { upper->state.nadvertisers--; } list_delete(&user->node); sensor_update_latency(filep, upper, user, ULONG_MAX); sensor_update_interval(filep, upper, user, ULONG_MAX); nxsem_destroy(&user->buffersem); /* The user is closed, notify to other users */ sensor_pollnotify(upper, POLLPRI); nxrmutex_unlock(&upper->lock); kmm_free(user); return ret; } static ssize_t sensor_read(FAR struct file *filep, FAR char *buffer, size_t len) { FAR struct inode *inode = filep->f_inode; FAR struct sensor_upperhalf_s *upper = inode->i_private; FAR struct sensor_lowerhalf_s *lower = upper->lower; FAR struct sensor_user_s *user = filep->f_priv; ssize_t ret; if (!buffer || !len) { return -EINVAL; } nxrmutex_lock(&upper->lock); if (lower->ops->fetch) { if (!(filep->f_oflags & O_NONBLOCK)) { nxrmutex_unlock(&upper->lock); ret = nxsem_wait_uninterruptible(&user->buffersem); if (ret < 0) { return ret; } nxrmutex_lock(&upper->lock); } else if (!upper->state.nsubscribers) { ret = -EAGAIN; goto out; } ret = lower->ops->fetch(lower, filep, buffer, len); } else if (circbuf_is_empty(&upper->buffer)) { ret = -ENODATA; } else if (sensor_is_updated(upper, user)) { ret = sensor_do_samples(upper, user, buffer, len); } else if (lower->persist) { /* Persistent device can get latest old data if not updated. */ ret = circbuf_peekat(&upper->buffer, (user->bufferpos - 1) * upper->state.esize, buffer, upper->state.esize); } else { ret = -ENODATA; } out: nxrmutex_unlock(&upper->lock); return ret; } static ssize_t sensor_write(FAR struct file *filep, FAR const char *buffer, size_t buflen) { FAR struct inode *inode = filep->f_inode; FAR struct sensor_upperhalf_s *upper = inode->i_private; FAR struct sensor_lowerhalf_s *lower = upper->lower; return lower->push_event(lower->priv, buffer, buflen); } static int sensor_ioctl(FAR struct file *filep, int cmd, unsigned long arg) { FAR struct inode *inode = filep->f_inode; FAR struct sensor_upperhalf_s *upper = inode->i_private; FAR struct sensor_lowerhalf_s *lower = upper->lower; FAR struct sensor_user_s *user = filep->f_priv; int ret = 0; sninfo("cmd=%x arg=%08lx\n", cmd, arg); switch (cmd) { case SNIOC_GET_STATE: { nxrmutex_lock(&upper->lock); memcpy((FAR void *)(uintptr_t)arg, &upper->state, sizeof(upper->state)); user->changed = false; nxrmutex_unlock(&upper->lock); } break; case SNIOC_GET_USTATE: { nxrmutex_lock(&upper->lock); memcpy((FAR void *)(uintptr_t)arg, &user->state, sizeof(user->state)); nxrmutex_unlock(&upper->lock); } break; case SNIOC_SET_INTERVAL: { nxrmutex_lock(&upper->lock); ret = sensor_update_interval(filep, upper, user, arg ? arg : ULONG_MAX); nxrmutex_unlock(&upper->lock); } break; case SNIOC_BATCH: { nxrmutex_lock(&upper->lock); ret = sensor_update_latency(filep, upper, user, arg); nxrmutex_unlock(&upper->lock); } break; case SNIOC_SELFTEST: { if (lower->ops->selftest == NULL) { ret = -ENOTSUP; break; } ret = lower->ops->selftest(lower, filep, arg); } break; case SNIOC_SET_CALIBVALUE: { if (lower->ops->set_calibvalue == NULL) { ret = -ENOTSUP; break; } ret = lower->ops->set_calibvalue(lower, filep, arg); } break; case SNIOC_CALIBRATE: { if (lower->ops->calibrate == NULL) { ret = -ENOTSUP; break; } ret = lower->ops->calibrate(lower, filep, arg); } break; case SNIOC_SET_USERPRIV: { nxrmutex_lock(&upper->lock); upper->state.priv = (FAR void *)(uintptr_t)arg; nxrmutex_unlock(&upper->lock); } break; case SNIOC_SET_BUFFER_NUMBER: { nxrmutex_lock(&upper->lock); if (!circbuf_is_init(&upper->buffer)) { if (arg >= lower->nbuffer) { lower->nbuffer = arg; } else { ret = -ERANGE; } } else { ret = -EBUSY; } nxrmutex_unlock(&upper->lock); } break; case SNIOC_UPDATED: { nxrmutex_lock(&upper->lock); *(FAR bool *)(uintptr_t)arg = sensor_is_updated(upper, user); nxrmutex_unlock(&upper->lock); } break; default: /* Lowerhalf driver process other cmd. */ if (lower->ops->control) { ret = lower->ops->control(lower, filep, cmd, arg); } else { ret = -ENOTTY; } break; } return ret; } static int sensor_poll(FAR struct file *filep, FAR struct pollfd *fds, bool setup) { FAR struct inode *inode = filep->f_inode; FAR struct sensor_upperhalf_s *upper = inode->i_private; FAR struct sensor_lowerhalf_s *lower = upper->lower; FAR struct sensor_user_s *user = filep->f_priv; pollevent_t eventset = 0; int semcount; int ret = 0; nxrmutex_lock(&upper->lock); if (setup) { /* Don't have enough space to store fds */ if (user->fds) { ret = -ENOSPC; goto errout; } user->fds = fds; fds->priv = filep; if (lower->ops->fetch) { /* Always return POLLIN for fetch data directly(non-block) */ if (filep->f_oflags & O_NONBLOCK) { eventset |= POLLIN; } else { nxsem_get_value(&user->buffersem, &semcount); if (semcount > 0) { eventset |= POLLIN; } } } else if (sensor_is_updated(upper, user)) { eventset |= POLLIN; } if (user->changed) { eventset |= POLLPRI; } sensor_pollnotify_one(user, eventset); } else { user->fds = NULL; fds->priv = NULL; } errout: nxrmutex_unlock(&upper->lock); return ret; } static ssize_t sensor_push_event(FAR void *priv, FAR const void *data, size_t bytes) { FAR struct sensor_upperhalf_s *upper = priv; FAR struct sensor_lowerhalf_s *lower = upper->lower; FAR struct sensor_user_s *user; unsigned long envcount; int semcount; int ret; envcount = bytes / upper->state.esize; if (!envcount || bytes != envcount * upper->state.esize) { return -EINVAL; } nxrmutex_lock(&upper->lock); if (!circbuf_is_init(&upper->buffer)) { /* Initialize sensor buffer when data is first generated */ ret = circbuf_init(&upper->buffer, NULL, lower->nbuffer * upper->state.esize); if (ret < 0) { nxrmutex_unlock(&upper->lock); return ret; } ret = circbuf_init(&upper->timing, NULL, lower->nbuffer * TIMING_BUF_ESIZE); if (ret < 0) { circbuf_uninit(&upper->buffer); nxrmutex_unlock(&upper->lock); return ret; } } circbuf_overwrite(&upper->buffer, data, bytes); sensor_generate_timing(upper, envcount); list_for_every_entry(&upper->userlist, user, struct sensor_user_s, node) { if (sensor_is_updated(upper, user)) { nxsem_get_value(&user->buffersem, &semcount); if (semcount < 1) { nxsem_post(&user->buffersem); } sensor_pollnotify_one(user, POLLIN); } } nxrmutex_unlock(&upper->lock); return bytes; } static void sensor_notify_event(FAR void *priv) { FAR struct sensor_upperhalf_s *upper = priv; FAR struct sensor_user_s *user; int semcount; nxrmutex_lock(&upper->lock); list_for_every_entry(&upper->userlist, user, struct sensor_user_s, node) { nxsem_get_value(&user->buffersem, &semcount); if (semcount < 1) { nxsem_post(&user->buffersem); } sensor_pollnotify_one(user, POLLIN); } nxrmutex_unlock(&upper->lock); } /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Name: sensor_register * * Description: * This function binds an instance of a "lower half" Sensor driver with the * "upper half" Sensor device and registers that device so that can be used * by application code. * * We will register the chararter device by node name format based on the * type of sensor. Multiple types of the same type are distinguished by * numbers. eg: accel0, accel1 * * Input Parameters: * dev - A pointer to an instance of lower half sensor driver. This * instance is bound to the sensor driver and must persists as long * as the driver persists. * devno - The user specifies which device of this type, from 0. If the * devno alerady exists, -EEXIST will be returned. * * Returned Value: * OK if the driver was successfully register; A negated errno value is * returned on any failure. * ****************************************************************************/ int sensor_register(FAR struct sensor_lowerhalf_s *lower, int devno) { char path[PATH_MAX]; DEBUGASSERT(lower != NULL); snprintf(path, PATH_MAX, DEVNAME_FMT, g_sensor_info[lower->type].name, lower->uncalibrated ? DEVNAME_UNCAL : "", devno); return sensor_custom_register(lower, path, g_sensor_info[lower->type].esize); } /**************************************************************************** * Name: sensor_custom_register * * Description: * This function binds an instance of a "lower half" Sensor driver with the * "upper half" Sensor device and registers that device so that can be used * by application code. * * You can register the character device type by specific path and esize. * This API corresponds to the sensor_custom_unregister. * * Input Parameters: * dev - A pointer to an instance of lower half sensor driver. This * instance is bound to the sensor driver and must persists as long * as the driver persists. * path - The user specifies path of device. ex: /dev/uorb/xxx. * esize - The element size of intermediate circular buffer. * * Returned Value: * OK if the driver was successfully register; A negated errno value is * returned on any failure. * ****************************************************************************/ int sensor_custom_register(FAR struct sensor_lowerhalf_s *lower, FAR const char *path, unsigned long esize) { FAR struct sensor_upperhalf_s *upper; int ret = -EINVAL; DEBUGASSERT(lower != NULL); if (lower->type >= SENSOR_TYPE_COUNT || !esize) { snerr("ERROR: type is invalid\n"); return ret; } /* Allocate the upper-half data structure */ upper = kmm_zalloc(sizeof(struct sensor_upperhalf_s)); if (!upper) { snerr("ERROR: Allocation failed\n"); return -ENOMEM; } /* Initialize the upper-half data structure */ list_initialize(&upper->userlist); upper->state.esize = esize; upper->state.min_interval = ULONG_MAX; if (lower->ops->activate) { upper->state.nadvertisers = 1; } nxrmutex_init(&upper->lock); /* Bind the lower half data structure member */ lower->priv = upper; lower->sensor_lock = sensor_lock; lower->sensor_unlock = sensor_unlock; if (!lower->ops->fetch) { if (!lower->nbuffer) { lower->nbuffer = 1; } lower->push_event = sensor_push_event; } else { lower->notify_event = sensor_notify_event; lower->nbuffer = 0; } #ifdef CONFIG_SENSORS_RPMSG lower = sensor_rpmsg_register(lower, path); if (lower == NULL) { ret = -EIO; goto drv_err; } #endif upper->state.nbuffer = lower->nbuffer; upper->lower = lower; sninfo("Registering %s\n", path); ret = register_driver(path, &g_sensor_fops, 0666, upper); if (ret) { goto drv_err; } return ret; drv_err: nxrmutex_destroy(&upper->lock); kmm_free(upper); return ret; } /**************************************************************************** * Name: sensor_unregister * * Description: * This function unregister character node and release all resource about * upper half driver. * * Input Parameters: * dev - A pointer to an instance of lower half sensor driver. This * instance is bound to the sensor driver and must persists as long * as the driver persists. * devno - The user specifies which device of this type, from 0. ****************************************************************************/ void sensor_unregister(FAR struct sensor_lowerhalf_s *lower, int devno) { char path[PATH_MAX]; snprintf(path, PATH_MAX, DEVNAME_FMT, g_sensor_info[lower->type].name, lower->uncalibrated ? DEVNAME_UNCAL : "", devno); sensor_custom_unregister(lower, path); } /**************************************************************************** * Name: sensor_custom_unregister * * Description: * This function unregister character node and release all resource about * upper half driver. This API corresponds to the sensor_custom_register. * * Input Parameters: * dev - A pointer to an instance of lower half sensor driver. This * instance is bound to the sensor driver and must persists as long * as the driver persists. * path - The user specifies path of device, ex: /dev/uorb/xxx ****************************************************************************/ void sensor_custom_unregister(FAR struct sensor_lowerhalf_s *lower, FAR const char *path) { FAR struct sensor_upperhalf_s *upper; DEBUGASSERT(lower != NULL); DEBUGASSERT(lower->priv != NULL); upper = lower->priv; sninfo("UnRegistering %s\n", path); unregister_driver(path); #ifdef CONFIG_SENSORS_RPMSG sensor_rpmsg_unregister(lower); #endif nxrmutex_destroy(&upper->lock); if (circbuf_is_init(&upper->buffer)) { circbuf_uninit(&upper->buffer); circbuf_uninit(&upper->timing); } kmm_free(upper); }