/**************************************************************************** * arch/arm64/include/irq.h * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /* This file should never be included directly but, rather, only indirectly * through nuttx/irq.h */ #ifndef __ARCH_ARM64_INCLUDE_IRQ_H #define __ARCH_ARM64_INCLUDE_IRQ_H /**************************************************************************** * Included Files ****************************************************************************/ #include #include #ifndef __ASSEMBLY__ # include #endif /* Include NuttX-specific IRQ definitions */ #include /* Include chip-specific IRQ definitions (including IRQ numbers) */ #include /**************************************************************************** * Pre-processor Prototypes ****************************************************************************/ #define up_getsp() (uintptr_t)__builtin_frame_address(0) /* MPIDR_EL1, Multiprocessor Affinity Register */ #define MPIDR_AFFLVL_MASK (0xff) #define MPIDR_AFF0_SHIFT (0) #define MPIDR_AFF1_SHIFT (8) #define MPIDR_AFF2_SHIFT (16) #define MPIDR_AFF3_SHIFT (32) /* mpidr_el1 register, the register is define: * - bit 0~7: Aff0 * - bit 8~15: Aff1 * - bit 16~23: Aff2 * - bit 24: MT, multithreading * - bit 25~29: RES0 * - bit 30: U, multiprocessor/Uniprocessor * - bit 31: RES1 * - bit 32~39: Aff3 * - bit 40~63: RES0 * Different ARM64 Core will use different Affn define, the mpidr_el1 * value is not CPU number, So we need to change CPU number to mpid * and vice versa */ #define GET_MPIDR() \ ({ \ uint64_t __val; \ __asm__ volatile ("mrs %0, mpidr_el1" \ : "=r" (__val) :: "memory"); \ __val; \ }) /**************************************************************************** * Exception stack frame format: * * x0 ~ x18, x30 (lr), spsr and elr * Corruptible Registers and exception context * reference to Armv8-A Instruction Set Architecture * (ARM062-948681440-3280, Issue 1.1), chapter 11 PCS * need to be saved in all exception * * x19 ~ x29, sp_el0, sp_elx * Callee-saved Registers and SP pointer * reference to Armv8-A Instruction Set Architecture * (ARM062-948681440-3280, Issue 1.1), chapter 11 PCS * These registers frame is allocated on stack frame * when a exception is occurred and saved at task switch * or crash exception * check arm64_vectors.S for detail * ****************************************************************************/ /**************************************************************************** * Registers and exception context * Note: * REG_EXEC_DEPTH indicate the task's exception depth * ****************************************************************************/ #define REG_X0 (0) #define REG_X1 (1) #define REG_X2 (2) #define REG_X3 (3) #define REG_X4 (4) #define REG_X5 (5) #define REG_X6 (6) #define REG_X7 (7) #define REG_X8 (8) #define REG_X9 (9) #define REG_X10 (10) #define REG_X11 (11) #define REG_X12 (12) #define REG_X13 (13) #define REG_X14 (14) #define REG_X15 (15) #define REG_X16 (16) #define REG_X17 (17) #define REG_X18 (18) #define REG_X19 (19) #define REG_X20 (20) #define REG_X21 (21) #define REG_X22 (22) #define REG_X23 (23) #define REG_X24 (24) #define REG_X25 (25) #define REG_X26 (26) #define REG_X27 (27) #define REG_X28 (28) #define REG_X29 (29) #define REG_X30 (30) #define REG_SP_ELX (31) #define REG_ELR (32) #define REG_SPSR (33) #define REG_SP_EL0 (34) #define REG_EXE_DEPTH (35) /* In Armv8-A Architecture, the stack must align with 16 byte */ #define XCPTCONTEXT_GP_REGS (36) #define XCPTCONTEXT_GP_SIZE (8 * XCPTCONTEXT_GP_REGS) #ifdef CONFIG_ARCH_FPU /**************************************************************************** * q0 ~ q31(128bit), fpsr, fpcr * armv8 fpu registers and context * With CONFIG_ARCH_FPU is enabled, armv8 fpu registers context * is allocated on stack frame at exception and store/restore * when switching FPU context * check arm64_fpu.c for detail * ****************************************************************************/ /* 128bit registers */ #define FPU_REG_Q0 (0) #define FPU_REG_Q1 (1) #define FPU_REG_Q2 (2) #define FPU_REG_Q3 (3) #define FPU_REG_Q4 (4) #define FPU_REG_Q5 (5) #define FPU_REG_Q6 (6) #define FPU_REG_Q7 (7) #define FPU_REG_Q8 (8) #define FPU_REG_Q9 (9) #define FPU_REG_Q10 (10) #define FPU_REG_Q11 (11) #define FPU_REG_Q12 (12) #define FPU_REG_Q13 (13) #define FPU_REG_Q14 (14) #define FPU_REG_Q15 (15) #define FPU_REG_Q16 (16) #define FPU_REG_Q17 (17) #define FPU_REG_Q18 (18) #define FPU_REG_Q19 (19) #define FPU_REG_Q20 (20) #define FPU_REG_Q21 (21) #define FPU_REG_Q22 (22) #define FPU_REG_Q23 (23) #define FPU_REG_Q24 (24) #define FPU_REG_Q25 (25) #define FPU_REG_Q26 (26) #define FPU_REG_Q27 (27) #define FPU_REG_Q28 (28) #define FPU_REG_Q29 (29) #define FPU_REG_Q30 (30) #define FPU_REG_Q31 (31) /* 32 bit registers */ #define FPU_REG_FPSR (0) #define FPU_REG_FPCR (1) /* FPU registers(Q0~Q31, 128bit): 32x2 = 64 * FPU FPSR/SPSR(32 bit) : 1 * FPU TRAP: 1 * 64 + 1 + 1 = 66 */ #define XCPTCONTEXT_FPU_REGS (66) #else #define XCPTCONTEXT_FPU_REGS (0) #endif #define FPUCONTEXT_SIZE (8 * XCPTCONTEXT_FPU_REGS) #define XCPTCONTEXT_REGS (XCPTCONTEXT_GP_REGS + XCPTCONTEXT_FPU_REGS) #define XCPTCONTEXT_SIZE (8 * XCPTCONTEXT_REGS) #ifdef CONFIG_ARM64_DECODEFIQ # define IRQ_DAIF_MASK (3) #else # define IRQ_DAIF_MASK (2) #endif #define IRQ_SPSR_MASK (IRQ_DAIF_MASK << 6) #ifndef __ASSEMBLY__ #ifdef __cplusplus #define EXTERN extern "C" extern "C" { #else #define EXTERN extern #endif /**************************************************************************** * Public Data ****************************************************************************/ struct xcptcontext { #ifdef CONFIG_BUILD_KERNEL /* This is the saved address to use when returning from a user-space * signal handler. */ uintptr_t sigreturn; #endif /* task stack reg context */ uint64_t *regs; #ifndef CONFIG_BUILD_FLAT uint64_t *initregs; #endif /* task context, for signal process */ uint64_t *saved_reg; #ifdef CONFIG_ARCH_FPU uint64_t *fpu_regs; uint64_t *saved_fpu_regs; #endif /* Extra fault address register saved for common paging logic. In the * case of the pre-fetch abort, this value is the same as regs[REG_ELR]; * For the case of the data abort, this value is the value of the fault * address register (FAR) at the time of data abort exception. */ #ifdef CONFIG_LEGACY_PAGING uintptr_t far; #endif #ifdef CONFIG_ARCH_ADDRENV # ifdef CONFIG_ARCH_STACK_DYNAMIC /* This array holds the physical address of the level 2 page table used * to map the thread's stack memory. This array will be initially of * zeroed and would be back-up up with pages during page fault exception * handling to support dynamically sized stacks for each thread. */ uintptr_t *ustack[ARCH_STACK_NSECTS]; # endif # ifdef CONFIG_ARCH_KERNEL_STACK /* In this configuration, all syscalls execute from an internal kernel * stack. Why? Because when we instantiate and initialize the address * environment of the new user process, we will temporarily lose the * address environment of the old user process, including its stack * contents. The kernel C logic will crash immediately with no valid * stack in place. */ uintptr_t *ustkptr; /* Saved user stack pointer */ uintptr_t *kstack; /* Allocate base of the (aligned) kernel stack */ # endif #endif }; /* Name: up_irq_save, up_irq_restore, and friends. * * NOTE: This function should never be called from application code and, * as a general rule unless you really know what you are doing, this * function should not be called directly from operation system code either: * Typically, the wrapper functions, enter_critical_section() and * leave_critical section(), are probably what you really want. */ /* Return the current IRQ state */ static inline irqstate_t irqstate(void) { irqstate_t flags; __asm__ __volatile__("mrs %0, daif" : "=r" (flags):: "memory"); return flags; } /* Disable IRQs and return the previous IRQ state */ static inline irqstate_t up_irq_save(void) { irqstate_t flags; __asm__ __volatile__ ( "mrs %0, daif\n" "msr daifset, %1\n" : "=r" (flags) : "i" (IRQ_DAIF_MASK) : "memory" ); return flags; } /* Enable IRQs and return the previous IRQ state */ static inline irqstate_t up_irq_enable(void) { irqstate_t flags; __asm__ __volatile__ ( "mrs %0, daif\n" "msr daifclr, %1\n" : "=r" (flags) : "i" (IRQ_DAIF_MASK) : "memory" ); return flags; } /* Restore saved IRQ & FIQ state */ static inline void up_irq_restore(irqstate_t flags) { __asm__ __volatile__("msr daif, %0" :: "r" (flags): "memory"); } /**************************************************************************** * Public Function Prototypes ****************************************************************************/ /**************************************************************************** * Name: up_cpu_index * * Description: * Return an index in the range of 0 through (CONFIG_SMP_NCPUS-1) that * corresponds to the currently executing CPU. * * Input Parameters: * None * * Returned Value: * An integer index in the range of 0 through (CONFIG_SMP_NCPUS-1) that * corresponds to the currently executing CPU. * ****************************************************************************/ #ifdef CONFIG_SMP # define up_cpu_index() ((int)MPID_TO_CORE(GET_MPIDR())) #else # define up_cpu_index() (0) #endif /**************************************************************************** * Name: * up_current_regs/up_set_current_regs * * Description: * We use the following code to manipulate the tpidr_el1 register, * which exists uniquely for each CPU and is primarily designed to store * current thread information. Currently, we leverage it to store interrupt * information, with plans to further optimize its use for storing both * thread and interrupt information in the future. * ****************************************************************************/ noinstrument_function static inline_function uint64_t *up_current_regs(void) { uint64_t *regs; __asm__ volatile ("mrs %0, " "tpidr_el1" : "=r" (regs)); return regs; } noinstrument_function static inline_function void up_set_current_regs(uint64_t *regs) { __asm__ volatile ("msr " "tpidr_el1" ", %0" : : "r" (regs)); } /**************************************************************************** * Name: up_interrupt_context * * Description: Return true is we are currently executing in * the interrupt handler context. * ****************************************************************************/ static inline bool up_interrupt_context(void) { return up_current_regs() != NULL; } #undef EXTERN #ifdef __cplusplus } #endif #endif /* __ASSEMBLY__ */ #endif /* __ARCH_ARM64_INCLUDE_IRQ_H */