/**************************************************************************** * arch/arm/include/armv8-r/irq.h * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /* This file should never be included directly but, rather, only indirectly * through nuttx/irq.h */ #ifndef __ARCH_ARM_INCLUDE_ARMV8_R_IRQ_H #define __ARCH_ARM_INCLUDE_ARMV8_R_IRQ_H /**************************************************************************** * Included Files ****************************************************************************/ #include #include #ifndef __ASSEMBLY__ # include #endif #include /**************************************************************************** * Pre-processor Prototypes ****************************************************************************/ /* IRQ Stack Frame Format: * * Context is always saved/restored in the same way: * * (1) stmia rx, {r0-r14} * (2) then the PC and CPSR * * This results in the following set of indices that can be used to access * individual registers in the xcp.regs array: */ /* If the MCU supports a floating point unit, then it will be necessary * to save the state of the FPU status register and data registers on * each context switch. These registers are not saved during interrupt * level processing, however. So, as a consequence, floating point * operations may NOT be performed in interrupt handlers. * * The FPU provides an extension register file containing 32 single- * precision registers. These can be viewed as: * * - Sixteen 64-bit double word registers, D0-D15 * - Thirty-two 32-bit single-word registers, S0-S31 * S<2n> maps to the least significant half of D * S<2n+1> maps to the most significant half of D. */ #ifdef CONFIG_ARCH_FPU # define REG_D0 (0) /* D0 */ # define REG_S0 (0) /* S0 */ # define REG_S1 (1) /* S1 */ # define REG_D1 (2) /* D1 */ # define REG_S2 (2) /* S2 */ # define REG_S3 (3) /* S3 */ # define REG_D2 (4) /* D2 */ # define REG_S4 (4) /* S4 */ # define REG_S5 (5) /* S5 */ # define REG_D3 (6) /* D3 */ # define REG_S6 (6) /* S6 */ # define REG_S7 (7) /* S7 */ # define REG_D4 (8) /* D4 */ # define REG_S8 (8) /* S8 */ # define REG_S9 (9) /* S9 */ # define REG_D5 (10) /* D5 */ # define REG_S10 (10) /* S10 */ # define REG_S11 (11) /* S11 */ # define REG_D6 (12) /* D6 */ # define REG_S12 (12) /* S12 */ # define REG_S13 (13) /* S13 */ # define REG_D7 (14) /* D7 */ # define REG_S14 (14) /* S14 */ # define REG_S15 (15) /* S15 */ # define REG_D8 (16) /* D8 */ # define REG_S16 (16) /* S16 */ # define REG_S17 (17) /* S17 */ # define REG_D9 (18) /* D9 */ # define REG_S18 (18) /* S18 */ # define REG_S19 (19) /* S19 */ # define REG_D10 (20) /* D10 */ # define REG_S20 (20) /* S20 */ # define REG_S21 (21) /* S21 */ # define REG_D11 (22) /* D11 */ # define REG_S22 (22) /* S22 */ # define REG_S23 (23) /* S23 */ # define REG_D12 (24) /* D12 */ # define REG_S24 (24) /* S24 */ # define REG_S25 (25) /* S25 */ # define REG_D13 (26) /* D13 */ # define REG_S26 (26) /* S26 */ # define REG_S27 (27) /* S27 */ # define REG_D14 (28) /* D14 */ # define REG_S28 (28) /* S28 */ # define REG_S29 (29) /* S29 */ # define REG_D15 (30) /* D15 */ # define REG_S30 (30) /* S30 */ # define REG_S31 (31) /* S31 */ # ifdef CONFIG_ARM_HAVE_DPFPU32 # define REG_D16 (32) /* D16 */ # define REG_D17 (34) /* D17 */ # define REG_D18 (36) /* D18 */ # define REG_D19 (38) /* D19 */ # define REG_D20 (40) /* D20 */ # define REG_D21 (42) /* D21 */ # define REG_D22 (44) /* D22 */ # define REG_D23 (46) /* D23 */ # define REG_D24 (48) /* D24 */ # define REG_D25 (50) /* D25 */ # define REG_D26 (52) /* D26 */ # define REG_D27 (54) /* D27 */ # define REG_D28 (56) /* D28 */ # define REG_D29 (58) /* D29 */ # define REG_D30 (60) /* D30 */ # define REG_D31 (62) /* D31 */ # define REG_FPSCR (64) /* Floating point status and control */ # define FPU_CONTEXT_REGS (65) # else # define REG_FPSCR (32) /* Floating point status and control */ # define FPU_CONTEXT_REGS (33) # endif #else # define FPU_CONTEXT_REGS (0) #endif #define REG_R13 (FPU_CONTEXT_REGS+0) #define REG_R14 (FPU_CONTEXT_REGS+1) #define REG_R0 (FPU_CONTEXT_REGS+2) #define REG_R1 (FPU_CONTEXT_REGS+3) #define REG_R2 (FPU_CONTEXT_REGS+4) #define REG_R3 (FPU_CONTEXT_REGS+5) #define REG_R4 (FPU_CONTEXT_REGS+6) #define REG_R5 (FPU_CONTEXT_REGS+7) #define REG_R6 (FPU_CONTEXT_REGS+8) #define REG_R7 (FPU_CONTEXT_REGS+9) #define REG_R8 (FPU_CONTEXT_REGS+10) #define REG_R9 (FPU_CONTEXT_REGS+11) #define REG_R10 (FPU_CONTEXT_REGS+12) #define REG_R11 (FPU_CONTEXT_REGS+13) #define REG_R12 (FPU_CONTEXT_REGS+14) #define REG_R15 (FPU_CONTEXT_REGS+15) #define REG_CPSR (FPU_CONTEXT_REGS+16) #define ARM_CONTEXT_REGS (17) /* The total number of registers saved by software */ #define XCPTCONTEXT_REGS (FPU_CONTEXT_REGS + ARM_CONTEXT_REGS) #define XCPTCONTEXT_SIZE (4 * XCPTCONTEXT_REGS) /* Friendly register names */ #define REG_A1 REG_R0 #define REG_A2 REG_R1 #define REG_A3 REG_R2 #define REG_A4 REG_R3 #define REG_V1 REG_R4 #define REG_V2 REG_R5 #define REG_V3 REG_R6 #define REG_V4 REG_R7 #define REG_V5 REG_R8 #define REG_V6 REG_R9 #define REG_V7 REG_R10 #define REG_SB REG_R9 #define REG_SL REG_R10 #ifdef CONFIG_ARM_THUMB #define REG_FP REG_R7 #else #define REG_FP REG_R11 #endif /* CONFIG_ARM_THUMB */ #define REG_IP REG_R12 #define REG_SP REG_R13 #define REG_LR REG_R14 #define REG_PC REG_R15 /* The PIC register is usually R10. It can be R9 is stack checking is enabled * or if the user changes it with -mpic-register on the GCC command line. */ #define REG_PIC REG_R10 /* Multiprocessor Affinity Register (MPIDR): CRn=c0, opc1=0, CRm=c0, opc2=5 */ #define MPIDR_CPUID_SHIFT (0) /* Bits 0-1: CPU ID */ #define MPIDR_CPUID_MASK (3 << MPIDR_CPUID_SHIFT) # define MPIDR_CPUID_CPU0 (0 << MPIDR_CPUID_SHIFT) # define MPIDR_CPUID_CPU1 (1 << MPIDR_CPUID_SHIFT) # define MPIDR_CPUID_CPU2 (2 << MPIDR_CPUID_SHIFT) # define MPIDR_CPUID_CPU3 (3 << MPIDR_CPUID_SHIFT) /* Bits 2-7: Reserved */ #define MPIDR_CLUSTID_SHIFT (8) /* Bits 8-11: Cluster ID value */ #define MPIDR_CLUSTID_MASK (15 << MPIDR_CLUSTID_SHIFT) /* Bits 12-29: Reserved */ #define MPIDR_U (1 << 30) /* Bit 30: Multiprocessing Extensions. */ /**************************************************************************** * Public Types ****************************************************************************/ #ifndef __ASSEMBLY__ /* This structure represents the return state from a system call */ #ifdef CONFIG_LIB_SYSCALL struct xcpt_syscall_s { #ifdef CONFIG_BUILD_KERNEL uint32_t cpsr; /* The CPSR value */ #endif uint32_t sysreturn; /* The return PC */ }; #endif /* This struct defines the way the registers are stored. We need to save: * * 1 CPSR * 7 Static registers, v1-v7 (aka r4-r10) * 1 Frame pointer, fp (aka r11) * 1 Stack pointer, sp (aka r13) * 1 Return address, lr (aka r14) * --- * 11 (XCPTCONTEXT_USER_REG) * * On interrupts, we also need to save: * 4 Volatile registers, a1-a4 (aka r0-r3) * 1 Scratch Register, ip (aka r12) *--- * 5 (XCPTCONTEXT_IRQ_REGS) * * For a total of 17 (XCPTCONTEXT_REGS) */ struct xcptcontext { /* The following function pointer is non-zero if there are pending signals * to be processed. */ void *sigdeliver; /* Actual type is sig_deliver_t */ /* These are saved copies of the context used during * signal processing. */ uint32_t *saved_regs; #ifdef CONFIG_BUILD_KERNEL /* This is the saved address to use when returning from a user-space * signal handler. */ uint32_t sigreturn; #endif /* Register save area with XCPTCONTEXT_SIZE, only valid when: * 1.The task isn't running or * 2.The task is interrupted * otherwise task is running, and regs contain the stale value. */ uint32_t *regs; /* Extra fault address register saved for common paging logic. In the * case of the pre-fetch abort, this value is the same as regs[REG_R15]; * For the case of the data abort, this value is the value of the fault * address register (FAR) at the time of data abort exception. */ #ifdef CONFIG_LEGACY_PAGING uintptr_t far; #endif #ifdef CONFIG_LIB_SYSCALL /* The following array holds the return address and the exc_return value * needed to return from each nested system call. */ uint8_t nsyscalls; struct xcpt_syscall_s syscall[CONFIG_SYS_NNEST]; #endif #ifdef CONFIG_ARCH_ADDRENV #ifdef CONFIG_ARCH_STACK_DYNAMIC /* This array holds the physical address of the level 2 page table used * to map the thread's stack memory. This array will be initially of * zeroed and would be back-up up with pages during page fault exception * handling to support dynamically sized stacks for each thread. */ uintptr_t *ustack[ARCH_STACK_NSECTS]; #endif #ifdef CONFIG_ARCH_KERNEL_STACK /* In this configuration, all syscalls execute from an internal kernel * stack. Why? Because when we instantiate and initialize the address * environment of the new user process, we will temporarily lose the * address environment of the old user process, including its stack * contents. The kernel C logic will crash immediately with no valid * stack in place. */ uint32_t *ustkptr; /* Saved user stack pointer */ uint32_t *kstack; /* Allocate base of the (aligned) kernel stack */ uint32_t *kstkptr; /* Saved kernel stack pointer */ #endif #endif }; /**************************************************************************** * Inline functions ****************************************************************************/ /* Name: up_irq_save, up_irq_restore, and friends. * * NOTE: This function should never be called from application code and, * as a general rule unless you really know what you are doing, this * function should not be called directly from operation system code either: * Typically, the wrapper functions, enter_critical_section() and * leave_critical section(), are probably what you really want. */ /* Return the current IRQ state */ static inline irqstate_t irqstate(void) { unsigned int cpsr; __asm__ __volatile__ ( "\tmrs %0, cpsr\n" : "=r" (cpsr) : : "memory" ); return cpsr; } /* Disable IRQs and return the previous IRQ state */ noinstrument_function static inline irqstate_t up_irq_save(void) { unsigned int cpsr; __asm__ __volatile__ ( "\tmrs %0, cpsr\n" "\tcpsid i\n" #if defined(CONFIG_ARMV8R_DECODEFIQ) "\tcpsid f\n" #endif : "=r" (cpsr) : : "memory" ); return cpsr; } /* Enable IRQs and return the previous IRQ state */ static inline irqstate_t up_irq_enable(void) { unsigned int cpsr; __asm__ __volatile__ ( "\tmrs %0, cpsr\n" "\tcpsie i\n" #if defined(CONFIG_ARMV8R_DECODEFIQ) "\tcpsie f\n" #endif : "=r" (cpsr) : : "memory" ); return cpsr; } /* Disable IRQs and return the previous IRQ state */ static inline irqstate_t up_irq_disable(void) { unsigned int cpsr; __asm__ __volatile__ ( "\tmrs %0, cpsr\n" "\tcpsid i\n" : "=r" (cpsr) : : "memory" ); return cpsr; } /* Restore saved IRQ & FIQ state */ noinstrument_function static inline void up_irq_restore(irqstate_t flags) { __asm__ __volatile__ ( "msr cpsr_c, %0" : : "r" (flags) : "memory" ); } /**************************************************************************** * Name: up_cpu_index * * Description: * Return an index in the range of 0 through (CONFIG_SMP_NCPUS-1) that * corresponds to the currently executing CPU. * * Input Parameters: * None * * Returned Value: * An integer index in the range of 0 through (CONFIG_SMP_NCPUS-1) that * corresponds to the currently executing CPU. * ****************************************************************************/ #ifdef CONFIG_SMP noinstrument_function static inline_function int up_cpu_index(void) { uint32_t mpidr; /* Read the Multiprocessor Affinity Register (MPIDR) */ mpidr = CP15_GET(MPIDR); /* And return the CPU ID field */ return (mpidr & MPIDR_CPUID_MASK) >> MPIDR_CPUID_SHIFT; } #else # define up_cpu_index() 0 #endif /* CONFIG_SMP */ static inline_function uint32_t up_getsp(void) { register uint32_t sp; __asm__ __volatile__ ( "mov %0, sp\n" : "=r" (sp) ); return sp; } /**************************************************************************** * Name: * up_current_regs/up_set_current_regs * * Description: * We use the following code to manipulate the TPIDRPRW register, * which exists uniquely for each CPU and is primarily designed to store * current thread information. Currently, we leverage it to store interrupt * information, with plans to further optimize its use for storing both * thread and interrupt information in the future. * ****************************************************************************/ noinstrument_function static inline_function uint32_t *up_current_regs(void) { return (uint32_t *)CP15_GET(TPIDRPRW); } noinstrument_function static inline_function void up_set_current_regs(uint32_t *regs) { CP15_SET(TPIDRPRW, regs); } noinstrument_function static inline_function bool up_interrupt_context(void) { return up_current_regs() != NULL; } /**************************************************************************** * Public Data ****************************************************************************/ #ifdef __cplusplus #define EXTERN extern "C" extern "C" { #else #define EXTERN extern #endif /**************************************************************************** * Public Function Prototypes ****************************************************************************/ #undef EXTERN #ifdef __cplusplus } #endif #endif /* __ASSEMBLY__ */ #endif /* __ARCH_ARM_INCLUDE_ARMV8_R_IRQ_H */