/**************************************************************************** * libs/libc/math/__sin.c * * Ported to NuttX from FreeBSD by Alan Carvalho de Assis: * * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name NuttX nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /* __sin( x, y, iy) * * kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). * * Algorithm * 1. Since sin(-x) = -sin(x), we need only to consider positive x. * 2. Callers must return sin(-0) = -0 without calling here since our * odd polynomial is not evaluated in a way that preserves -0. * Callers may do the optimization sin(x) ~ x for tiny x. * 3. sin(x) is approximated by a polynomial of degree 13 on * [0,pi/4] * 3 13 * sin(x) ~ x + S1*x + ... + S6*x * where * * |sin(x) 2 4 6 8 10 12 | -58 * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 * | x | * * 4. sin(x+y) = sin(x) + sin'(x')*y * ~ sin(x) + (1-x*x/2)*y * For better accuracy, let * 3 2 2 2 2 * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) * then 3 2 * sin(x) = x + (S1*x + (x *(r-y/2)+y)) */ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #ifdef CONFIG_HAVE_DOUBLE /**************************************************************************** * Private Data ****************************************************************************/ static const double g_s1 = -1.66666666666666324348e-01; /* 0xbfc55555, 0x55555549 */ static const double g_s2 = 8.33333333332248946124e-03; /* 0x3f811111, 0x1110f8a6 */ static const double g_s3 = -1.98412698298579493134e-04; /* 0xbf2a01a0, 0x19c161d5 */ static const double g_s4 = 2.75573137070700676789e-06; /* 0x3ec71de3, 0x57b1fe7d */ static const double g_s5 = -2.50507602534068634195e-08; /* 0xbe5ae5e6, 0x8a2b9ceb */ static const double g_s6 = 1.58969099521155010221e-10; /* 0x3de5d93a, 0x5acfd57c */ /**************************************************************************** * Public Functions ****************************************************************************/ double __sin(double x, double y, int iy) { double z; double r; double v; double w; z = x * x; w = z * z; r = g_s2 + z * (g_s3 + z * g_s4) + z * w * (g_s5 + z * g_s6); v = z * x; if (iy == 0) { return x + v * (g_s1 + z * r); } else { return x - ((z * (0.5 * y - v * r) - y) - v * g_s1); } } #endif