/**************************************************************************** * arch/arm/include/armv7-m/irq.h * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /* This file should never be included directly but, rather, only indirectly * through nuttx/irq.h */ #ifndef __ARCH_ARM_INCLUDE_ARMV7_M_IRQ_H #define __ARCH_ARM_INCLUDE_ARMV7_M_IRQ_H /**************************************************************************** * Included Files ****************************************************************************/ #include #include #ifndef __ASSEMBLY__ # include # include # include #endif /**************************************************************************** * Pre-processor Prototypes ****************************************************************************/ /* Configuration ************************************************************/ /* If this is a kernel build, how many nested system calls should we * support? */ #ifndef CONFIG_SYS_NNEST # define CONFIG_SYS_NNEST 2 #endif /* IRQ Stack Frame Format: */ /* The following additional registers are stored by the interrupt handling * logic. */ #define REG_R13 (0) /* R13 = SP at time of interrupt */ #ifdef CONFIG_ARMV7M_USEBASEPRI # define REG_BASEPRI (1) /* BASEPRI */ #else # define REG_PRIMASK (1) /* PRIMASK */ #endif #define REG_R4 (2) /* R4 */ #define REG_R5 (3) /* R5 */ #define REG_R6 (4) /* R6 */ #define REG_R7 (5) /* R7 */ #define REG_R8 (6) /* R8 */ #define REG_R9 (7) /* R9 */ #define REG_R10 (8) /* R10 */ #define REG_R11 (9) /* R11 */ #define REG_CONTROL (10) /* CONTROL */ #define REG_EXC_RETURN (11) /* EXC_RETURN */ #define SW_INT_REGS (12) #ifdef CONFIG_ARCH_FPU /* If the MCU supports a floating point unit, then it will be necessary * to save the state of the non-volatile registers before calling code * that may save and overwrite them. */ # define REG_S16 (SW_INT_REGS + 0) /* S16 */ # define REG_S17 (SW_INT_REGS + 1) /* S17 */ # define REG_S18 (SW_INT_REGS + 2) /* S18 */ # define REG_S19 (SW_INT_REGS + 3) /* S19 */ # define REG_S20 (SW_INT_REGS + 4) /* S20 */ # define REG_S21 (SW_INT_REGS + 5) /* S21 */ # define REG_S22 (SW_INT_REGS + 6) /* S22 */ # define REG_S23 (SW_INT_REGS + 7) /* S23 */ # define REG_S24 (SW_INT_REGS + 8) /* S24 */ # define REG_S25 (SW_INT_REGS + 9) /* S25 */ # define REG_S26 (SW_INT_REGS + 10) /* S26 */ # define REG_S27 (SW_INT_REGS + 11) /* S27 */ # define REG_S28 (SW_INT_REGS + 12) /* S28 */ # define REG_S29 (SW_INT_REGS + 13) /* S29 */ # define REG_S30 (SW_INT_REGS + 14) /* S30 */ # define REG_S31 (SW_INT_REGS + 15) /* S31 */ # define SW_FPU_REGS (16) #else # define SW_FPU_REGS (0) #endif /* The total number of registers saved by software */ #define SW_XCPT_REGS (SW_INT_REGS + SW_FPU_REGS) #define SW_XCPT_SIZE (4 * SW_XCPT_REGS) /* On entry into an IRQ, the hardware automatically saves the following * registers on the stack in this (address) order: */ #define REG_R0 (SW_XCPT_REGS + 0) /* R0 */ #define REG_R1 (SW_XCPT_REGS + 1) /* R1 */ #define REG_R2 (SW_XCPT_REGS + 2) /* R2 */ #define REG_R3 (SW_XCPT_REGS + 3) /* R3 */ #define REG_R12 (SW_XCPT_REGS + 4) /* R12 */ #define REG_R14 (SW_XCPT_REGS + 5) /* R14 = LR */ #define REG_R15 (SW_XCPT_REGS + 6) /* R15 = PC */ #define REG_XPSR (SW_XCPT_REGS + 7) /* xPSR */ #define HW_INT_REGS (8) #ifdef CONFIG_ARCH_FPU /* If the FPU is enabled, the hardware also saves the volatile FP registers. */ # define REG_S0 (SW_XCPT_REGS + 8) /* S0 */ # define REG_S1 (SW_XCPT_REGS + 9) /* S1 */ # define REG_S2 (SW_XCPT_REGS + 10) /* S2 */ # define REG_S3 (SW_XCPT_REGS + 11) /* S3 */ # define REG_S4 (SW_XCPT_REGS + 12) /* S4 */ # define REG_S5 (SW_XCPT_REGS + 13) /* S5 */ # define REG_S6 (SW_XCPT_REGS + 14) /* S6 */ # define REG_S7 (SW_XCPT_REGS + 15) /* S7 */ # define REG_S8 (SW_XCPT_REGS + 16) /* S8 */ # define REG_S9 (SW_XCPT_REGS + 17) /* S9 */ # define REG_S10 (SW_XCPT_REGS + 18) /* S10 */ # define REG_S11 (SW_XCPT_REGS + 19) /* S11 */ # define REG_S12 (SW_XCPT_REGS + 20) /* S12 */ # define REG_S13 (SW_XCPT_REGS + 21) /* S13 */ # define REG_S14 (SW_XCPT_REGS + 22) /* S14 */ # define REG_S15 (SW_XCPT_REGS + 23) /* S15 */ # define REG_FPSCR (SW_XCPT_REGS + 24) /* FPSCR */ # define REG_FP_RESERVED (SW_XCPT_REGS + 25) /* Reserved */ # define HW_FPU_REGS (18) #else # define HW_FPU_REGS (0) #endif #define HW_XCPT_REGS (HW_INT_REGS + HW_FPU_REGS) #define HW_XCPT_SIZE (4 * HW_XCPT_REGS) #define XCPTCONTEXT_REGS (HW_XCPT_REGS + SW_XCPT_REGS) #define XCPTCONTEXT_SIZE (4 * XCPTCONTEXT_REGS) /* Alternate register names *************************************************/ #define REG_A1 REG_R0 #define REG_A2 REG_R1 #define REG_A3 REG_R2 #define REG_A4 REG_R3 #define REG_V1 REG_R4 #define REG_V2 REG_R5 #define REG_V3 REG_R6 #define REG_V4 REG_R7 #define REG_V5 REG_R8 #define REG_V6 REG_R9 #define REG_V7 REG_R10 #define REG_SB REG_R9 #define REG_SL REG_R10 #define REG_FP REG_R7 #define REG_IP REG_R12 #define REG_SP REG_R13 #define REG_LR REG_R14 #define REG_PC REG_R15 /* The PIC register is usually R10. It can be R9 is stack checking is enabled * or if the user changes it with -mpic-register on the GCC command line. */ #define REG_PIC REG_R10 /* CONTROL register */ #define CONTROL_FPCA (1 << 2) /* Bit 2: Floating-point context active */ #define CONTROL_SPSEL (1 << 1) /* Bit 1: Stack-pointer select */ #define CONTROL_NPRIV (1 << 0) /* Bit 0: Not privileged */ /**************************************************************************** * Public Types ****************************************************************************/ #ifndef __ASSEMBLY__ /* This structure represents the return state from a system call */ #ifdef CONFIG_LIB_SYSCALL struct xcpt_syscall_s { uint32_t excreturn; /* The EXC_RETURN value */ uint32_t sysreturn; /* The return PC */ uint32_t ctrlreturn; /* The return CONTROL value */ }; #endif /* The following structure is included in the TCB and defines the complete * state of the thread. */ struct xcptcontext { /* The following function pointer is non-zero if there * are pending signals to be processed. */ void *sigdeliver; /* Actual type is sig_deliver_t */ /* These are saved copies of the context used during * signal processing. */ uint32_t *saved_regs; #ifdef CONFIG_BUILD_PROTECTED /* This is the saved address to use when returning from a user-space * signal handler. */ uint32_t sigreturn; #endif #ifdef CONFIG_LIB_SYSCALL /* The following array holds the return address and the exc_return value * needed to return from each nested system call. */ uint8_t nsyscalls; struct xcpt_syscall_s syscall[CONFIG_SYS_NNEST]; #endif /* Register save area with XCPTCONTEXT_SIZE, only valid when: * 1.The task isn't running or * 2.The task is interrupted * otherwise task is running, and regs contain the stale value. */ uint32_t *regs; }; /**************************************************************************** * Public Data ****************************************************************************/ /* g_current_regs[] holds a references to the current interrupt level * register storage structure. If is non-NULL only during interrupt * processing. Access to g_current_regs[] must be through the * [get/set]_current_regs for portability. */ /* For the case of architectures with multiple CPUs, then there must be one * such value for each processor that can receive an interrupt. */ extern volatile uint32_t *g_current_regs[CONFIG_SMP_NCPUS]; /**************************************************************************** * Inline functions ****************************************************************************/ /* Name: up_irq_save, up_irq_restore, and friends. * * NOTE: This function should never be called from application code and, * as a general rule unless you really know what you are doing, this * function should not be called directly from operation system code either: * Typically, the wrapper functions, enter_critical_section() and * leave_critical section(), are probably what you really want. */ /* Get/set the PRIMASK register */ static inline uint8_t getprimask(void) always_inline_function; static inline uint8_t getprimask(void) { uint32_t primask; __asm__ __volatile__ ( "\tmrs %0, primask\n" : "=r" (primask) : : "memory"); return (uint8_t)primask; } static inline void setprimask(uint32_t primask) always_inline_function; static inline void setprimask(uint32_t primask) { __asm__ __volatile__ ( "\tmsr primask, %0\n" : : "r" (primask) : "memory"); } static inline void cpsie(void) always_inline_function; static inline void cpsie(void) { __asm__ __volatile__ ("\tcpsie i\n"); } static inline void cpsid(void) always_inline_function; static inline void cpsid(void) { __asm__ __volatile__ ("\tcpsid i\n"); } /* Get/set the BASEPRI register. The BASEPRI register defines the minimum * priority for exception processing. When BASEPRI is set to a nonzero * value, it prevents the activation of all exceptions with the same or * lower priority level as the BASEPRI value. */ static inline uint8_t getbasepri(void) always_inline_function; static inline uint8_t getbasepri(void) { uint32_t basepri; __asm__ __volatile__ ( "\tmrs %0, basepri\n" : "=r" (basepri) : : "memory"); return (uint8_t)basepri; } static inline void setbasepri(uint32_t basepri) always_inline_function; static inline void setbasepri(uint32_t basepri) { __asm__ __volatile__ ( "\tmsr basepri, %0\n" : : "r" (basepri) : "memory"); } #ifdef CONFIG_ARMV7M_BASEPRI_WAR /* Cortex-M7 r0p1 Errata 837070 Workaround */ /* Set the BASEPRI register (possibly increasing the priority). * * This may be retaining or raising priority. Cortex-M7 r0p1 Errata * 837070 Workaround may be required if we are raising the priority. */ static inline void raisebasepri(uint32_t basepri) always_inline_function; static inline void raisebasepri(uint32_t basepri) { register uint32_t primask; /* 1. Retain the previous value of the PRIMASK register, * 2 Disable all interrupts via the PRIMASK register. NOTE: They * could possibly already be disabled. * 3. Set the BASEPRI register as requested (possibly increasing the * priority) * 4. Restore the original value of the PRIMASK register, probably re- * enabling interrupts. This avoids the possibly undesirable side- * effect of unconditionally re-enabling interrupts. */ #pragma GCC diagnostic push /* primask is initialized in ASM */ #pragma GCC diagnostic ignored "-Wuninitialized" #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" __asm__ __volatile__ ( "\tmrs %0, primask\n" "\tcpsid i\n" "\tmsr basepri, %1\n" "\tmsr primask, %0\n" : "+r" (primask) : "r" (basepri) : "memory"); #pragma GCC diagnostic pop } #else # define raisebasepri(b) setbasepri(b); #endif /* Disable IRQs */ static inline void up_irq_disable(void) always_inline_function; static inline void up_irq_disable(void) { #ifdef CONFIG_ARMV7M_USEBASEPRI /* Probably raising priority */ raisebasepri(NVIC_SYSH_DISABLE_PRIORITY); #else __asm__ __volatile__ ("\tcpsid i\n"); #endif } /* Save the current primask state & disable IRQs */ static inline irqstate_t up_irq_save(void) always_inline_function noinstrument_function; static inline irqstate_t up_irq_save(void) { #ifdef CONFIG_ARMV7M_USEBASEPRI /* Probably raising priority */ uint8_t basepri = getbasepri(); raisebasepri(NVIC_SYSH_DISABLE_PRIORITY); return (irqstate_t)basepri; #else unsigned short primask; /* Return the current value of primask register and set * bit 0 of the primask register to disable interrupts */ __asm__ __volatile__ ( "\tmrs %0, primask\n" "\tcpsid i\n" : "=r" (primask) : : "memory"); return primask; #endif } /* Enable IRQs */ static inline void up_irq_enable(void) always_inline_function; static inline void up_irq_enable(void) { /* In this case, we are always retaining or lowering the priority value */ setbasepri(NVIC_SYSH_PRIORITY_MIN); __asm__ __volatile__ ("\tcpsie i\n"); } /* Restore saved primask state */ static inline void up_irq_restore(irqstate_t flags) always_inline_function noinstrument_function; static inline void up_irq_restore(irqstate_t flags) { #ifdef CONFIG_ARMV7M_USEBASEPRI /* In this case, we are always retaining or lowering the priority value */ setbasepri((uint32_t)flags); #else /* If bit 0 of the primask is 0, then we need to restore * interrupts. */ __asm__ __volatile__ ( "\ttst %0, #1\n" "\tbne.n 1f\n" "\tcpsie i\n" "1:\n" : : "r" (flags) : "cc", "memory"); #endif } /* Get/set IPSR */ static inline uint32_t getipsr(void) always_inline_function; static inline uint32_t getipsr(void) { uint32_t ipsr; __asm__ __volatile__ ( "\tmrs %0, ipsr\n" : "=r" (ipsr) : : "memory"); return ipsr; } /* Get/set FAULTMASK */ static inline uint32_t getfaultmask(void) always_inline_function; static inline uint32_t getfaultmask(void) { uint32_t faultmask; __asm__ __volatile__ ( "\tmrs %0, faultmask\n" : "=r" (faultmask) : : "memory"); return faultmask; } static inline void setfaultmask(uint32_t faultmask) always_inline_function; static inline void setfaultmask(uint32_t faultmask) { __asm__ __volatile__ ( "\tmsr faultmask, %0\n" : : "r" (faultmask) : "memory"); } /* Get/set CONTROL */ static inline uint32_t getcontrol(void) always_inline_function; static inline uint32_t getcontrol(void) { uint32_t control; __asm__ __volatile__ ( "\tmrs %0, control\n" : "=r" (control) : : "memory"); return control; } static inline void setcontrol(uint32_t control) always_inline_function; static inline void setcontrol(uint32_t control) { __asm__ __volatile__ ( "\tmsr control, %0\n" : : "r" (control) : "memory"); } /**************************************************************************** * Name: up_cpu_index * * Description: * Return an index in the range of 0 through (CONFIG_SMP_NCPUS-1) that * corresponds to the currently executing CPU. * * Input Parameters: * None * * Returned Value: * An integer index in the range of 0 through (CONFIG_SMP_NCPUS-1) that * corresponds to the currently executing CPU. * ****************************************************************************/ #ifdef CONFIG_SMP int up_cpu_index(void) noinstrument_function; #else # define up_cpu_index() 0 #endif /* CONFIG_SMP */ static inline_function uint32_t up_getsp(void) { register uint32_t sp; __asm__ __volatile__ ( "mov %0, sp\n" : "=r" (sp) ); return sp; } noinstrument_function static inline_function uint32_t *up_current_regs(void) { return (uint32_t *)g_current_regs[up_cpu_index()]; } noinstrument_function static inline_function void up_set_current_regs(uint32_t *regs) { g_current_regs[up_cpu_index()] = regs; } noinstrument_function static inline_function bool up_interrupt_context(void) { return getipsr() != 0; } /**************************************************************************** * Public Function Prototypes ****************************************************************************/ #ifdef __cplusplus #define EXTERN extern "C" extern "C" { #else #define EXTERN extern #endif #undef EXTERN #ifdef __cplusplus } #endif #endif /* __ASSEMBLY__ */ #endif /* __ARCH_ARM_INCLUDE_ARMV7_M_IRQ_H */