/**************************************************************************** * sched/sem_holder.c * * Copyright (C) 2009 Gregory Nutt. All rights reserved. * Author: Gregory Nutt * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name NuttX nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include "os_internal.h" #include "sem_internal.h" #ifdef CONFIG_PRIORITY_INHERITANCE /**************************************************************************** * Definitions ****************************************************************************/ /* Configuration ************************************************************/ #ifndef CONFIG_SEM_PREALLOCHOLDERS # define CONFIG_SEM_PREALLOCHOLDERS 0 #endif /**************************************************************************** * Private Type Declarations ****************************************************************************/ typedef int (*holderhandler_t)(struct semholder_s *pholder, FAR sem_t *sem, FAR void *arg); /**************************************************************************** * Global Variables ****************************************************************************/ /**************************************************************************** * Private Variables ****************************************************************************/ /* Preallocated holder structures */ #if CONFIG_SEM_PREALLOCHOLDERS > 0 static struct semholder_s g_holderalloc[CONFIG_SEM_PREALLOCHOLDERS]; static FAR struct semholder_s *g_freeholders; #endif /**************************************************************************** * Private Functions ****************************************************************************/ /**************************************************************************** * Function: sem_allocholder ****************************************************************************/ static inline FAR struct semholder_s *sem_allocholder(sem_t *sem) { FAR struct semholder_s *pholder; /* Check if the "built-in" holder is being used. We have this built-in * holder to optimize for the simplest case where semaphores are only * used to implement mutexes. */ if (!sem->hlist.holder) { pholder = &sem->hlist; pholder->counts = 0; } else { #if CONFIG_SEM_PREALLOCHOLDERS > 0 pholder = g_freeholders; if (pholder) { /* Remove the holder from the free list an put it into the semaphore's holder list */ g_freeholders = pholder->flink; pholder->flink = sem->hlist.flink; sem->hlist.flink = pholder; /* Make sure the the initial count is zero */ pholder->counts = 0; } else #else pholder = NULL; #endif sdbg("Insufficient pre-allocated holders\n"); } return pholder; } /**************************************************************************** * Function: sem_findholder ****************************************************************************/ static FAR struct semholder_s *sem_findholder(sem_t *sem, FAR _TCB *htcb) { FAR struct semholder_s *pholder; /* Try to find the holder in the list of holders associated with this semaphore */ pholder = &sem->hlist; #if CONFIG_SEM_PREALLOCHOLDERS > 0 for (; pholder; pholder = pholder->flink) #endif { if (pholder->holder == htcb) { /* Got it! */ return pholder; } } /* The holder does not appear in the list */ return NULL; } /**************************************************************************** * Function: sem_findorallocateholder ****************************************************************************/ static inline FAR struct semholder_s *sem_findorallocateholder(sem_t *sem, FAR _TCB *htcb) { FAR struct semholder_s *pholder = sem_findholder(sem, htcb); if (!pholder) { pholder = sem_allocholder(sem); } return pholder; } /**************************************************************************** * Function: sem_freeholder ****************************************************************************/ static inline void sem_freeholder(sem_t *sem, FAR struct semholder_s *pholder) { #if CONFIG_SEM_PREALLOCHOLDERS > 0 FAR struct semholder_s *curr; FAR struct semholder_s *prev; #endif /* Release the holder and counts */ pholder->holder = 0; pholder->counts = 0; #if CONFIG_SEM_PREALLOCHOLDERS > 0 /* If this is the holder inside the semaphore, then do nothing more */ if (pholder != &sem->hlist) { /* Otherwise, search the list for the matching holder */ for (prev = &sem->hlist, curr = sem->hlist.flink; curr && curr != pholder; prev = curr, curr = curr->flink); if (curr) { /* Remove the holder from the list */ prev->flink = pholder->flink; /* And put it in the free list */ pholder->flink = g_freeholders; g_freeholders = pholder; } } #endif } /**************************************************************************** * Name: sem_foreachholder ****************************************************************************/ static int sem_foreachholder(FAR sem_t *sem, holderhandler_t handler, FAR void *arg) { struct semholder_s *pholder = &sem->hlist; int ret = 0; #if CONFIG_SEM_PREALLOCHOLDERS > 0 for (; pholder && ret == 0; pholder = next) #endif { #if CONFIG_SEM_PREALLOCHOLDERS > 0 /* In case this holder gets deleted */ next = pholder->flink; #endif /* The initial "built-in" container may hold a NULL holder */ if (pholder->holder) { /* Call the handler */ ret = handler(pholder, sem, arg); } } return ret; } /**************************************************************************** * Name: sem_boostholderprio ****************************************************************************/ static int sem_boostholderprio(struct semholder_s *pholder, FAR sem_t *sem, FAR void *arg) { FAR _TCB *htcb = (FAR _TCB *)pholder->holder; FAR _TCB *rtcb = (FAR _TCB*)arg; #if CONFIG_SEM_NNESTPRIO > 0 int i; #endif /* Make sure that the thread is still active. If it exited without releasing * its counts, then that would be a bad thing. But we can take no real * action because we don't know know that the program is doing. Perhaps its * plan is to kill a thread, then destroy the semaphore. */ if (!sched_verifytcb(htcb)) { sdbg("TCB 0x%08x is a stale handle, counts lost\n", htcb); sem_freeholder(sem, pholder); } #if CONFIG_SEM_NNESTPRIO > 0 /* If the priority of the thread that is waiting for a count is greater than * the base priority of the thread holding a count, then we may need to * adjust the holder's priority now or later to that priority. */ else if (rtcb->sched_priority > htcb->base_priority) { /* If the new priority is greater than the current, possibly already * boosted priority of the holder thread, then we will have to raise * the holder's priority now. */ if (rtcb->sched_priority > htcb->sched_priority) { /* If the current priority has already been boosted, then add the * boost priority to the list of restoration priorities. When the * higher priority thread gets its count, then we need to revert * to this saved priority, not to the base priority. */ if (htcb->sched_priority > htcb->base_priority) { /* Save the current, boosted priority */ if (htcb->npend_reprio < CONFIG_SEM_NNESTPRIO) { htcb->pend_reprios[htcb->npend_reprio] = htcb->sched_priority; htcb->npend_reprio++; } else { sdgb("CONFIG_SEM_NNESTPRIO exceeded\n"); } } /* Raise the priority of the holder of the semaphore. This * cannot cause a context switch because we have preemption * disabled. The task will be marked "pending" and the switch * will occur during up_block_task() processing. */ (void)sched_setpriority(htcb, rtcb->sched_priority); } else { /* The new priority is above the base priority of the holder, * but not as high as its current working priority. Just put it * in the list of pending restoration priorities so that when the * higher priority thread gets its count, we can revert to this * saved priority and not to the base priority. */ htcb->pend_reprios[htcb->npend_reprio] = rtcb->sched_priority; htcb->npend_reprio++; } } #else /* If the priority of the thread that is waiting for a count is less than * of equal to the priority of the thread holding a count, then do nothing * because the thread is already running at a sufficient priority. */ else if (rtcb->sched_priority > htcb->sched_priority) { /* Raise the priority of the holder of the semaphore. This * cannot cause a context switch because we have preemption * disabled. The task will be marked "pending" and the switch * will occur during up_block_task() processing. */ (void)sched_setpriority(htcb, rtcb->sched_priority); } #endif return 0; } /**************************************************************************** * Name: sem_verifyholder ****************************************************************************/ #ifdef CONFIG_DEBUG static int sem_verifyholder(struct semholder_s *pholder, FAR sem_t *sem, FAR void *arg) { FAR _TCB *htcb = (FAR _TCB *)pholder->holder; #if CONFIG_SEM_NNESTPRIO > 0 DEBUGASSERT(htcb->npend_repri == 0); #endif DEBUGASSERT(htcb->sched_priority == htcb->base_priority); return 0; } #endif /**************************************************************************** * Name: sem_restoreholderprio ****************************************************************************/ static int sem_restoreholderprio(struct semholder_s *pholder, FAR sem_t *sem, FAR void *arg) { FAR _TCB *htcb = (FAR _TCB *)pholder->holder; #if CONFIG_SEM_NNESTPRIO > 0 FAR _TCB *stcb = (FAR _TCB *)arg; int rpriority; int i; int j; #endif /* Make sure that the thread is still active. If it exited without releasing * its counts, then that would be a bad thing. But we can take no real * action because we don't know know that the program is doing. Perhaps its * plan is to kill a thread, then destroy the semaphore. */ if (!sched_verifytcb(htcb)) { sdbg("TCB 0x%08x is a stale handle, counts lost\n", htcb); sem_freeholder(sem, pholder); } /* Was the priority of this thread boosted? If so, then drop its priority * back to the correct level. */ else if (htcb->sched_priority != htcb->base_priority) { #if CONFIG_SEM_NNESTPRIO > 0 /* Are there other, pending priority levels to revert to? */ if (htcb->npend_reprio < 1) { /* No... the thread has only been boosted once */ DEBUGASSERT(hctb->sched_priority == stcb->sched_priority && npend_reprio == 0); rpriority = htcb->base_priority; } /* There are multiple pending priority levels. The thread's "boosted" * priority could greater than or equal to "stcb->sched_priority" (it could be * greater if its priority we boosted becuase it also holds another semaphore. */ else if (htcb->sched_priority <= stcb->sched_priority) { /* The thread has been boosted to the same priority as the task * that just received the count. We will simply reprioritized * to the next highest priority that we have in rpriority. */ /* Find the highest pending priority and remove it from the list */ for (i = 1, j = 0; i < htcb->npend_reprio; i++) { if (htcb->pend_reprios[i] > htcb->pend_reprios[j]) { j = i; } } /* Remove the highest priority pending priority from the list */ rpriority = htcb->pend_reprios[j]; i = htcb->npend_reprio - 1; if (i > 0) { htcb->pend_reprios[j] = htcb->pend_reprios[i]; } htcb->npend_reprio = i; /* And apply that priority to the thread */ sched_reprioritize(htcb, rpriority); } else { /* The thread has been boosted to a higher priority than the task. The * pending priority should be in he list (unless it was lost because of * of list overflow). * * Search the list for the matching priority. */ for (i = 0; i < htcb->npend_reprio; i++) { /* Does this pending priority match the priority of the thread * that just received the count? */ if (htcb->pend_reprios[i] == stcb->sched_priority) { /* Yes, remove it from the list */ j = htcb->npend_reprio - 1; if (j > 0) { htcb->pend_reprios[i] = htcb->pend_reprios[j]; } htcb->npend_reprio = j; break; } } } #else /* There is no alternative restore priorities, drop the priority * all the way back to the threads "base" priority. */ sched_reprioritize(htcb, htcb->base_priority); #endif } return 0; } /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Function: sem_initholders * * Description: * Called from sem_initialize() to set up semaphore holder information. * * Parameters: * None * * Return Value: * None * * Assumptions: * ****************************************************************************/ void sem_initholders(void) { #if CONFIG_SEM_PREALLOCHOLDERS > 0 int i; /* Put all of the pre-allocated holder structures into free list */ g_freeholders = g_holderalloc; for (i = 0; i < (CONFIG_SEM_PREALLOCHOLDERS-1); i++) { g_holderalloc[i].flink = &g_holderalloc[i+1]; } g_holderalloc[CONFIG_SEM_PREALLOCHOLDERS-1].flink = NULL; #endif } /**************************************************************************** * Function: sem_destroyholder * * Description: * Called from sem_destroy() to handle any holders of a semaphore when * it is destroyed. * * Parameters: * sem - A reference to the semaphore being destroyed * * Return Value: * None * * Assumptions: * ****************************************************************************/ void sem_destroyholder(FAR sem_t *sem) { #if 0 FAR _TCB *rtcb = (FAR _TCB*)g_readytorun.head; /* It is an error is a semaphore is destroyed while there are any holders * (except perhaps the thread releas the semaphore itself). Hmmm.. but * we actually have to assume that the caller knows what it is doing because * could have killed another thread that is the actual holder of the semaphore. */ #if CONFIG_SEM_PREALLOCHOLDERS > 0 DEBUGASSERT((!sem->hlist.holder || sem->hlist.holder == rtcb) && !sem->hlist.flink); #else DEBUGASSERT(!sem->hlist.holder || sem->hlist.holder == rtcb); #endif #endif sem->hlist.holder = NULL; } /**************************************************************************** * Function: sem_addholder * * Description: * Called from sem_wait() when the calling thread obtains the semaphore * * Parameters: * sem - A reference to the incremented semaphore * * Return Value: * 0 (OK) or -1 (ERROR) if unsuccessful * * Assumptions: * ****************************************************************************/ void sem_addholder(FAR sem_t *sem) { FAR _TCB *rtcb = (FAR _TCB*)g_readytorun.head; FAR struct semholder_s *pholder; /* Find or allocate a container for this new holder */ pholder = sem_findorallocateholder(sem, rtcb); if (pholder) { /* Then set the holder and increment the number of counts held by this holder */ pholder->holder = rtcb; pholder->counts++; } } /**************************************************************************** * Function: void sem_boostpriority(sem_t *sem) * * Description: * * * Parameters: * None * * Return Value: * 0 (OK) or -1 (ERROR) if unsuccessful * * Assumptions: * ****************************************************************************/ void sem_boostpriority(FAR sem_t *sem) { FAR _TCB *rtcb = (FAR _TCB*)g_readytorun.head; /* Boost the priority of every thread holding counts on this semaphore * that are lower in priority than the new thread that is waiting for a * count. */ (void)sem_foreachholder(sem, sem_boostholderprio, rtcb); } /**************************************************************************** * Function: sem_releaseholder * * Description: * Called from sem_post() after a thread releases one count on the * semaphore. * * Parameters: * sem - A reference to the semaphore being posted * * Return Value: * None * * Assumptions: * ****************************************************************************/ void sem_releaseholder(FAR sem_t *sem) { FAR _TCB *rtcb = (FAR _TCB*)g_readytorun.head; FAR struct semholder_s *pholder; /* Find the container for this holder */ pholder = sem_findholder(sem, rtcb); if (pholder && pholder->counts > 0) { /* Decrement the counts on this holder -- the holder will be freed * later in sem_restorebaseprio. */ pholder->counts--; } } /**************************************************************************** * Function: sem_restorebaseprio * * Description: * This function is called after the current running task releases a * count on the semaphore. It will check if we need to drop the priority * of any threads holding a count on the semaphore. Their priority could * have been boosted while they held the count. * * Parameters: * stcb - The TCB of the task that was just started (if any). If the * post action caused a count to be given to another thread, then stcb * is the TCB that received the count. Note, just because stcb received * the count, it does not mean that it it is higher priority than other threads. * sem - A reference to the semaphore being posted. * - If the semaphore count is <0 then there are still threads waiting * for a count. stcb should be non-null and will be higher priority than * all of the other threads still waiting. * - If it is ==0 then stcb refers to the thread that got the last count; no * other threads are waiting. * - If it is >0 then there should be no threads waiting for counts and * stcb should be null. * * Return Value: * 0 (OK) or -1 (ERROR) if unsuccessful * * Assumptions: * ****************************************************************************/ void sem_restorebaseprio(FAR _TCB *stcb, FAR sem_t *sem) { FAR _TCB *rtcb = (FAR _TCB*)g_readytorun.head; struct semholder_s *pholder; /* Check our assumptions */ DEBUGASSERT((sem->semcount > 0 && stcb == NULL) || (sem->semcount <= 0 && stcb != NULL)); /* Perfom the following actions only if a new thread was given a count. */ if (stcb) { /* Adjust the priority of every holder as necessary */ (void)sem_foreachholder(sem, sem_restoreholderprio, stcb); } /* If there are no tasks waiting for available counts, then all holders * should be at their base priority. */ #ifdef CONFIG_DEBUG else { (void)sem_foreachholder(sem, sem_verifyholder, NULL); } #endif /* In any case, the currently execuing task should have an entry in the * list and we need to decrement the number of counts that it holds. When it * holds no further counts, it must be removed from the list of holders. */ pholder = sem_findholder(sem, rtcb); if (pholder) { /* When no more counts are held, remove the holder from the list. The * count was decremented in sem_releaseholder. */ if (pholder->counts <= 0) { sem_freeholder(sem, pholder); } } } /**************************************************************************** * Function: sem_canceled * * Description: * Called from sem_post() after a thread that was waiting for a semaphore * count was awakened because of a signal and the semaphore wait has been * canceld. * * Parameters: * sem - A reference to the semaphore no longer being waited for * * Return Value: * None * * Assumptions: * ****************************************************************************/ void sem_canceled(FAR sem_t *sem) { FAR _TCB *rtcb = (FAR _TCB*)g_readytorun.head; /* Check our assumptions */ DEBUGASSERT(sem->semcount <= 0); /* Adjust the priority of every holder as necessary */ (void)sem_foreachholder(sem, sem_restoreholderprio, rtcb); } #endif /* CONFIG_PRIORITY_INHERITANCE */