/**************************************************************************** * arch/arm/include/armv7-r/irq.h * * Copyright (C) 2015 Gregory Nutt. All rights reserved. * Author: Gregory Nutt * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name NuttX nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /* This file should never be included directed but, rather, only indirectly * through nuttx/irq.h */ #ifndef __ARCH_ARM_INCLUDE_ARMV7_R_IRQ_H #define __ARCH_ARM_INCLUDE_ARMV7_R_IRQ_H /**************************************************************************** * Included Files ****************************************************************************/ #include #include #ifndef __ASSEMBLY__ # include # include #endif /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ /* IRQ Stack Frame Format: * * Context is always saved/restored in the same way: * * (1) stmia rx, {r0-r14} * (2) then the PC and CPSR * * This results in the following set of indices that can be used to access * individual registers in the xcp.regs array: */ #define REG_R0 (0) #define REG_R1 (1) #define REG_R2 (2) #define REG_R3 (3) #define REG_R4 (4) #define REG_R5 (5) #define REG_R6 (6) #define REG_R7 (7) #define REG_R8 (8) #define REG_R9 (9) #define REG_R10 (10) #define REG_R11 (11) #define REG_R12 (12) #define REG_R13 (13) #define REG_R14 (14) #define REG_R15 (15) #define REG_CPSR (16) #define ARM_CONTEXT_REGS (17) /* If the MCU supports a floating point unit, then it will be necessary * to save the state of the FPU status register and data registers on * each context switch. These registers are not saved during interrupt * level processing, however. So, as a consequence, floating point * operations may NOT be performed in interrupt handlers. * * The FPU provides an extension register file containing 32 single- * precision registers. These can be viewed as: * * - Sixteen 64-bit double word registers, D0-D15 * - Thirty-two 32-bit single-word registers, S0-S31 * S<2n> maps to the least significant half of D * S<2n+1> maps to the most significant half of D. */ #ifdef CONFIG_ARCH_FPU # define REG_D0 (ARM_CONTEXT_REGS+0) /* D0 */ # define REG_S0 (ARM_CONTEXT_REGS+0) /* S0 */ # define REG_S1 (ARM_CONTEXT_REGS+1) /* S1 */ # define REG_D1 (ARM_CONTEXT_REGS+2) /* D1 */ # define REG_S2 (ARM_CONTEXT_REGS+2) /* S2 */ # define REG_S3 (ARM_CONTEXT_REGS+3) /* S3 */ # define REG_D2 (ARM_CONTEXT_REGS+4) /* D2 */ # define REG_S4 (ARM_CONTEXT_REGS+4) /* S4 */ # define REG_S5 (ARM_CONTEXT_REGS+5) /* S5 */ # define REG_D3 (ARM_CONTEXT_REGS+6) /* D3 */ # define REG_S6 (ARM_CONTEXT_REGS+6) /* S6 */ # define REG_S7 (ARM_CONTEXT_REGS+7) /* S7 */ # define REG_D4 (ARM_CONTEXT_REGS+8) /* D4 */ # define REG_S8 (ARM_CONTEXT_REGS+8) /* S8 */ # define REG_S9 (ARM_CONTEXT_REGS+9) /* S9 */ # define REG_D5 (ARM_CONTEXT_REGS+10) /* D5 */ # define REG_S10 (ARM_CONTEXT_REGS+10) /* S10 */ # define REG_S11 (ARM_CONTEXT_REGS+11) /* S11 */ # define REG_D6 (ARM_CONTEXT_REGS+12) /* D6 */ # define REG_S12 (ARM_CONTEXT_REGS+12) /* S12 */ # define REG_S13 (ARM_CONTEXT_REGS+13) /* S13 */ # define REG_D7 (ARM_CONTEXT_REGS+14) /* D7 */ # define REG_S14 (ARM_CONTEXT_REGS+14) /* S14 */ # define REG_S15 (ARM_CONTEXT_REGS+15) /* S15 */ # define REG_D8 (ARM_CONTEXT_REGS+16) /* D8 */ # define REG_S16 (ARM_CONTEXT_REGS+16) /* S16 */ # define REG_S17 (ARM_CONTEXT_REGS+17) /* S17 */ # define REG_D9 (ARM_CONTEXT_REGS+18) /* D9 */ # define REG_S18 (ARM_CONTEXT_REGS+18) /* S18 */ # define REG_S19 (ARM_CONTEXT_REGS+19) /* S19 */ # define REG_D10 (ARM_CONTEXT_REGS+20) /* D10 */ # define REG_S20 (ARM_CONTEXT_REGS+20) /* S20 */ # define REG_S21 (ARM_CONTEXT_REGS+21) /* S21 */ # define REG_D11 (ARM_CONTEXT_REGS+22) /* D11 */ # define REG_S22 (ARM_CONTEXT_REGS+22) /* S22 */ # define REG_S23 (ARM_CONTEXT_REGS+23) /* S23 */ # define REG_D12 (ARM_CONTEXT_REGS+24) /* D12 */ # define REG_S24 (ARM_CONTEXT_REGS+24) /* S24 */ # define REG_S25 (ARM_CONTEXT_REGS+25) /* S25 */ # define REG_D13 (ARM_CONTEXT_REGS+26) /* D13 */ # define REG_S26 (ARM_CONTEXT_REGS+26) /* S26 */ # define REG_S27 (ARM_CONTEXT_REGS+27) /* S27 */ # define REG_D14 (ARM_CONTEXT_REGS+28) /* D14 */ # define REG_S28 (ARM_CONTEXT_REGS+28) /* S28 */ # define REG_S29 (ARM_CONTEXT_REGS+29) /* S29 */ # define REG_D15 (ARM_CONTEXT_REGS+30) /* D15 */ # define REG_S30 (ARM_CONTEXT_REGS+30) /* S30 */ # define REG_S31 (ARM_CONTEXT_REGS+31) /* S31 */ # define REG_FPSCR (ARM_CONTEXT_REGS+32) /* Floating point status and control */ # define FPU_CONTEXT_REGS (33) #else # define FPU_CONTEXT_REGS (0) #endif /* The total number of registers saved by software */ #define XCPTCONTEXT_REGS (ARM_CONTEXT_REGS + FPU_CONTEXT_REGS) #define XCPTCONTEXT_SIZE (4 * XCPTCONTEXT_REGS) /* Friendly register names */ #define REG_A1 REG_R0 #define REG_A2 REG_R1 #define REG_A3 REG_R2 #define REG_A4 REG_R3 #define REG_V1 REG_R4 #define REG_V2 REG_R5 #define REG_V3 REG_R6 #define REG_V4 REG_R7 #define REG_V5 REG_R8 #define REG_V6 REG_R9 #define REG_V7 REG_R10 #define REG_SB REG_R9 #define REG_SL REG_R10 #define REG_FP REG_R11 #define REG_IP REG_R12 #define REG_SP REG_R13 #define REG_LR REG_R14 #define REG_PC REG_R15 /* The PIC register is usually R10. It can be R9 is stack checking is enabled * or if the user changes it with -mpic-register on the GCC command line. */ #define REG_PIC REG_R10 /**************************************************************************** * Public Types ****************************************************************************/ #ifndef __ASSEMBLY__ /* This structure represents the return state from a system call */ #ifdef CONFIG_LIB_SYSCALL struct xcpt_syscall_s { #ifdef CONFIG_BUILD_KERNEL uint32_t cpsr; /* The CPSR value */ #endif uint32_t sysreturn; /* The return PC */ }; #endif /* This struct defines the way the registers are stored. We need to save: * * 1 CPSR * 7 Static registers, v1-v7 (aka r4-r10) * 1 Frame pointer, fp (aka r11) * 1 Stack pointer, sp (aka r13) * 1 Return address, lr (aka r14) * --- * 11 (XCPTCONTEXT_USER_REG) * * On interrupts, we also need to save: * 4 Volatile registers, a1-a4 (aka r0-r3) * 1 Scratch Register, ip (aka r12) *--- * 5 (XCPTCONTEXT_IRQ_REGS) * * For a total of 17 (XCPTCONTEXT_REGS) */ #ifndef __ASSEMBLY__ struct xcptcontext { #ifndef CONFIG_DISABLE_SIGNALS /* The following function pointer is non-zero if there are pending signals * to be processed. */ void *sigdeliver; /* Actual type is sig_deliver_t */ /* These are saved copies of LR and CPSR used during signal processing. * * REVISIT: Because there is only one copy of these save areas, * only a single signal handler can be active. This precludes * queuing of signal actions. As a result, signals received while * another signal handler is executing will be ignored! */ uint32_t saved_pc; uint32_t saved_cpsr; # ifdef CONFIG_BUILD_KERNEL /* This is the saved address to use when returning from a user-space * signal handler. */ uint32_t sigreturn; # endif #endif /* Register save area */ uint32_t regs[XCPTCONTEXT_REGS]; /* Extra fault address register saved for common paging logic. In the * case of the pre-fetch abort, this value is the same as regs[REG_R15]; * For the case of the data abort, this value is the value of the fault * address register (FAR) at the time of data abort exception. */ #ifdef CONFIG_PAGING uintptr_t far; #endif #ifdef CONFIG_LIB_SYSCALL /* The following array holds the return address and the exc_return value * needed to return from each nested system call. */ uint8_t nsyscalls; struct xcpt_syscall_s syscall[CONFIG_SYS_NNEST]; #endif #ifdef CONFIG_ARCH_ADDRENV #ifdef CONFIG_ARCH_STACK_DYNAMIC /* This array holds the physical address of the level 2 page table used * to map the thread's stack memory. This array will be initially of * zeroed and would be back-up up with pages during page fault exception * handling to support dynamically sized stacks for each thread. */ FAR uintptr_t *ustack[ARCH_STACK_NSECTS]; #endif #ifdef CONFIG_ARCH_KERNEL_STACK /* In this configuration, all syscalls execute from an internal kernel * stack. Why? Because when we instantiate and initialize the address * environment of the new user process, we will temporarily lose the * address environment of the old user process, including its stack * contents. The kernel C logic will crash immediately with no valid * stack in place. */ FAR uint32_t *ustkptr; /* Saved user stack pointer */ FAR uint32_t *kstack; /* Allocate base of the (aligned) kernel stack */ #ifndef CONFIG_DISABLE_SIGNALS FAR uint32_t *kstkptr; /* Saved kernel stack pointer */ #endif #endif #endif }; #endif #endif /* __ASSEMBLY__ */ /**************************************************************************** * Inline functions ****************************************************************************/ #ifndef __ASSEMBLY__ /* Name: up_irq_save, up_irq_restore, and friends. * * NOTE: This function should never be called from application code and, * as a general rule unless you really know what you are doing, this * function should not be called directly from operation system code either: * Typically, the wrapper functions, enter_critical_section() and * leave_critical section(), are probably what you really want. */ /* Return the current IRQ state */ static inline irqstate_t irqstate(void) { unsigned int cpsr; __asm__ __volatile__ ( "\tmrs %0, cpsr\n" : "=r" (cpsr) : : "memory" ); return cpsr; } /* Disable IRQs and return the previous IRQ state */ static inline irqstate_t up_irq_save(void) { unsigned int cpsr; __asm__ __volatile__ ( "\tmrs %0, cpsr\n" "\tcpsid i\n" #if defined(CONFIG_ARMV7A_DECODEFIQ) "\tcpsid f\n" #endif : "=r" (cpsr) : : "memory" ); return cpsr; } /* Enable IRQs and return the previous IRQ state */ static inline irqstate_t up_irq_enable(void) { unsigned int cpsr; __asm__ __volatile__ ( "\tmrs %0, cpsr\n" "\tcpsie i\n" #if defined(CONFIG_ARMV7A_DECODEFIQ) "\tcpsie f\n" #endif : "=r" (cpsr) : : "memory" ); return cpsr; } /* Restore saved IRQ & FIQ state */ static inline void up_irq_restore(irqstate_t flags) { __asm__ __volatile__ ( "msr cpsr_c, %0" : : "r" (flags) : "memory" ); } #endif /* __ASSEMBLY__ */ /**************************************************************************** * Public Data ****************************************************************************/ #ifndef __ASSEMBLY__ #ifdef __cplusplus #define EXTERN extern "C" extern "C" { #else #define EXTERN extern #endif /**************************************************************************** * Public Function Prototypes ****************************************************************************/ #undef EXTERN #ifdef __cplusplus } #endif #endif #endif /* __ARCH_ARM_INCLUDE_ARMV7_R_IRQ_H */