/**************************************************************************** * drivers/mtd/is25xp.c * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ /* Configuration ************************************************************/ /* Per the data sheet, IS25xP parts can be driven with either SPI mode 0 * (CPOL=0 and CPHA=0) or mode 3 (CPOL=1 and CPHA=1). So you may need to * specify CONFIG_IS25XP_SPIMODE to select the best mode for your device. * If CONFIG_IS25XP_SPIMODE is not defined, mode 0 will be used. */ #ifndef CONFIG_IS25XP_SPIMODE #define CONFIG_IS25XP_SPIMODE SPIDEV_MODE0 #endif /* SPI Frequency. May be up to 50MHz. */ #ifndef CONFIG_IS25XP_SPIFREQUENCY #define CONFIG_IS25XP_SPIFREQUENCY 20000000 #endif /* IS25 Registers ***********************************************************/ /* Identification register values */ #define IS25_MANUFACTURER 0x9d #define IS25_MEMORY_TYPE 0x60 /* IS25LP064 capacity is 8,388,608 bytes: * (2,048 sectors) * (4,096 bytes per sector) * (32,768 pages) * (256 bytes per page) */ #define IS25_IS25LP064_CAPACITY 0x17 #define IS25_IS25LP064_SECTOR_SHIFT 12 /* Sector size 1 << 12 = 4,096 */ #define IS25_IS25LP064_NSECTORS 2048 #define IS25_IS25LP064_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ #define IS25_IS25LP064_NPAGES 32768 #define IS25_IS25LP064_ADDRLEN 3 /* IS25LP128 capacity is 16,777,216 bytes: * (4,096 sectors) * (4,096 bytes per sector) * (65,536 pages) * (256 bytes per page) */ #define IS25_IS25LP128_CAPACITY 0x18 #define IS25_IS25LP128_SECTOR_SHIFT 12 /* Sector size 1 << 12 = 4,096 */ #define IS25_IS25LP128_NSECTORS 4096 #define IS25_IS25LP128_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ #define IS25_IS25LP128_NPAGES 65536 #define IS25_IS25LP128_ADDRLEN 3 /* IS25LP256 capacity is 33,554,432 bytes: * (8,192 sectors) * (4,096 bytes per sector) * (131,072 pages) * (256 bytes per page) */ #define IS25_IS25LP256_CAPACITY 0x19 #define IS25_IS25LP256_SECTOR_SHIFT 12 /* Sector size 1 << 12 = 4,096 */ #define IS25_IS25LP256_NSECTORS 8192 #define IS25_IS25LP256_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ #define IS25_IS25LP256_NPAGES 131072 #define IS25_IS25LP256_ADDRLEN 4 /* This chip requires long addresses */ /* IS25LP512 capacity is 67,108,864 bytes: * (16,364 sectors) * (4,096 bytes per sector) * (262,144 pages) * (256 bytes per page) */ #define IS25_IS25LP512_CAPACITY 0x1A #define IS25_IS25LP512_SECTOR_SHIFT 12 /* Sector size 1 << 12 = 4,096 */ #define IS25_IS25LP512_NSECTORS 16384 #define IS25_IS25LP512_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ #define IS25_IS25LP512_NPAGES 262144 #define IS25_IS25LP512_ADDRLEN 4 /* This chip requires long addresses */ /* Instructions */ /* Command Value N Description Addr Dummy Data */ #define IS25_WREN 0x06 /* 1 Write Enable 0 0 0 */ #define IS25_WRDI 0x04 /* 1 Write Disable 0 0 0 */ #define IS25_RDID 0x9f /* 1 Read Identification 0 0 1-3 */ #define IS25_RDSR 0x05 /* 1 Read Status Register 0 0 >=1 */ #define IS25_EWSR 0x50 /* 1 Write enable status 0 0 0 */ #define IS25_WRSR 0x01 /* 1 Write Status Register 0 0 1 */ #define IS25_READ 0x03 /* 1 Read Data Bytes 3 0 >=1 */ #define IS25_FAST_READ 0x0b /* 1 Higher speed read 3 1 >=1 */ #define IS25_PP 0x02 /* 1 Page Program 3 0 1-256 */ #define IS25_SE 0x20 /* 1 Sector Erase 3 0 0 */ #define IS25_BE32 0x52 /* 2 32K Block Erase 3 0 0 */ #define IS25_BE64 0xD8 /* 2 64K Block Erase 3 0 0 */ #define IS25_CER 0xC7 /* 1 Chip Erase 0 0 0 */ #define IS25_EN4B 0xB7 /* 1 Enter 4-byte Address Mode 0 0 0 */ /* NOTE 1: All parts. * NOTE 2: In IS25XP terminology, 0x52 and 0xd8 are block erase and 0x20 * is a sector erase. Block erase provides a faster way to erase * multiple 4K sectors at once. * NOTE 3: The larger chips (256/512Mbit) requires more than 24 address bits. * To enable this, the EN4B command changes the address length of all * commands that take a 3-byte address to 4 bytes. For information, * other commands with a fixed 4-byte address are available. */ /* Status register bit definitions */ #define IS25_SR_WIP (1 << 0) /* Bit 0: Write in progress bit */ #define IS25_SR_WEL (1 << 1) /* Bit 1: Write enable latch bit */ #define IS25_SR_BP_SHIFT (2) /* Bits 2-5: Block protect bits */ #define IS25_SR_BP_MASK (15 << IS25_SR_BP_SHIFT) #define IS25_SR_BP_NONE (0 << IS25_SR_BP_SHIFT) /* Unprotected */ #define IS25_SR_BP_UPPER128th (1 << IS25_SR_BP_SHIFT) /* Upper 128th */ #define IS25_SR_BP_UPPER64th (2 << IS25_SR_BP_SHIFT) /* Upper 64th */ #define IS25_SR_BP_UPPER32nd (3 << IS25_SR_BP_SHIFT) /* Upper 32nd */ #define IS25_SR_BP_UPPER16th (4 << IS25_SR_BP_SHIFT) /* Upper 16th */ #define IS25_SR_BP_UPPER8th (5 << IS25_SR_BP_SHIFT) /* Upper 8th */ #define IS25_SR_BP_UPPERQTR (6 << IS25_SR_BP_SHIFT) /* Upper quarter */ #define IS25_SR_BP_UPPERHALF (7 << IS25_SR_BP_SHIFT) /* Upper half */ #define IS25_SR_BP_ALL (8 << IS25_SR_BP_SHIFT) /* All sectors */ #define IS25_SR_QE (1 << 6) /* Bit 6: Quad (QSPI) enable bit */ #define IS25_SR_SRWD (1 << 7) /* Bit 7: Status register write protect */ #define IS25_DUMMY 0xa5 /**************************************************************************** * Private Types ****************************************************************************/ /* This type represents the state of the MTD device. The struct mtd_dev_s * must appear at the beginning of the definition so that you can freely * cast between pointers to struct mtd_dev_s and struct is25xp_dev_s. */ struct is25xp_dev_s { struct mtd_dev_s mtd; /* MTD interface */ FAR struct spi_dev_s *dev; /* Saved SPI interface instance */ uint8_t sectorshift; /* 12 */ uint8_t pageshift; /* 8 */ uint16_t nsectors; /* 2,048 or 4,096 or 8,192 or 16,384 */ uint32_t npages; /* 32,768 or 65,536 or 131,072 or 262,144 */ uint8_t lastwaswrite; /* Indicates if last operation was write */ uint8_t addrlen; /* Address length, 3 or 4 bytes */ }; /**************************************************************************** * Private Function Prototypes ****************************************************************************/ /* Helpers */ static void is25xp_lock(FAR struct spi_dev_s *dev); static inline void is25xp_unlock(FAR struct spi_dev_s *dev); static inline int is25xp_readid(struct is25xp_dev_s *priv); static void is25xp_enable4byteaddr(struct is25xp_dev_s *priv); static void is25xp_waitwritecomplete(struct is25xp_dev_s *priv); static void is25xp_writeenable(struct is25xp_dev_s *priv); static inline void is25xp_sectorerase(struct is25xp_dev_s *priv, off_t offset, uint8_t type); static inline int is25xp_bulkerase(struct is25xp_dev_s *priv); static inline void is25xp_pagewrite(struct is25xp_dev_s *priv, FAR const uint8_t *buffer, off_t offset); /* MTD driver methods */ static int is25xp_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks); static ssize_t is25xp_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR uint8_t *buf); static ssize_t is25xp_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buf); static ssize_t is25xp_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer); #ifdef CONFIG_MTD_BYTE_WRITE static ssize_t is25xp_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR const uint8_t *buffer); #endif static int is25xp_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg); /**************************************************************************** * Name: is25xp_lock ****************************************************************************/ static void is25xp_lock(FAR struct spi_dev_s *dev) { /* On SPI buses where there are multiple devices, it will be necessary to * lock SPI to have exclusive access to the buses for a sequence of * transfers. The bus should be locked before the chip is selected. * * This is a blocking call and will not return until we have exclusive * access to the SPI bus. We will retain that exclusive access until the * bus is unlocked. */ SPI_LOCK(dev, true); /* After locking the SPI bus, the we also need call the setfrequency, * setbits, and setmode methods to make sure that the SPI is properly * configured for the device. * If the SPI bus is being shared, then it may have been left in an * incompatible state. */ SPI_SETMODE(dev, CONFIG_IS25XP_SPIMODE); SPI_SETBITS(dev, 8); SPI_HWFEATURES(dev, 0); SPI_SETFREQUENCY(dev, CONFIG_IS25XP_SPIFREQUENCY); } /**************************************************************************** * Name: is25xp_unlock ****************************************************************************/ static inline void is25xp_unlock(FAR struct spi_dev_s *dev) { SPI_LOCK(dev, false); } /**************************************************************************** * Name: is25xp_readid ****************************************************************************/ static inline int is25xp_readid(struct is25xp_dev_s *priv) { uint16_t manufacturer; uint16_t memory; uint16_t capacity; finfo("priv: %p\n", priv); /* Lock the SPI bus, configure the bus, and select this FLASH part. */ is25xp_lock(priv->dev); SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the "Read ID (RDID)" command and read the first three ID bytes */ SPI_SEND(priv->dev, IS25_RDID); manufacturer = SPI_SEND(priv->dev, IS25_DUMMY); memory = SPI_SEND(priv->dev, IS25_DUMMY); capacity = SPI_SEND(priv->dev, IS25_DUMMY); /* Deselect the FLASH and unlock the bus */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); is25xp_unlock(priv->dev); finfo("manufacturer: %02x memory: %02x capacity: %02x\n", manufacturer, memory, capacity); /* Check for a valid manufacturer and memory type */ if (manufacturer == IS25_MANUFACTURER && memory == IS25_MEMORY_TYPE) { /* Okay.. is it a FLASH capacity that we understand? */ if (capacity == IS25_IS25LP064_CAPACITY) { /* Save the FLASH geometry */ priv->sectorshift = IS25_IS25LP064_SECTOR_SHIFT; priv->nsectors = IS25_IS25LP064_NSECTORS; priv->pageshift = IS25_IS25LP064_PAGE_SHIFT; priv->npages = IS25_IS25LP064_NPAGES; priv->addrlen = IS25_IS25LP064_ADDRLEN; return OK; } else if (capacity == IS25_IS25LP128_CAPACITY) { /* Save the FLASH geometry */ priv->sectorshift = IS25_IS25LP128_SECTOR_SHIFT; priv->nsectors = IS25_IS25LP128_NSECTORS; priv->pageshift = IS25_IS25LP128_PAGE_SHIFT; priv->npages = IS25_IS25LP128_NPAGES; priv->addrlen = IS25_IS25LP128_ADDRLEN; return OK; } else if (capacity == IS25_IS25LP256_CAPACITY) { /* Save the FLASH geometry */ priv->sectorshift = IS25_IS25LP256_SECTOR_SHIFT; priv->nsectors = IS25_IS25LP256_NSECTORS; priv->pageshift = IS25_IS25LP256_PAGE_SHIFT; priv->npages = IS25_IS25LP256_NPAGES; priv->addrlen = IS25_IS25LP256_ADDRLEN; return OK; } else if (capacity == IS25_IS25LP512_CAPACITY) { /* Save the FLASH geometry */ priv->sectorshift = IS25_IS25LP512_SECTOR_SHIFT; priv->nsectors = IS25_IS25LP512_NSECTORS; priv->pageshift = IS25_IS25LP512_PAGE_SHIFT; priv->npages = IS25_IS25LP512_NPAGES; priv->addrlen = IS25_IS25LP512_ADDRLEN; return OK; } } return -ENODEV; } /**************************************************************************** * Name: is25xp_enable4byteaddr ****************************************************************************/ static void is25xp_enable4byteaddr(struct is25xp_dev_s *priv) { /* Lock the SPI bus, configure the bus, and select this FLASH part. */ is25xp_lock(priv->dev); SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the "Enter 4-byte Address Mode (EN4B)" command */ SPI_SEND(priv->dev, IS25_EN4B); /* Deselect the FLASH and unlock the bus */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); is25xp_unlock(priv->dev); } /**************************************************************************** * Name: is25xp_waitwritecomplete ****************************************************************************/ static void is25xp_waitwritecomplete(struct is25xp_dev_s *priv) { uint8_t status; /* No need to check if no write / erase was done */ #if 0 if (!priv->lastwaswrite) { return; } #endif /* Are we the only device on the bus? */ #ifdef CONFIG_SPI_OWNBUS /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Read Status Register (RDSR)" command */ SPI_SEND(priv->dev, IS25_RDSR); /* Loop as long as the memory is busy with a write cycle */ do { /* Send a dummy byte to generate the clock needed to shift out * the status */ status = SPI_SEND(priv->dev, IS25_DUMMY); } while ((status & IS25_SR_WIP) != 0); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); #else /* Loop as long as the memory is busy with a write cycle */ do { /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Read Status Register (RDSR)" command */ SPI_SEND(priv->dev, IS25_RDSR); /* Send a dummy byte to generate the clock needed to shift out * the status */ status = SPI_SEND(priv->dev, IS25_DUMMY); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); /* Given that writing could take up to few tens of milliseconds, * and erasing could take more. The following short delay in the * "busy" case will allow other peripherals to access the SPI bus. */ if ((status & IS25_SR_WIP) != 0) { is25xp_unlock(priv->dev); nxsig_usleep(1000); is25xp_lock(priv->dev); } } while ((status & IS25_SR_WIP) != 0); #endif priv->lastwaswrite = false; finfo("Complete\n"); } /**************************************************************************** * Name: is25xp_writeenable ****************************************************************************/ static void is25xp_writeenable(struct is25xp_dev_s *priv) { /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Write Enable (WREN)" command */ SPI_SEND(priv->dev, IS25_WREN); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); finfo("Enabled\n"); } /**************************************************************************** * Name: is25xp_unprotect ****************************************************************************/ static void is25xp_unprotect(struct is25xp_dev_s *priv) { /* Make writeable */ is25xp_writeenable(priv); /* Send "Write status (WRSR)" */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); SPI_SEND(priv->dev, IS25_WRSR); /* Followed by the new status value */ SPI_SEND(priv->dev, 0); SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); } /**************************************************************************** * Name: is25xp_sectorerase ****************************************************************************/ static void is25xp_sectorerase(struct is25xp_dev_s *priv, off_t sector, uint8_t type) { off_t offset; offset = sector << priv->sectorshift; finfo("sector: %08lx\n", (long)sector); /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ is25xp_waitwritecomplete(priv); /* Send write enable instruction */ is25xp_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the "Sector Erase (SE)" or Sub-Sector Erase (SSE) instruction * that was passed in as the erase type. */ SPI_SEND(priv->dev, type); /* Send the sector offset high byte first. For all of the supported * parts, the sector number is completely contained in the first byte * and the values used in the following two bytes don't really matter. */ if (priv->addrlen == 4) { SPI_SEND(priv->dev, (offset >> 24) & 0xff); } SPI_SEND(priv->dev, (offset >> 16) & 0xff); SPI_SEND(priv->dev, (offset >> 8) & 0xff); SPI_SEND(priv->dev, offset & 0xff); priv->lastwaswrite = true; /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); finfo("Erased\n"); } /**************************************************************************** * Name: is25xp_bulkerase ****************************************************************************/ static inline int is25xp_bulkerase(struct is25xp_dev_s *priv) { finfo("priv: %p\n", priv); /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ is25xp_waitwritecomplete(priv); /* Send write enable instruction */ is25xp_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the "Chip Erase (CER)" instruction */ SPI_SEND(priv->dev, IS25_CER); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); is25xp_waitwritecomplete(priv); finfo("Return: OK\n"); return OK; } /**************************************************************************** * Name: is25xp_pagewrite ****************************************************************************/ static inline void is25xp_pagewrite(struct is25xp_dev_s *priv, FAR const uint8_t *buffer, off_t page) { off_t offset = page << priv->pageshift; finfo("page: %08lx offset: %08lx\n", (long)page, (long)offset); /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ is25xp_waitwritecomplete(priv); /* Enable the write access to the FLASH */ is25xp_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Page Program (PP)" command */ SPI_SEND(priv->dev, IS25_PP); /* Send the page offset high byte first. */ if (priv->addrlen == 4) { SPI_SEND(priv->dev, (offset >> 24) & 0xff); } SPI_SEND(priv->dev, (offset >> 16) & 0xff); SPI_SEND(priv->dev, (offset >> 8) & 0xff); SPI_SEND(priv->dev, offset & 0xff); /* Then write the specified number of bytes */ SPI_SNDBLOCK(priv->dev, buffer, 1 << priv->pageshift); priv->lastwaswrite = true; /* Deselect the FLASH: Chip Select high */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); finfo("Written\n"); } /**************************************************************************** * Name: is25xp_bytewrite ****************************************************************************/ #ifdef CONFIG_MTD_BYTE_WRITE static inline void is25xp_bytewrite(struct is25xp_dev_s *priv, FAR const uint8_t *buffer, off_t offset, uint16_t count) { finfo("offset: %08lx count:%d\n", (long)offset, count); /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ is25xp_waitwritecomplete(priv); /* Enable the write access to the FLASH */ is25xp_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Page Program (PP)" command */ SPI_SEND(priv->dev, IS25_PP); /* Send the page offset high byte first. */ if (priv->addrlen == 4) { SPI_SEND(priv->dev, (offset >> 24) & 0xff); } SPI_SEND(priv->dev, (offset >> 16) & 0xff); SPI_SEND(priv->dev, (offset >> 8) & 0xff); SPI_SEND(priv->dev, offset & 0xff); /* Then write the specified number of bytes */ SPI_SNDBLOCK(priv->dev, buffer, count); priv->lastwaswrite = true; /* Deselect the FLASH: Chip Select high */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); finfo("Written\n"); } #endif /**************************************************************************** * Name: is25xp_erase ****************************************************************************/ static int is25xp_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks) { FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev; size_t blocksleft = nblocks; finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* Lock access to the SPI bus until we complete the erase */ is25xp_lock(priv->dev); while (blocksleft > 0) { size_t sectorboundry; size_t blkper; /* We will erase in either 4K sectors or 32K or 64K blocks depending * on the largest unit we can use given the startblock and nblocks. * This will reduce erase time (in the event we have partitions * enabled and are doing a bulk erase which is translated into * a block erase operation). */ /* Test for 64K alignment */ blkper = 64 / 4; sectorboundry = (startblock + blkper - 1) / blkper; sectorboundry *= blkper; /* If we are on a sector boundary and have at least a full sector * of blocks left to erase, then we can do a full sector erase. */ if (startblock == sectorboundry && blocksleft >= blkper) { /* Do a 64k block erase */ is25xp_sectorerase(priv, startblock, IS25_BE64); startblock += blkper; blocksleft -= blkper; continue; } /* Test for 32K block alignment */ blkper = 32 / 4; sectorboundry = (startblock + blkper - 1) / blkper; sectorboundry *= blkper; if (startblock == sectorboundry && blocksleft >= blkper) { /* Do a 32k block erase */ is25xp_sectorerase(priv, startblock, IS25_BE32); startblock += blkper; blocksleft -= blkper; continue; } else { /* Just do a sector erase */ is25xp_sectorerase(priv, startblock, IS25_SE); startblock++; blocksleft--; continue; } } is25xp_unlock(priv->dev); return (int)nblocks; } /**************************************************************************** * Name: is25xp_bread ****************************************************************************/ static ssize_t is25xp_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR uint8_t *buffer) { FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev; ssize_t nbytes; finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* On this device, we can handle the block read just like the byte-oriented * read */ nbytes = is25xp_read(dev, startblock << priv->pageshift, nblocks << priv->pageshift, buffer); if (nbytes > 0) { return nbytes >> priv->pageshift; } return (int)nbytes; } /**************************************************************************** * Name: is25xp_bwrite ****************************************************************************/ static ssize_t is25xp_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buffer) { FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev; size_t blocksleft = nblocks; size_t pagesize = 1 << priv->pageshift; finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* Lock the SPI bus and write each page to FLASH */ is25xp_lock(priv->dev); while (blocksleft-- > 0) { is25xp_pagewrite(priv, buffer, startblock); buffer += pagesize; startblock++; } is25xp_unlock(priv->dev); return nblocks; } /**************************************************************************** * Name: is25xp_read ****************************************************************************/ static ssize_t is25xp_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer) { FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev; finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); /* Lock the SPI bus NOW because the following call must be executed with * the bus locked. */ is25xp_lock(priv->dev); /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ if (priv->lastwaswrite) { is25xp_waitwritecomplete(priv); } /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Read from Memory " instruction */ SPI_SEND(priv->dev, IS25_READ); /* Send the page offset high byte first. */ if (priv->addrlen == 4) { SPI_SEND(priv->dev, (offset >> 24) & 0xff); } SPI_SEND(priv->dev, (offset >> 16) & 0xff); SPI_SEND(priv->dev, (offset >> 8) & 0xff); SPI_SEND(priv->dev, offset & 0xff); /* Then read all of the requested bytes */ SPI_RECVBLOCK(priv->dev, buffer, nbytes); /* Deselect the FLASH and unlock the SPI bus */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); is25xp_unlock(priv->dev); finfo("return nbytes: %d\n", (int)nbytes); return nbytes; } /**************************************************************************** * Name: is25xp_write ****************************************************************************/ #ifdef CONFIG_MTD_BYTE_WRITE static ssize_t is25xp_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR const uint8_t *buffer) { FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev; int startpage; int endpage; int count; int index; int pagesize; int bytestowrite; finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); /* We must test if the offset + count crosses one or more pages * and perform individual writes. The devices can only write in * page increments. */ startpage = offset / (1 << priv->pageshift); endpage = (offset + nbytes) / (1 << priv->pageshift); is25xp_lock(priv->dev); if (startpage == endpage) { /* All bytes within one programmable page. Just do the write. */ is25xp_bytewrite(priv, buffer, offset, nbytes); } else { /* Write the 1st partial-page */ count = nbytes; pagesize = (1 << priv->pageshift); bytestowrite = pagesize - (offset & (pagesize - 1)); is25xp_bytewrite(priv, buffer, offset, bytestowrite); /* Update offset and count */ offset += bytestowrite; count -= bytestowrite; index = bytestowrite; /* Write full pages */ while (count >= pagesize) { is25xp_bytewrite(priv, &buffer[index], offset, pagesize); /* Update offset and count */ offset += pagesize; count -= pagesize; index += pagesize; } /* Now write any partial page at the end */ if (count > 0) { is25xp_bytewrite(priv, &buffer[index], offset, count); } priv->lastwaswrite = true; } is25xp_unlock(priv->dev); return nbytes; } #endif /* CONFIG_MTD_BYTE_WRITE */ /**************************************************************************** * Name: is25xp_ioctl ****************************************************************************/ static int is25xp_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg) { FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev; int ret = -EINVAL; /* Assume good command with bad parameters */ finfo("cmd: %d\n", cmd); switch (cmd) { case MTDIOC_GEOMETRY: { FAR struct mtd_geometry_s *geo = (FAR struct mtd_geometry_s *)((uintptr_t)arg); if (geo) { memset(geo, 0, sizeof(*geo)); /* Populate the geometry structure with information need to * know the capacity and how to access the device. * * NOTE: * that the device is treated as though it where just an array * of fixed size blocks. That is most likely not true, but the * client will expect the device logic to do whatever is * necessary to make it appear so. */ geo->blocksize = (1 << priv->pageshift); geo->erasesize = (1 << priv->sectorshift); geo->neraseblocks = priv->nsectors; ret = OK; finfo("blocksize: %"PRIu32" erasesize: %"PRIu32 " neraseblocks: %"PRIu32"\n", geo->blocksize, geo->erasesize, geo->neraseblocks); } } break; case BIOC_PARTINFO: { FAR struct partition_info_s *info = (FAR struct partition_info_s *)arg; if (info != NULL) { info->numsectors = priv->nsectors << (priv->sectorshift - priv->pageshift); info->sectorsize = 1 << priv->pageshift; info->startsector = 0; info->parent[0] = '\0'; ret = OK; } } break; case MTDIOC_BULKERASE: { /* Erase the entire device */ is25xp_lock(priv->dev); ret = is25xp_bulkerase(priv); is25xp_unlock(priv->dev); } break; default: ret = -ENOTTY; /* Bad command */ break; } finfo("return %d\n", ret); return ret; } /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Name: is25xp_initialize * * Description: * Create an initialize MTD device instance. MTD devices are not registered * in the file system, but are created as instances that can be bound to * other functions (such as a block or character driver front end). * ****************************************************************************/ FAR struct mtd_dev_s *is25xp_initialize(FAR struct spi_dev_s *dev) { FAR struct is25xp_dev_s *priv; int ret; finfo("dev: %p\n", dev); /* Allocate a state structure (we allocate the structure instead of using * a fixed, static allocation so that we can handle multiple FLASH devices. * The current implementation would handle only one FLASH part per SPI * device (only because of the SPIDEV_FLASH(0) definition) and so would * have to be extended to handle multiple FLASH parts on the same SPI bus. */ priv = (FAR struct is25xp_dev_s *)kmm_zalloc(sizeof(struct is25xp_dev_s)); if (priv) { /* Initialize the allocated structure. (unsupported methods were * nullified by kmm_zalloc). */ priv->mtd.erase = is25xp_erase; priv->mtd.bread = is25xp_bread; priv->mtd.bwrite = is25xp_bwrite; priv->mtd.read = is25xp_read; #ifdef CONFIG_MTD_BYTE_WRITE priv->mtd.write = is25xp_write; #endif priv->mtd.ioctl = is25xp_ioctl; priv->mtd.name = "is25xp"; priv->dev = dev; priv->lastwaswrite = false; /* Deselect the FLASH */ SPI_SELECT(dev, SPIDEV_FLASH(0), false); /* Identify the FLASH chip and get its capacity */ ret = is25xp_readid(priv); if (ret != OK) { /* Unrecognized! Discard all of that work we just did and * return NULL */ ferr("ERROR: Unrecognized\n"); kmm_free(priv); return NULL; } else { /* For the large capacity chip, enable 4-byte address mode. */ if (priv->addrlen == 4) { is25xp_enable4byteaddr(priv); } /* Make sure that the FLASH is unprotected so that we can * write into it */ is25xp_unprotect(priv); } } /* Return the implementation-specific state structure as the MTD device */ finfo("Return %p\n", priv); return (FAR struct mtd_dev_s *)priv; }