803 lines
22 KiB
C
803 lines
22 KiB
C
/****************************************************************************
|
|
* arch/arm/src/stm32/stm32l15xxx_rcc.c
|
|
* For STM32L100xx, STM32L151xx, STM32L152xx and STM32L162xx advanced ARM-
|
|
* based 32-bit MCUs
|
|
*
|
|
* Copyright (C) 2013, 2015 Gregory Nutt. All rights reserved.
|
|
* Author: Gregory Nutt <gnutt@nuttx.org>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name NuttX nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Pre-processor Definitions
|
|
****************************************************************************/
|
|
|
|
/* Allow up to 100 milliseconds for the high speed clock to become ready.
|
|
* that is a very long delay, but if the clock does not become ready we are
|
|
* hosed anyway. Normally this is very fast, but I have seen at least one
|
|
* board that required this long, long timeout for the HSE to be ready.
|
|
*/
|
|
|
|
#define HSERDY_TIMEOUT (100 * CONFIG_BOARD_LOOPSPERMSEC)
|
|
|
|
/* HSE divisor to yield ~1MHz RTC clock (valid for HSE = 8MHz) */
|
|
|
|
#define HSE_DIVISOR RCC_CR_RTCPRE_HSEd8
|
|
|
|
/****************************************************************************
|
|
* Private Data
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Private Functions
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Name: rcc_reset
|
|
*
|
|
* Description:
|
|
* Put all RCC registers in reset state
|
|
*
|
|
****************************************************************************/
|
|
|
|
static inline void rcc_reset(void)
|
|
{
|
|
#if 0 /* None of this is necessary if only called from power up */
|
|
uint32_t regval;
|
|
|
|
/* Make sure that all devices are out of reset */
|
|
|
|
putreg32(0, STM32_RCC_AHBRSTR); /* Disable AHB Peripheral Reset */
|
|
putreg32(0, STM32_RCC_APB2RSTR); /* Disable APB2 Peripheral Reset */
|
|
putreg32(0, STM32_RCC_APB1RSTR); /* Disable APB1 Peripheral Reset */
|
|
|
|
/* Disable all clocking (other than to FLASH) */
|
|
|
|
putreg32(RCC_AHBENR_FLITFEN, STM32_RCC_AHBENR); /* FLITF Clock ON */
|
|
putreg32(0, STM32_RCC_APB2ENR); /* Disable APB2 Peripheral Clock */
|
|
putreg32(0, STM32_RCC_APB1ENR); /* Disable APB1 Peripheral Clock */
|
|
|
|
/* Set the Internal clock sources calibration register to its reset value.
|
|
* MSI to the default frequency (nominally 2.097MHz), MSITRIM=0, HSITRIM=0x10.
|
|
* Preserve the factory HSICAL and MSICAL settings.
|
|
*/
|
|
|
|
regval = getreg32(STM32_RCC_ICSCR);
|
|
regval &= (RCC_ICSCR_HSICAL_MASK | RCC_ICSCR_MSICAL_MASK);
|
|
regval |= (RCC_ICSR_RSTVAL & ~(RCC_ICSCR_HSICAL_MASK | RCC_ICSCR_MSICAL_MASK));
|
|
putreg32(regval, STM32_RCC_ICSCR);
|
|
|
|
/* Enable the internal MSI */
|
|
|
|
regval = getreg32(STM32_RCC_CR); /* Enable the MSI */
|
|
regval |= RCC_CR_MSION;
|
|
putreg32(regval, STM32_RCC_CR);
|
|
|
|
/* Set the CFGR register to its reset value: Reset SW, HPRE, PPRE1, PPRE2,
|
|
* and MCO bits. Resetting SW selects the MSI clock as the system clock
|
|
* source. We do not clear PLL values yet because the PLL may be providing
|
|
* the SYSCLK and we want the PLL to be stable through the transition.
|
|
*/
|
|
|
|
regval = getreg32(STM32_RCC_CFGR);
|
|
regval &= ~(RCC_CFGR_SW_MASK | RCC_CFGR_HPRE_MASK | RCC_CFGR_PPRE1_MASK |
|
|
RCC_CFGR_PPRE2_MASK | RCC_CFGR_MCOSEL_MASK | RCC_CFGR_MCOPRE_MASK);
|
|
putreg32(regval, STM32_RCC_CFGR);
|
|
|
|
/* Make sure that the selected MSI source is used as the system clock source */
|
|
|
|
while ((getreg32(STM32_RCC_CFGR) & RCC_CFGR_SWS_MASK) != RCC_CFGR_SWS_MSI);
|
|
|
|
/* Now we can disable the alternative clock sources: HSE, HSI, PLL, CSS and RTCPRE. Also,
|
|
* reset the HSE bypass. This restores the RCC CR to its reset state.
|
|
*/
|
|
|
|
regval = getreg32(STM32_RCC_CR); /* Disable the HSE and the PLL */
|
|
regval &= ~(RCC_CR_HSION | RCC_CR_HSEON | RCC_CR_PLLON | RCC_CR_CSSON | RCC_CR_RTCPRE_MASK);
|
|
putreg32(regval, STM32_RCC_CR);
|
|
|
|
regval = getreg32(STM32_RCC_CR); /* Reset HSEBYP bit */
|
|
regval &= ~RCC_CR_HSEBYP;
|
|
putreg32(regval, STM32_RCC_CR);
|
|
|
|
/* Now we can reset the CFGR PLL fields to their reset value */
|
|
|
|
regval = getreg32(STM32_RCC_CFGR); /* Reset PLLSRC, PLLMUL, and PLLDIV bits */
|
|
regval &= ~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLMUL_MASK | RCC_CFGR_PLLDIV_MASK);
|
|
putreg32(regval, STM32_RCC_CFGR);
|
|
|
|
/* Make sure that all interrupts are disabled */
|
|
|
|
putreg32(0, STM32_RCC_CIR); /* Disable all interrupts */
|
|
|
|
/* Go to the (default) voltage range 2 */
|
|
|
|
stm32_pwr_setvos(PWR_CR_VOS_SCALE_2);
|
|
|
|
/* Reset the FLASH controller to 32-bit mode, no wait states.
|
|
*
|
|
* First, program the new number of WS to the LATENCY bit in Flash access
|
|
* control register (FLASH_ACR)
|
|
*/
|
|
|
|
regval = getreg32(STM32_FLASH_ACR);
|
|
regval &= ~FLASH_ACR_LATENCY; /* No wait states */
|
|
putreg32(regval, STM32_FLASH_ACR);
|
|
|
|
/* Check that the new number of WS is taken into account by reading FLASH_ACR */
|
|
|
|
/* Program the 32-bit access by clearing ACC64 in FLASH_ACR */
|
|
|
|
regval &= ~FLASH_ACR_ACC64; /* 32-bit access mode */
|
|
putreg32(regval, STM32_FLASH_ACR);
|
|
|
|
/* Check that 32-bit access is taken into account by reading FLASH_ACR */
|
|
#endif
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Name: rcc_enableahb
|
|
*
|
|
* Description:
|
|
* Enable selected AHB peripherals
|
|
*
|
|
****************************************************************************/
|
|
|
|
static inline void rcc_enableahb(void)
|
|
{
|
|
uint32_t regval;
|
|
|
|
/* Always enable FLITF clock clock */
|
|
|
|
regval = RCC_AHBENR_FLITFEN;
|
|
|
|
/* Enable GPIOA-E, H, F-G (not all parts have all ports) */
|
|
|
|
regval |= (RCC_AHBENR_GPIOPAEN | RCC_AHBENR_GPIOPBEN | RCC_AHBENR_GPIOPCEN |
|
|
RCC_AHBENR_GPIOPDEN | RCC_AHBENR_GPIOPEEN | RCC_AHBENR_GPIOPHEN |
|
|
RCC_AHBENR_GPIOPFEN | RCC_AHBENR_GPIOPGEN);
|
|
|
|
#ifdef CONFIG_STM32_CRC
|
|
/* CRC clock enable */
|
|
|
|
regval |= RCC_AHBENR_CRCEN;
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_DMA1
|
|
/* DMA 1 clock enable */
|
|
|
|
regval |= RCC_AHBENR_DMA1EN;
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_DMA2
|
|
/* DMA 2 clock enable */
|
|
|
|
regval |= RCC_AHBENR_DMA2EN;
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_AES
|
|
/* AES clock enable */
|
|
|
|
regval |= RCC_AHBENR_AESEN;
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_FSMC
|
|
/* FSMC clock enable */
|
|
|
|
regval |= RCC_AHBENR_FSMCEN;
|
|
#endif
|
|
|
|
putreg32(regval, STM32_RCC_AHBENR); /* Enable peripherals */
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Name: rcc_enableapb1
|
|
*
|
|
* Description:
|
|
* Enable selected APB1 peripherals
|
|
*
|
|
****************************************************************************/
|
|
|
|
static inline void rcc_enableapb1(void)
|
|
{
|
|
uint32_t regval;
|
|
|
|
/* Set the appropriate bits in the APB1ENR register to enabled the
|
|
* selected APB1 peripherals.
|
|
*/
|
|
|
|
regval = getreg32(STM32_RCC_APB1ENR);
|
|
|
|
#ifdef CONFIG_STM32_TIM2
|
|
/* Timer 2 clock enable */
|
|
|
|
#ifdef CONFIG_STM32_FORCEPOWER
|
|
regval |= RCC_APB1ENR_TIM2EN;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_TIM3
|
|
/* Timer 3 clock enable */
|
|
|
|
#ifdef CONFIG_STM32_FORCEPOWER
|
|
regval |= RCC_APB1ENR_TIM3EN;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_TIM4
|
|
/* Timer 4 clock enable */
|
|
|
|
#ifdef CONFIG_STM32_FORCEPOWER
|
|
regval |= RCC_APB1ENR_TIM4EN;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_TIM5
|
|
/* Timer 5 clock enable */
|
|
|
|
#ifdef CONFIG_STM32_FORCEPOWER
|
|
regval |= RCC_APB1ENR_TIM5EN;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_TIM6
|
|
/* Timer 6 clock enable */
|
|
|
|
#ifdef CONFIG_STM32_FORCEPOWER
|
|
regval |= RCC_APB1ENR_TIM6EN;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_TIM7
|
|
/* Timer 7 clock enable */
|
|
|
|
#ifdef CONFIG_STM32_FORCEPOWER
|
|
regval |= RCC_APB1ENR_TIM7EN;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_LCD
|
|
/* LCD clock enable */
|
|
|
|
regval |= RCC_APB1ENR_LCDEN;
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_WWDG
|
|
/* Window Watchdog clock enable */
|
|
|
|
regval |= RCC_APB1ENR_WWDGEN;
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_SPI2
|
|
/* SPI 2 clock enable */
|
|
|
|
regval |= RCC_APB1ENR_SPI2EN;
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_SPI3
|
|
/* SPI 3 clock enable */
|
|
|
|
regval |= RCC_APB1ENR_SPI3EN;
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_USART2
|
|
/* USART 2 clock enable */
|
|
|
|
#ifdef CONFIG_STM32_FORCEPOWER
|
|
regval |= RCC_APB1ENR_USART2EN;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_USART3
|
|
/* USART 3 clock enable */
|
|
|
|
#ifdef CONFIG_STM32_FORCEPOWER
|
|
regval |= RCC_APB1ENR_USART3EN;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_UART4
|
|
/* USART 4 clock enable */
|
|
|
|
#ifdef CONFIG_STM32_FORCEPOWER
|
|
regval |= RCC_APB1ENR_UART4EN;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_UART5
|
|
/* USART 5 clock enable */
|
|
|
|
#ifdef CONFIG_STM32_FORCEPOWER
|
|
regval |= RCC_APB1ENR_UART5EN;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_I2C1
|
|
/* I2C 1 clock enable */
|
|
|
|
#ifdef CONFIG_STM32_FORCEPOWER
|
|
regval |= RCC_APB1ENR_I2C1EN;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_I2C2
|
|
/* I2C 2 clock enable */
|
|
|
|
#ifdef CONFIG_STM32_FORCEPOWER
|
|
regval |= RCC_APB1ENR_I2C2EN;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_USB
|
|
/* USB clock enable */
|
|
|
|
regval |= RCC_APB1ENR_USBEN;
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_PWR
|
|
/* Power interface clock enable */
|
|
|
|
regval |= RCC_APB1ENR_PWREN;
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_DAC
|
|
/* DAC interface clock enable */
|
|
|
|
regval |= RCC_APB1ENR_DACEN;
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_COMP
|
|
/* COMP interface clock enable */
|
|
|
|
regval |= RCC_APB1ENR_COMPEN;
|
|
#endif
|
|
|
|
putreg32(regval, STM32_RCC_APB1ENR);
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Name: rcc_enableapb2
|
|
*
|
|
* Description:
|
|
* Enable selected APB2 peripherals
|
|
*
|
|
****************************************************************************/
|
|
|
|
static inline void rcc_enableapb2(void)
|
|
{
|
|
uint32_t regval;
|
|
|
|
/* Set the appropriate bits in the APB2ENR register to enabled the
|
|
* selected APB2 peripherals.
|
|
*/
|
|
|
|
regval = getreg32(STM32_RCC_APB2ENR);
|
|
|
|
#ifdef CONFIG_STM32_SYSCFG
|
|
/* SYSCFG clock */
|
|
|
|
regval |= RCC_APB2ENR_SYSCFGEN;
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_TIM9
|
|
/* TIM9 Timer clock enable */
|
|
|
|
#ifdef CONFIG_STM32_FORCEPOWER
|
|
regval |= RCC_APB2ENR_TIM9EN;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_TIM10
|
|
/* TIM10 Timer clock enable */
|
|
|
|
#ifdef CONFIG_STM32_FORCEPOWER
|
|
regval |= RCC_APB2ENR_TIM10EN;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_TIM11
|
|
/* TIM11 Timer clock enable */
|
|
|
|
#ifdef CONFIG_STM32_FORCEPOWER
|
|
regval |= RCC_APB2ENR_TIM11EN;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_ADC1
|
|
/* ADC 1 clock enable */
|
|
|
|
regval |= RCC_APB2ENR_ADC1EN;
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_SDIO
|
|
/* SDIO clock enable */
|
|
|
|
regval |= RCC_APB2ENR_SDIOEN;
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_SPI1
|
|
/* SPI 1 clock enable */
|
|
|
|
regval |= RCC_APB2ENR_SPI1EN;
|
|
#endif
|
|
|
|
#ifdef CONFIG_STM32_USART1
|
|
/* USART1 clock enable */
|
|
|
|
#ifdef CONFIG_STM32_FORCEPOWER
|
|
regval |= RCC_APB2ENR_USART1EN;
|
|
#endif
|
|
#endif
|
|
|
|
putreg32(regval, STM32_RCC_APB2ENR);
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Name: stm32_rcc_enablehse
|
|
*
|
|
* Description:
|
|
* Enable the External High-Speed (HSE) Oscillator.
|
|
*
|
|
****************************************************************************/
|
|
|
|
#if (STM32_CFGR_PLLSRC == RCC_CFGR_PLLSRC) || (STM32_SYSCLK_SW == RCC_CFGR_SW_HSE)
|
|
static inline bool stm32_rcc_enablehse(void)
|
|
{
|
|
uint32_t regval;
|
|
volatile int32_t timeout;
|
|
|
|
/* Enable External High-Speed Clock (HSE) */
|
|
|
|
regval = getreg32(STM32_RCC_CR);
|
|
#ifdef STM32_HSEBYP_ENABLE /* May be defined in board.h header file */
|
|
regval |= RCC_CR_HSEBYP; /* Enable HSE clock bypass */
|
|
#else
|
|
regval &= ~RCC_CR_HSEBYP; /* Disable HSE clock bypass */
|
|
#endif
|
|
regval |= RCC_CR_HSEON; /* Enable HSE */
|
|
putreg32(regval, STM32_RCC_CR);
|
|
|
|
/* Wait until the HSE is ready (or until a timeout elapsed) */
|
|
|
|
for (timeout = HSERDY_TIMEOUT; timeout > 0; timeout--)
|
|
{
|
|
/* Check if the HSERDY flag is set in the CR */
|
|
|
|
if ((getreg32(STM32_RCC_CR) & RCC_CR_HSERDY) != 0)
|
|
{
|
|
/* If so, then return TRUE */
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* In the case of a timeout starting the HSE, we really don't have a
|
|
* strategy. This is almost always a hardware failure or misconfiguration.
|
|
*/
|
|
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/****************************************************************************
|
|
* Name: stm32_stdclockconfig
|
|
*
|
|
* Description:
|
|
* Called to change to new clock based on settings in board.h.
|
|
*
|
|
* NOTE: This logic would need to be extended if you need to select low-
|
|
* power clocking modes or any clocking other than PLL driven by the HSE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
#ifndef CONFIG_ARCH_BOARD_STM32_CUSTOM_CLOCKCONFIG
|
|
static void stm32_stdclockconfig(void)
|
|
{
|
|
uint32_t regval;
|
|
#if defined(CONFIG_STM32_RTC_HSECLOCK) || defined(CONFIG_LCD_HSECLOCK)
|
|
uint16_t pwrcr;
|
|
#endif
|
|
uint32_t pwr_vos;
|
|
bool flash_1ws;
|
|
|
|
/* Enable PWR clock from APB1 to give access to PWR_CR register */
|
|
|
|
regval = getreg32(STM32_RCC_APB1ENR);
|
|
regval |= RCC_APB1ENR_PWREN;
|
|
putreg32(regval, STM32_RCC_APB1ENR);
|
|
|
|
/* Go to the high performance voltage range 1 if necessary. In this mode,
|
|
* the PLL VCO frequency can be up to 96MHz. USB and SDIO can be supported.
|
|
*
|
|
* Range 1: PLLVCO up to 96MHz in range 1 (1.8V)
|
|
* Range 2: PLLVCO up to 48MHz in range 2 (1.5V) (default)
|
|
* Range 3: PLLVCO up to 24MHz in range 3 (1.2V)
|
|
*
|
|
* Range 1: SYSCLK up to 32Mhz
|
|
* Range 2: SYSCLK up to 16Mhz
|
|
* Range 3: SYSCLK up to 4.2Mhz
|
|
*
|
|
* Range 1: Flash 1WS if SYSCLK > 16Mhz
|
|
* Range 2: Flash 1WS if SYSCLK > 8Mhz
|
|
* Range 3: Flash 1WS if SYSCLK > 2.1Mhz
|
|
*/
|
|
|
|
pwr_vos = PWR_CR_VOS_SCALE_2;
|
|
flash_1ws = false;
|
|
|
|
#ifdef STM32_PLL_FREQUENCY
|
|
if (STM32_PLL_FREQUENCY > 48000000)
|
|
{
|
|
pwr_vos = PWR_CR_VOS_SCALE_1;
|
|
}
|
|
#endif
|
|
|
|
if (STM32_SYSCLK_FREQUENCY > 16000000)
|
|
{
|
|
pwr_vos = PWR_CR_VOS_SCALE_1;
|
|
}
|
|
|
|
if ((pwr_vos == PWR_CR_VOS_SCALE_1 && STM32_SYSCLK_FREQUENCY > 16000000) ||
|
|
(pwr_vos == PWR_CR_VOS_SCALE_2 && STM32_SYSCLK_FREQUENCY > 8000000))
|
|
{
|
|
flash_1ws = true;
|
|
}
|
|
|
|
stm32_pwr_setvos(pwr_vos);
|
|
|
|
#if defined(CONFIG_STM32_RTC_HSECLOCK) || defined(CONFIG_LCD_HSECLOCK)
|
|
/* If RTC / LCD selects HSE as clock source, the RTC prescaler
|
|
* needs to be set before HSEON bit is set.
|
|
*/
|
|
|
|
/* The RTC domain has write access denied after reset,
|
|
* you have to enable write access using DBP bit in the PWR CR
|
|
* register before to selecting the clock source ( and the PWR
|
|
* peripheral must be enabled)
|
|
*/
|
|
|
|
regval = getreg32(STM32_RCC_APB1ENR);
|
|
regval |= RCC_APB1ENR_PWREN;
|
|
putreg32(regval, STM32_RCC_APB1ENR);
|
|
|
|
pwrcr = getreg16(STM32_PWR_CR);
|
|
putreg16(pwrcr | PWR_CR_DBP, STM32_PWR_CR);
|
|
|
|
/* Set the RTC clock divisor */
|
|
|
|
regval = getreg32(STM32_RCC_CSR);
|
|
regval &= ~RCC_CSR_RTCSEL_MASK;
|
|
regval |= RCC_CSR_RTCSEL_HSE;
|
|
putreg32(regval, STM32_RCC_CSR);
|
|
|
|
regval = getreg32(STM32_RCC_CR);
|
|
regval &= ~RCC_CR_RTCPRE_MASK;
|
|
regval |= HSE_DIVISOR;
|
|
putreg32(regval, STM32_RCC_CR);
|
|
|
|
/* Restore the previous state of the DBP bit */
|
|
|
|
putreg32(regval, STM32_PWR_CR);
|
|
|
|
#endif
|
|
|
|
/* Enable the source clock for the PLL (via HSE or HSI), HSE, and HSI. */
|
|
|
|
#if (STM32_SYSCLK_SW == RCC_CFGR_SW_HSE) || \
|
|
((STM32_SYSCLK_SW == RCC_CFGR_SW_PLL) && (STM32_CFGR_PLLSRC == RCC_CFGR_PLLSRC))
|
|
|
|
/* The PLL is using the HSE, or the HSE is the system clock. In either
|
|
* case, we need to enable HSE clocking.
|
|
*/
|
|
|
|
if (!stm32_rcc_enablehse())
|
|
{
|
|
/* In the case of a timeout starting the HSE, we really don't have a
|
|
* strategy. This is almost always a hardware failure or
|
|
* misconfiguration (for example, if no crystal is fitted on the board.
|
|
*/
|
|
|
|
return;
|
|
}
|
|
|
|
#elif (STM32_SYSCLK_SW == RCC_CFGR_SW_HSI) || \
|
|
((STM32_SYSCLK_SW == RCC_CFGR_SW_PLL) && STM32_CFGR_PLLSRC == 0)
|
|
|
|
/* The PLL is using the HSI, or the HSI is the system clock. In either
|
|
* case, we need to enable HSI clocking.
|
|
*/
|
|
|
|
regval = getreg32(STM32_RCC_CR); /* Enable the HSI */
|
|
regval |= RCC_CR_HSION;
|
|
putreg32(regval, STM32_RCC_CR);
|
|
|
|
/* Wait until the HSI clock is ready. Since this is an internal clock, no
|
|
* timeout is expected
|
|
*/
|
|
|
|
while ((getreg32(STM32_RCC_CR) & RCC_CR_HSIRDY) == 0);
|
|
|
|
#endif
|
|
|
|
#if (STM32_SYSCLK_SW != RCC_CFGR_SW_MSI)
|
|
|
|
/* Increasing the CPU frequency (in the same voltage range):
|
|
*
|
|
* After reset, the used clock is the MSI (2 MHz) with 0 WS configured in the
|
|
* FLASH_ACR register. 32-bit access is enabled and prefetch is disabled.
|
|
* ST strongly recommends to use the following software sequences to tune the
|
|
* number of wait states needed to access the Flash memory with the CPU
|
|
* frequency.
|
|
*
|
|
* - Program the 64-bit access by setting the ACC64 bit in Flash access
|
|
* control register (FLASH_ACR)
|
|
* - Check that 64-bit access is taken into account by reading FLASH_ACR
|
|
* - Program 1 WS to the LATENCY bit in FLASH_ACR
|
|
* - Check that the new number of WS is taken into account by reading FLASH_ACR
|
|
* - Modify the CPU clock source by writing to the SW bits in the Clock
|
|
* configuration register (RCC_CFGR)
|
|
* - If needed, modify the CPU clock prescaler by writing to the HPRE bits in
|
|
* RCC_CFGR
|
|
* - Check that the new CPU clock source or/and the new CPU clock prescaler
|
|
* value is/are taken into account by reading the clock source status (SWS
|
|
* bits) or/and the AHB prescaler value (HPRE bits), respectively, in the
|
|
* RCC_CFGR register
|
|
*/
|
|
|
|
regval = getreg32(STM32_FLASH_ACR);
|
|
regval |= FLASH_ACR_ACC64; /* 64-bit access mode */
|
|
putreg32(regval, STM32_FLASH_ACR);
|
|
|
|
if (flash_1ws)
|
|
{
|
|
regval |= FLASH_ACR_LATENCY; /* One wait state */
|
|
}
|
|
else
|
|
{
|
|
regval &= ~FLASH_ACR_LATENCY; /* Zero wait state */
|
|
}
|
|
|
|
putreg32(regval, STM32_FLASH_ACR);
|
|
|
|
/* Enable FLASH prefetch */
|
|
|
|
regval |= FLASH_ACR_PRFTEN;
|
|
putreg32(regval, STM32_FLASH_ACR);
|
|
|
|
#endif /* STM32_SYSCLK_SW != RCC_CFGR_SW_MSI */
|
|
|
|
/* Set the HCLK source/divider */
|
|
|
|
regval = getreg32(STM32_RCC_CFGR);
|
|
regval &= ~RCC_CFGR_HPRE_MASK;
|
|
regval |= STM32_RCC_CFGR_HPRE;
|
|
putreg32(regval, STM32_RCC_CFGR);
|
|
|
|
/* Set the PCLK2 divider */
|
|
|
|
regval = getreg32(STM32_RCC_CFGR);
|
|
regval &= ~RCC_CFGR_PPRE2_MASK;
|
|
regval |= STM32_RCC_CFGR_PPRE2;
|
|
putreg32(regval, STM32_RCC_CFGR);
|
|
|
|
/* Set the PCLK1 divider */
|
|
|
|
regval = getreg32(STM32_RCC_CFGR);
|
|
regval &= ~RCC_CFGR_PPRE1_MASK;
|
|
regval |= STM32_RCC_CFGR_PPRE1;
|
|
putreg32(regval, STM32_RCC_CFGR);
|
|
|
|
/* If we are using the PLL, configure and start it */
|
|
|
|
#if STM32_SYSCLK_SW == RCC_CFGR_SW_PLL
|
|
|
|
/* Set the PLL divider and multiplier. NOTE: The PLL needs to be disabled
|
|
* to do these operation. We know this is the case here because pll_reset()
|
|
* was previously called by stm32_clockconfig().
|
|
*/
|
|
|
|
regval = getreg32(STM32_RCC_CFGR);
|
|
regval &= ~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLMUL_MASK | RCC_CFGR_PLLDIV_MASK);
|
|
regval |= (STM32_CFGR_PLLSRC | STM32_CFGR_PLLMUL | STM32_CFGR_PLLDIV);
|
|
putreg32(regval, STM32_RCC_CFGR);
|
|
|
|
/* Enable the PLL */
|
|
|
|
regval = getreg32(STM32_RCC_CR);
|
|
regval |= RCC_CR_PLLON;
|
|
putreg32(regval, STM32_RCC_CR);
|
|
|
|
/* Wait until the PLL is ready */
|
|
|
|
while ((getreg32(STM32_RCC_CR) & RCC_CR_PLLRDY) == 0);
|
|
|
|
#endif
|
|
|
|
/* Select the system clock source (probably the PLL) */
|
|
|
|
regval = getreg32(STM32_RCC_CFGR);
|
|
regval &= ~RCC_CFGR_SW_MASK;
|
|
regval |= STM32_SYSCLK_SW;
|
|
putreg32(regval, STM32_RCC_CFGR);
|
|
|
|
/* Wait until the selected source is used as the system clock source */
|
|
|
|
while ((getreg32(STM32_RCC_CFGR) & RCC_CFGR_SWS_MASK) != STM32_SYSCLK_SWS);
|
|
|
|
#if defined(CONFIG_STM32_IWDG) || \
|
|
defined(CONFIG_STM32_RTC_LSICLOCK) || defined(CONFIG_LCD_LSICLOCK)
|
|
/* Low speed internal clock source LSI
|
|
*
|
|
* TODO: There is another case where the LSI needs to
|
|
* be enabled: if the MCO pin selects LSI as source.
|
|
*/
|
|
|
|
stm32_rcc_enablelsi();
|
|
|
|
#endif
|
|
|
|
#if defined(CONFIG_STM32_RTC_LSECLOCK) || defined(CONFIG_LCD_LSECLOCK)
|
|
/* Low speed external clock source LSE
|
|
*
|
|
* TODO: There is another case where the LSE needs to
|
|
* be enabled: if the MCO pin selects LSE as source.
|
|
*
|
|
* TODO: There is another case where the LSE needs to
|
|
* be enabled: if TIM9-10 Channel 1 selects LSE as input.
|
|
*
|
|
* TODO: There is another case where the LSE needs to
|
|
* be enabled: if TIM10-11 selects LSE as ETR Input.
|
|
*
|
|
*/
|
|
|
|
stm32_rcc_enablelse();
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/****************************************************************************
|
|
* Name: rcc_enableperiphals
|
|
****************************************************************************/
|
|
|
|
static inline void rcc_enableperipherals(void)
|
|
{
|
|
rcc_enableahb();
|
|
rcc_enableapb2();
|
|
rcc_enableapb1();
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Public Functions
|
|
****************************************************************************/
|