nuttx/drivers/can/sja1000.c
Richard Tucker 6953814425 drivers/can/sja1000: fix Rx buffer pointer issue
When initialising the SJA1000 peripheral on some implementations
(SJA1000_FDTOL), "releasing" the buffer when the Rx buffer is empty
causes a buffer pointer misalignment.

On peripheral initialise, remove the flag to "release" the buffer.
This should be safe for all systems using the SJA1000 CAN controller
as a "reset" to the peripheral clears the Rx FIFO.
2024-06-17 15:25:45 +08:00

1173 lines
34 KiB
C

/****************************************************************************
* drivers/can/sja1000.c
*
* SJA1000 CAN driver based on esp32c3_twai.c
*
* License header retained from original source.
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <assert.h>
#include <debug.h>
#include <endian.h>
#include <errno.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <nuttx/arch.h>
#include <nuttx/can/can.h>
#include <nuttx/mutex.h>
#include <nuttx/signal.h>
#include <nuttx/spinlock.h>
#include <nuttx/can/sja1000.h>
#include "sja1000.h"
#include <nuttx/can.h>
#ifdef CONFIG_CAN_SJA1000
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration
* ************************************************************/
#if defined(CONFIG_CAN_SJA1000_DEBUG)
#define cantrace _info
#else
#define cantrace _none
#endif /* CONFIG_CAN_SJA1000_DEBUG */
/* Default values written to various registers on initialization */
#define SJA1000_INIT_TEC 0
#define SJA1000_INIT_REC 0
#define SJA1000_INIT_EWL 96
#define SJA1000_ACCEPTANCE_CODE 0x0 /* 32-bit address to match */
#define SJA1000_ACCEPTANCE_MASK 0xffffffff /* 32-bit address mask */
/****************************************************************************
* Private Types
****************************************************************************/
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* SJA1000 Register access */
#ifdef CONFIG_CANBUS_REGDEBUG
static void sja1000_printreg(uint32_t addr, uint32_t value);
#endif
/* SJA1000 methods */
static void sja1000_reset(struct can_dev_s *dev);
static int sja1000_setup(struct can_dev_s *dev);
static void sja1000_shutdown(struct can_dev_s *dev);
static void sja1000_rxint(struct can_dev_s *dev, bool enable);
static void sja1000_txint(struct can_dev_s *dev, bool enable);
static int sja1000_ioctl(struct can_dev_s *dev, int cmd, unsigned long arg);
static int sja1000_remoterequest(struct can_dev_s *dev, uint16_t id);
static int sja1000_send(struct can_dev_s *dev, struct can_msg_s *msg);
static bool sja1000_txready(struct can_dev_s *dev);
static bool sja1000_txempty(struct can_dev_s *dev);
/* SJA1000 interrupts */
static int sja1000_interrupt(FAR struct sja1000_config_s *config,
void *arg);
/* SJA1000 acceptance filter */
static void sja1000_set_acc_filter(struct sja1000_dev_s *priv,
uint32_t code, uint32_t mask,
bool single_filter);
/* SJA1000 bit-timing initialization */
static int sja1000_baud_rate(struct sja1000_dev_s *priv, int rate,
int clock, int sjw, int sampl_pt, int flags);
/****************************************************************************
* Private Data
****************************************************************************/
static const struct can_ops_s g_sja1000ops =
{
.co_reset = sja1000_reset,
.co_setup = sja1000_setup,
.co_shutdown = sja1000_shutdown,
.co_rxint = sja1000_rxint,
.co_txint = sja1000_txint,
.co_ioctl = sja1000_ioctl,
.co_remoterequest = sja1000_remoterequest,
.co_send = sja1000_send,
.co_txready = sja1000_txready,
.co_txempty = sja1000_txempty,
};
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: sja1000_printreg
*
* Description:
* Print the value read from a register.
*
* Input Parameters:
* addr - The register address
* value - The register value
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_CANBUS_REGDEBUG
static void sja1000_printreg(uint32_t addr, uint32_t value)
{
static uint32_t prevaddr;
static uint32_t preval;
static uint32_t count;
/* Is this the same value that we read from the same register last time?
* Are we polling the register? If so, suppress some of the output.
*/
if (addr == prevaddr && value == preval)
{
if (count == 0xffffffff || ++count > 3)
{
if (count == 4)
{
caninfo("...\n");
}
return;
}
}
/* No this is a new address or value */
else
{
/* Did we print "..." for the previous value? */
if (count > 3)
{
/* Yes.. then show how many times the value repeated */
caninfo("[repeats %" PRId32 " more times]\n", count - 3);
}
/* Save the new address, value, and count */
prevaddr = addr;
preval = value;
count = 1;
}
/* Show the register value read */
caninfo("%08" PRIx32 "->%08" PRIx32 "\n", addr, value);
}
#endif /* CONFIG_CANBUS_REGDEBUG */
/****************************************************************************
* Name: sja1000_reset
*
* Description:
* Reset the SJA1000 device. Called early to initialize the hardware.
*This function is called, before litex_sja1000_setup() and on error
*conditions.
*
* Input Parameters:
* dev - An instance of the "upper half" CAN driver state structure.
*
* Returned Value:
* None
*
****************************************************************************/
static void sja1000_reset(struct can_dev_s *dev)
{
struct sja1000_dev_s *priv = (struct sja1000_dev_s *)dev->cd_priv;
struct sja1000_config_s *config = priv->config;
uint8_t port = config->port;
irqstate_t flags;
int ret;
caninfo("SJA1000 Device %" PRIu8 "\n", port);
#ifdef CONFIG_ARCH_HAVE_MULTICPU
flags = spin_lock_irqsave(&priv->lock);
#else
flags = enter_critical_section();
#endif /* CONFIG_ARCH_HAVE_MULTICPU */
/* Disable the SJA1000 and stop ongoing transmissions */
uint32_t mode_value = SJA1000_RESET_MODE_M | SJA1000_LISTEN_ONLY_MODE_M;
sja1000_putreg(priv,
SJA1000_MODE_REG, mode_value); /* Enter Reset Mode */
sja1000_modifyreg32(priv,
SJA1000_CLOCK_DIVIDER_REG, 0, SJA1000_EXT_MODE_M);
sja1000_putreg(priv, SJA1000_INT_ENA_REG, 0); /* Disable interrupts */
sja1000_getreg(priv, SJA1000_STATUS_REG); /* Clear status bits */
sja1000_putreg(priv,
SJA1000_TX_ERR_CNT_REG, SJA1000_INIT_TEC); /* TEC */
sja1000_putreg(priv,
SJA1000_RX_ERR_CNT_REG, SJA1000_INIT_REC); /* REC */
sja1000_putreg(priv,
SJA1000_ERR_WARNING_LIMIT_REG, SJA1000_INIT_EWL); /* EWL */
sja1000_set_acc_filter(
priv, SJA1000_ACCEPTANCE_CODE, SJA1000_ACCEPTANCE_MASK, true);
/* Set bit timing */
ret = sja1000_baud_rate(priv, config->bitrate, config->clk_freq,
config->sjw, config->samplep, 0);
if (ret != OK)
{
canerr("ERROR: Failed to set bit timing: %d\n", ret);
}
/* Restart the SJA1000 */
if (config->loopback)
{
/* Leave Reset Mode, enter Test Mode */
sja1000_putreg(priv, SJA1000_MODE_REG, SJA1000_SELF_TEST_MODE_M);
}
else
{
/* Leave Reset Mode */
sja1000_putreg(priv, SJA1000_MODE_REG, 0);
}
/* Abort transmission and clear overrun.
* Command register can only be modified when in Operation Mode.
*/
sja1000_write_cmdreg(priv, SJA1000_ABORT_TX_M | SJA1000_CLR_OVERRUN_M);
#ifdef CONFIG_ARCH_HAVE_MULTICPU
spin_unlock_irqrestore(&priv->lock, flags);
#else
leave_critical_section(flags);
#endif /* CONFIG_ARCH_HAVE_MULTICPU */
}
/****************************************************************************
* Name: sja1000_setup
*
* Description:
* Configure the SJA1000. This method is called the first time that the
*SJA1000 device is opened. This will occur when the port is first opened.
* This setup includes configuring and attaching SJA1000 interrupts.
*
* Input Parameters:
* dev - An instance of the "upper half" CAN driver state structure.
*
* Returned Value:
* Zero on success; a negated errno on failure
*
****************************************************************************/
static int sja1000_setup(struct can_dev_s *dev)
{
struct sja1000_dev_s *priv = (struct sja1000_dev_s *)dev->cd_priv;
struct sja1000_config_s *config = priv->config;
uint8_t port = config->port;
irqstate_t flags;
int ret = OK;
caninfo("SJA1000 (%" PRIu8 ")\n", port);
#ifdef CONFIG_ARCH_HAVE_MULTICPU
flags = spin_lock_irqsave(&priv->lock);
#else
flags = enter_critical_section();
#endif /* CONFIG_ARCH_HAVE_MULTICPU */
sja1000_putreg(priv, SJA1000_INT_ENA_REG, SJA1000_DEFAULT_INTERRUPTS);
/* clear latched interrupts */
sja1000_getreg(priv, SJA1000_INT_RAW_REG);
/* Attach the SJA1000 interrupts and handler. */
ret = config->attach(
config, (sja1000_handler_t)sja1000_interrupt, (FAR void *)dev);
if (ret < 0)
{
canerr("ERROR: Failed to attach to IRQ Handler!\n");
return ret;
}
#ifdef CONFIG_ARCH_HAVE_MULTICPU
spin_unlock_irqrestore(&priv->lock, flags);
#else
leave_critical_section(flags);
#endif /* CONFIG_ARCH_HAVE_MULTICPU */
return ret;
}
/****************************************************************************
* Name: sja1000_shutdown
*
* Description:
* Disable the SJA1000. This method is called when the SJA1000 device is
*closed. This method reverses the operation the setup method.
*
* Input Parameters:
* dev - An instance of the "upper half" CAN driver state structure.
*
* Returned Value:
* None
*
****************************************************************************/
static void sja1000_shutdown(struct can_dev_s *dev)
{
int ret;
struct sja1000_dev_s *priv = (struct sja1000_dev_s *)dev->cd_priv;
struct sja1000_config_s *config = priv->config;
uint8_t port = config->port;
cantrace("shutdown SJA1000 (%" PRIu8 ")\n", port);
/* Detach the SJA1000 interrupts and handler. */
ret = config->detach(config);
if (ret < 0)
{
canerr("ERROR: Failed to detach from IRQ Handler!\n");
}
}
/****************************************************************************
* Name: sja1000_rxint
*
* Description:
* Call to enable or disable RX interrupts.
*
* Input Parameters:
* dev - An instance of the "upper half" CAN driver state structure.
* enable - Enable or disable receive interrupt.
*
* Returned Value:
* None
*
****************************************************************************/
static void sja1000_rxint(struct can_dev_s *dev, bool enable)
{
struct sja1000_dev_s *priv = (struct sja1000_dev_s *)dev->cd_priv;
struct sja1000_config_s *config = priv->config;
uint8_t port = config->port;
uint32_t regval;
irqstate_t flags;
cantrace("SJA1000 (%" PRIu8 ") enable: %d\n", port, enable);
/* The INT_ENA register is also modified from the interrupt handler,
* so we have to protect this code section.
*/
#ifdef CONFIG_ARCH_HAVE_MULTICPU
flags = spin_lock_irqsave(&priv->lock);
#else
flags = enter_critical_section();
#endif /* CONFIG_ARCH_HAVE_MULTICPU */
regval = sja1000_getreg(priv, SJA1000_INT_ENA_REG);
if (enable)
{
regval |= SJA1000_RX_INT_ENA_M;
}
else
{
regval &= ~SJA1000_RX_INT_ENA_M;
}
sja1000_putreg(priv, SJA1000_INT_ENA_REG, regval);
#ifdef CONFIG_ARCH_HAVE_MULTICPU
spin_unlock_irqrestore(&priv->lock, flags);
#else
leave_critical_section(flags);
#endif /* CONFIG_ARCH_HAVE_MULTICPU */
}
/****************************************************************************
* Name: sja1000_txint
*
* Description:
* Call to enable or disable TX interrupts.
*
* Input Parameters:
* dev - An instance of the "upper half" CAN driver state structure.
* enable - Enable or disable transmit interrupt.
*
* Returned Value:
* None
*
****************************************************************************/
static void sja1000_txint(struct can_dev_s *dev, bool enable)
{
struct sja1000_dev_s *priv = (struct sja1000_dev_s *)dev->cd_priv;
struct sja1000_config_s *config = priv->config;
uint8_t port = config->port;
uint32_t regval;
irqstate_t flags;
cantrace("SJA1000 (%" PRIu8 ") enable: %d\n", port, enable);
/* Only disabling of the TX interrupt is supported here. The TX interrupt
* is automatically enabled just before a message is sent in order to
* avoid lost TX interrupts.
*/
if (!enable)
{
/* TX interrupts are also disabled from the interrupt handler, so we
* have to protect this code section.
*/
#ifdef CONFIG_ARCH_HAVE_MULTICPU
flags = spin_lock_irqsave(&priv->lock);
#else
flags = enter_critical_section();
#endif /* CONFIG_ARCH_HAVE_MULTICPU */
/* Disable all TX interrupts */
regval = sja1000_getreg(priv, SJA1000_INT_ENA_REG);
regval &= ~(SJA1000_TX_INT_ENA_M);
sja1000_putreg(priv, SJA1000_INT_ENA_REG, regval);
#ifdef CONFIG_ARCH_HAVE_MULTICPU
spin_unlock_irqrestore(&priv->lock, flags);
#else
leave_critical_section(flags);
#endif /* CONFIG_ARCH_HAVE_MULTICPU */
}
cantrace("Exiting.\n");
}
/****************************************************************************
* Name: sja1000_ioctl
*
* Description:
* All ioctl calls will be routed through this method
*
* Input Parameters:
* dev - An instance of the "upper half" CAN driver state structure.
* cmd - A ioctl command.
* arg - A ioctl argument.
*
* Returned Value:
* Zero on success; a negated errno on failure
*
****************************************************************************/
static int sja1000_ioctl(struct can_dev_s *dev, int cmd, unsigned long arg)
{
struct sja1000_dev_s *priv = (struct sja1000_dev_s *)dev->cd_priv;
struct sja1000_config_s *config = priv->config;
int ret = -ENOTTY;
uint8_t port = config->port;
cantrace("SJA1000 (%" PRIu8 ") cmd=%04x arg=%lu\n", port, cmd, arg);
/* Handle the command */
switch (cmd)
{
/* CANIOC_GET_BITTIMING:
* Description: Return the current bit timing settings
* Argument: A pointer to a write-able instance of struct
* canioc_bittiming_s in which current bit timing
* values will be returned.
* Returned Value: Zero (OK) is returned on success. Otherwise -1
* (ERROR) is returned with the errno variable set
* to indicate the nature of the error.
* Dependencies: None
*/
case CANIOC_GET_BITTIMING:
{
struct canioc_bittiming_s *bt = (struct canioc_bittiming_s *)arg;
uint32_t timing0;
uint32_t timing1;
uint32_t brp;
DEBUGASSERT(bt != NULL);
timing0 = sja1000_getreg(priv, SJA1000_BUS_TIMING_0_REG);
timing1 = sja1000_getreg(priv, SJA1000_BUS_TIMING_1_REG);
brp = ((timing0 & SJA1000_BAUD_PRESC_M) + 1) * 2;
bt->bt_sjw = ((timing0 & SJA1000_SYNC_JUMP_WIDTH_M)
>> SJA1000_SYNC_JUMP_WIDTH_S)
+ 1;
bt->bt_tseg1
= ((timing1 & SJA1000_TIME_SEG1_M) >> SJA1000_TIME_SEG1_S)
+ 1;
bt->bt_tseg2
= ((timing1 & SJA1000_TIME_SEG2_M) >> SJA1000_TIME_SEG2_S)
+ 1;
bt->bt_baud = config->clk_freq
/ (brp * (bt->bt_tseg1 + bt->bt_tseg2 + 1));
cantrace("Retrieved baud rate. TS1: %" PRId8 " TS2: %" PRId8
" BRP: %" PRId32 "\n",
bt->bt_tseg1, bt->bt_tseg2, brp);
cantrace("timing0: 0x%" PRIx32 ", timing1: 0x%" PRIx32 " Baud: "
"%" PRId32
"\n",
timing0, timing1, bt->bt_baud);
ret = OK;
}
break;
/* Unsupported/unrecognized command */
default:
canerr("ERROR: Unrecognized command: %04x\n", cmd);
break;
}
return ret;
}
static int sja1000_remoterequest(struct can_dev_s *dev, uint16_t id)
{
canwarn("Remote request not implemented\n");
return -ENOSYS;
}
/****************************************************************************
* Name: sja1000_send
*
* Description:
* Send one SJA1000 message.
*
* One SJA1000-message consists of a maximum of 10 bytes. A message is
* composed of at least the first 2 bytes (when there are no data bytes).
*
* Byte 0: Bits 0-7: Bits 3-10 of the 11-bit SJA1000 identifier
* Byte 1: Bits 5-7: Bits 0-2 of the 11-bit SJA1000 identifier
* Bit 4: Remote Transmission Request (RTR)
* Bits 0-3: Data Length Code (DLC)
* Bytes 2-10: SJA1000 data
*
* Input Parameters:
* dev - An instance of the "upper half" CAN driver state structure.
* msg - A message to send.
*
* Returned Value:
* Zero on success; a negated errno on failure
*
****************************************************************************/
static int sja1000_send(struct can_dev_s *dev, struct can_msg_s *msg)
{
struct sja1000_dev_s *priv = (struct sja1000_dev_s *)dev->cd_priv;
struct sja1000_config_s *config = priv->config;
uint32_t regval;
uint32_t i;
uint32_t len;
uint32_t id;
uint32_t frame_info;
irqstate_t flags;
uint8_t port = config->port;
int ret = OK;
cantrace("SJA1000 (%" PRIu8 ") ID: %" PRIu32 " DLC: %" PRIu8 "\n", port,
(uint32_t)msg->cm_hdr.ch_id, msg->cm_hdr.ch_dlc);
len = (uint32_t)msg->cm_hdr.ch_dlc;
if (len > CAN_MAXDATALEN)
len = CAN_MAXDATALEN;
frame_info = len;
if (msg->cm_hdr.ch_rtr)
{
frame_info |= (1 << 6);
}
#ifdef CONFIG_ARCH_HAVE_MULTICPU
flags = spin_lock_irqsave(&priv->lock);
#else
flags = enter_critical_section();
#endif /* CONFIG_ARCH_HAVE_MULTICPU */
/* Make sure that TX interrupts are enabled BEFORE sending the
* message.
*
* NOTE: The INT_ENA is also modified from the interrupt handler, but the
* following is safe because interrupts are disabled here.
*/
regval = sja1000_getreg(priv, SJA1000_INT_ENA_REG);
regval |= SJA1000_TX_INT_ENA_M;
sja1000_putreg(priv, SJA1000_INT_ENA_REG, regval);
/* Set up the transfer */
#ifdef CONFIG_CAN_EXTID
if (msg->cm_hdr.ch_extid)
{
/* The provided ID should be 29 bits */
id = (uint32_t)msg->cm_hdr.ch_id;
DEBUGASSERT((id & ~CAN_MAX_EXTMSGID) == 0);
frame_info |= (1 << 7);
sja1000_putreg(priv, SJA1000_DATA_0_REG, frame_info);
id <<= 3;
sja1000_putreg(priv, SJA1000_DATA_4_REG, id & 0xff);
id >>= 8;
sja1000_putreg(priv, SJA1000_DATA_3_REG, id & 0xff);
id >>= 8;
sja1000_putreg(priv, SJA1000_DATA_2_REG, id & 0xff);
id >>= 8;
sja1000_putreg(priv, SJA1000_DATA_1_REG, id & 0xff);
for (i = 0; i < len; i++)
{
sja1000_putreg(priv,
(SJA1000_DATA_5_REG + i), msg->cm_data[i]);
}
}
else
#endif
{
/* The provided ID should be 11 bits */
id = (uint32_t)msg->cm_hdr.ch_id;
DEBUGASSERT((id & ~CAN_MAX_STDMSGID) == 0);
sja1000_putreg(priv, SJA1000_DATA_0_REG, frame_info);
id <<= 5;
sja1000_putreg(priv, SJA1000_DATA_1_REG, (id >> 8) & 0xff);
sja1000_putreg(priv, SJA1000_DATA_2_REG, id & 0xff);
for (i = 0; i < len; i++)
{
sja1000_putreg(priv,
(SJA1000_DATA_3_REG + i), msg->cm_data[i]);
}
}
/* Send the message */
if (config->loopback)
{
sja1000_putreg(priv, SJA1000_CMD_REG,
SJA1000_SELF_RX_REQ_M | SJA1000_ABORT_TX_M);
}
else
{
sja1000_putreg(priv, SJA1000_CMD_REG, SJA1000_TX_REQ_M);
}
#ifdef CONFIG_ARCH_HAVE_MULTICPU
spin_unlock_irqrestore(&priv->lock, flags);
#else
leave_critical_section(flags);
#endif /* CONFIG_ARCH_HAVE_MULTICPU */
return ret;
}
/****************************************************************************
* Name: sja1000_txready
*
* Description:
* Return true if the SJA1000 hardware can accept another TX message.
*
* Input Parameters:
* dev - An instance of the "upper half" CAN driver state structure.
*
* Returned Value:
* True if the SJA1000 hardware is ready to accept another TX message.
*
****************************************************************************/
static bool sja1000_txready(struct can_dev_s *dev)
{
struct sja1000_dev_s *priv = dev->cd_priv;
struct sja1000_config_s *config = priv->config;
uint8_t port = config->port;
uint32_t regval = sja1000_getreg(priv, SJA1000_STATUS_REG);
caninfo("SJA1000 (%" PRIu8 ") txready: %d\n", port,
((regval & SJA1000_TX_BUF_ST_M) != 0));
return ((regval & SJA1000_TX_BUF_ST_M) != 0);
}
/****************************************************************************
* Name: sja1000_txempty
*
* Description:
* Return true if all message have been sent. If for example, the SJA1000
* hardware implements FIFOs, then this would mean the transmit FIFO is
* empty. This method is called when the driver needs to make sure that
* all characters are "drained" from the TX hardware before calling
* co_shutdown().
*
* Input Parameters:
* dev - An instance of the "upper half" CAN driver state structure.
*
* Returned Value:
* True if there are no pending TX transfers in the SJA1000 hardware.
*
****************************************************************************/
static bool sja1000_txempty(struct can_dev_s *dev)
{
struct sja1000_dev_s *priv = dev->cd_priv;
struct sja1000_config_s *config = priv->config;
uint8_t port = config->port;
uint32_t regval = sja1000_getreg(priv, SJA1000_STATUS_REG);
caninfo("SJA1000 (%" PRIu8 ") txempty: %d\n", port,
((regval & SJA1000_TX_BUF_ST_M) != 0));
return ((regval & SJA1000_TX_BUF_ST_M) != 0);
}
/****************************************************************************
* Name: sja1000_interrupt
*
* Description:
* SJA1000 RX/TX interrupt handler
*
* Input Parameters:
* irq - The IRQ number of the interrupt.
* context - The register state save array at the time of the interrupt.
* arg - The pointer to driver structure.
*
* Returned Value:
* Zero on success; a negated errno on failure
*
****************************************************************************/
static int sja1000_interrupt(FAR struct sja1000_config_s *config, void *arg)
{
#ifdef CONFIG_CAN_SJA1000
struct can_dev_s *dev = (struct can_dev_s *)arg;
struct sja1000_dev_s *priv = dev->cd_priv;
struct can_hdr_s hdr;
uint8_t data[8];
uint32_t frame_info;
uint32_t len;
uint32_t datastart;
uint32_t regval;
uint32_t i;
/* Read the interrupt register results in clearing bits */
regval = sja1000_getreg(priv, SJA1000_INT_RAW_REG);
cantrace("Entered. Regval = 0x%" PRIx32 "\n", regval);
/* Check for a receive interrupt */
if ((regval & SJA1000_RX_INT_ST_M) != 0)
{
memset(&hdr, 0, sizeof(hdr));
memset(data, 0, sizeof(data));
frame_info = sja1000_getreg(priv, SJA1000_DATA_0_REG);
/* Construct the SJA1000 header */
if (frame_info & (1 << 6))
{
hdr.ch_rtr = 1;
}
#ifdef CONFIG_CAN_EXTID
if (frame_info & (1 << 7))
{
/* The provided ID should be 29 bits */
hdr.ch_extid = 1;
hdr.ch_id = (sja1000_getreg(priv, SJA1000_DATA_1_REG) << 21)
+ (sja1000_getreg(priv, SJA1000_DATA_2_REG) << 13)
+ (sja1000_getreg(priv, SJA1000_DATA_3_REG) << 5)
+ (sja1000_getreg(priv, SJA1000_DATA_4_REG) >> 3);
datastart = SJA1000_DATA_5_REG;
}
else
#endif /* CONFIG_CAN_EXTID */
{
/* The provided ID should be 11 bits */
hdr.ch_id = (sja1000_getreg(priv, SJA1000_DATA_1_REG) << 3)
+ (sja1000_getreg(priv, SJA1000_DATA_2_REG) >> 5);
datastart = SJA1000_DATA_3_REG;
}
len = frame_info & 0xf;
if (len > CAN_MAXDATALEN)
{
len = CAN_MAXDATALEN;
}
hdr.ch_dlc = len;
for (i = 0; i < len; i++)
{
data[i] = sja1000_getreg(priv, (datastart + i));
}
/* Release the receive buffer */
sja1000_putreg(priv, SJA1000_CMD_REG, SJA1000_RELEASE_BUF_M);
#ifdef CONFIG_CAN_ERRORS
hdr.ch_error = 0; /* Error reporting not supported */
#endif /* CONFIG_CAN_ERRORS */
can_receive(dev, &hdr, data);
}
/* Check for TX buffer complete */
if ((regval & SJA1000_TX_INT_ST_M) != 0)
{
/* Disable all further TX buffer interrupts */
regval = sja1000_getreg(priv, SJA1000_INT_ENA_REG);
regval &= ~SJA1000_TX_INT_ENA_M;
sja1000_putreg(priv, SJA1000_INT_ENA_REG, regval);
/* Indicate that the TX is done and a new TX buffer is available */
can_txdone(dev);
}
#endif /* CONFIG_CAN_SJA1000 */
return OK;
}
/****************************************************************************
* Name: sja1000_set_acc_filter
*
* Description:
* Call to set acceptance filter.
* Must be called in reset mode.
*
* Input Parameters:
* priv - Private SJA1000 context
* code - Acceptance Code.
* mask - Acceptance Mask.
* single_filter - Whether to enable single filter mode.
*
* Returned Value:
* None
*
****************************************************************************/
static void sja1000_set_acc_filter(struct sja1000_dev_s *priv,
uint32_t code, uint32_t mask,
bool single_filter)
{
uint32_t regval;
uint32_t code_swapped = __builtin_bswap32(code);
uint32_t mask_swapped = __builtin_bswap32(mask);
regval = sja1000_getreg(priv, SJA1000_MODE_REG);
if (single_filter)
{
regval |= SJA1000_RX_FILTER_MODE_M;
}
else
{
regval &= ~(SJA1000_RX_FILTER_MODE_M);
}
sja1000_putreg(priv, SJA1000_MODE_REG, regval);
for (int i = 0; i < 4; i++)
{
sja1000_putreg(priv, (SJA1000_DATA_0_REG + i),
((code_swapped >> (i * 8)) & 0xff));
sja1000_putreg(priv, (SJA1000_DATA_4_REG + i),
((mask_swapped >> (i * 8)) & 0xff));
}
}
/****************************************************************************
* Name: sja1000_baud_rate
*
* Description:
* Set the CAN bus timing registers based on the configured bit-rate and
* sample point position.
*
* The bit timing logic monitors the serial bus-line and performs sampling
* and adjustment of the sample point by synchronizing on the start-bit edge
* and resynchronizing on the following edges.
*
* Its operation may be explained simply by splitting nominal bit time into
* three segments as follows:
*
* 1. Synchronization segment (SYNC_SEG): a bit change is expected to occur
* within this time segment. It has a fixed length of one time quantum
* (1 x tCAN).
* 2. Bit segment 1 (BS1): defines the location of the sample point. It
* includes the PROP_SEG and PHASE_SEG1 of the CAN standard. Its duration
* is programmable between 1 and 16 time quanta but may be automatically
* lengthened to compensate for positive phase drifts due to differences
* in the frequency of the various nodes of the network.
* 3. Bit segment 2 (BS2): defines the location of the transmit point. It
* represents the PHASE_SEG2 of the CAN standard. Its duration is
* programmable between 1 and 8 time quanta but may also be automatically
* shortened to compensate for negative phase drifts.
*
* Pictorially:
*
* |<----------------- NOMINAL BIT TIME ----------------->|
* |<- SYNC_SEG ->|<------ BS1 ------>|<------ BS2 ------>|
* |<---- Tq ---->|<----- Tbs1 ------>|<----- Tbs2 ------>|
*
* Where
* Tbs1 is the duration of the BS1 segment
* Tbs2 is the duration of the BS2 segment
* Tq is the "Time Quantum"
*
* Relationships:
*
* baud = 1 / bit_time
* bit_time = Tq + Tbs1 + Tbs2
* Tbs1 = Tq * ts1
* Tbs2 = Tq * ts2
* Tq = brp * Tcan
*
* Where:
* Tcan is the period of the APB clock
*
* Input Parameters:
* priv - A reference to the CAN block status
*
* Returned Value:
* Zero on success; a negated errno on failure
*
****************************************************************************/
static int sja1000_baud_rate(struct sja1000_dev_s *priv, int rate,
int clock, int sjw, int sampl_pt, int flags)
{
struct sja1000_config_s *config = priv->config;
const struct can_bittiming_const_s *timing = config->bittiming_const;
int best_error = 1000000000;
int error;
int best_tseg = 0;
int best_brp = 0;
int best_rate = 0;
int brp = 0;
int tseg = 0;
int tseg1 = 0;
int tseg2 = 0;
uint32_t timing0;
uint32_t timing1;
/* tseg even = round down, odd = round up */
for (tseg = (0 + 0 + 2) * 2;
tseg <= (timing->tseg2_max + timing->tseg1_max + 2) * 2 + 1; tseg++)
{
brp = clock / ((1 + tseg / 2) * rate) + tseg % 2;
if (brp == 0 || brp > 64)
{
continue;
}
error = rate - clock / (brp * (1 + tseg / 2));
if (error < 0)
{
error = -error;
}
if (error <= best_error)
{
best_error = error;
best_tseg = tseg / 2;
best_brp = brp;
best_rate = clock / (brp * (1 + tseg / 2));
}
}
if (best_error && (rate / best_error < 10))
{
canerr(
"baud rate %d is not possible with %d Hz clock\n", rate, clock);
canerr("%d bps. brp=%d, best_tseg=%d, tseg1=%d, tseg2=%d\n",
best_rate, best_brp, best_tseg, tseg1, tseg2);
return -EINVAL;
}
tseg2 = best_tseg - (sampl_pt * (best_tseg + 1)) / 100 + 1;
if (tseg2 < 0)
{
tseg2 = 0;
}
if (tseg2 > timing->tseg2_max)
{
tseg2 = timing->tseg2_max;
}
tseg1 = best_tseg - tseg2;
if (tseg1 > timing->tseg1_max)
{
tseg1 = timing->tseg1_max;
tseg2 = best_tseg - tseg1;
}
caninfo("Setting baud rate. TS1: %d TS2: %d BRP: %d\n", tseg1, tseg2,
best_brp);
/* Configure bit timing */
timing0 = ((best_brp - 1) / 2) & SJA1000_BAUD_PRESC_M;
timing0 |= ((sjw - 1) << SJA1000_SYNC_JUMP_WIDTH_S)
& SJA1000_SYNC_JUMP_WIDTH_M;
timing1 = (tseg1 - 1) & SJA1000_TIME_SEG1_M;
timing1 |= ((tseg2 - 1) << SJA1000_TIME_SEG2_S) & SJA1000_TIME_SEG2_M;
if (config->triple_sample)
{
/* The bus is sampled 3 times (recommended for low to medium speed
* buses to spikes on the bus-line).
*/
timing1 |= (config->triple_sample << SJA1000_TIME_SAMP_S)
& SJA1000_TIME_SAMP_M;
}
cantrace("Writing to BTR0, BTR1: timing0: 0x%" PRIx32 " timing1: "
"0x%" PRIx32 "\n",
timing0, timing1);
sja1000_putreg(priv, SJA1000_BUS_TIMING_1_REG, timing1);
sja1000_putreg(priv, SJA1000_BUS_TIMING_0_REG, timing0);
#ifdef CONFIG_CANBUS_REGDEBUG
timing1 = sja1000_getreg(priv, SJA1000_BUS_TIMING_1_REG);
timing0 = sja1000_getreg(priv, SJA1000_BUS_TIMING_0_REG);
caninfo("Read-verify: timing0: 0x%" PRIx32 " timing1: 0x%" PRIx32 "\n",
timing0, timing1);
#endif /* CONFIG_CANBUS_REGDEBUG */
return OK;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: sja1000_instantiate
*
* Description:
* Initialize the selected SJA1000 CAN Bus Controller
*
* Input Parameters:
* priv - An instance of the "lower half" CAN driver state structure.
*
* Returned Value:
* Valid CAN device structure reference on success; a NULL on failure
*
****************************************************************************/
FAR struct can_dev_s *sja1000_instantiate(FAR struct sja1000_dev_s *priv)
{
struct sja1000_config_s *config = priv->config;
FAR struct can_dev_s *dev;
irqstate_t flags;
DEBUGASSERT(dev);
DEBUGASSERT(priv);
DEBUGASSERT(config);
cantrace("Starting sja1000_instantiate()!\n");
/* Allocate a CAN Device structure */
dev = kmm_zalloc(sizeof(struct can_dev_s));
if (dev == NULL)
{
canerr("ERROR: Failed to allocate instance of can_dev_s!\n");
return NULL;
}
#ifdef CONFIG_ARCH_HAVE_MULTICPU
flags = spin_lock_irqsave(&priv->lock);
#else
flags = enter_critical_section();
#endif /* CONFIG_ARCH_HAVE_MULTICPU */
#ifdef CONFIG_ARCH_HAVE_MULTICPU
priv->lock = SP_UNLOCKED;
#endif /* CONFIG_ARCH_HAVE_MULTICPU */
dev->cd_ops = &g_sja1000ops;
dev->cd_priv = (FAR void *)priv;
#ifdef CONFIG_ARCH_HAVE_MULTICPU
spin_unlock_irqrestore(&priv->lock, flags);
#else
leave_critical_section(flags);
#endif /* CONFIG_ARCH_HAVE_MULTICPU */
/* Reset chip */
sja1000_reset(dev);
return dev;
}
#endif /* CONFIG_CAN_SJA1000 */