8defb843aa
## Summary A lot of linker scripts were listed twice, once for unix, once for windows. This PR cleans up the logic so they're only listed once. ## Impact Any opportunity to use a single source of truth and reduce lines of code is a win! ## Testing CI will test all build |
||
---|---|---|
.. | ||
configs | ||
include | ||
scripts | ||
src | ||
Kconfig | ||
README.txt |
README ====== This directory holds the port to the NXP UCANS32K146 boards. There exist a few different revisions/variants of this board. All variants with the S32K146 microcontroller are supported. Contents ======== o Status o Serial Console o LEDs and Buttons o Thread-Aware Debugging with Eclipse o Configurations Status ====== 2020-01-23: Configuration created (copy-paste from S32K146EVB). Tested: Serial console, I2C, SPI. 2020-06-15: Added FlexCAN driver with SocketCAN support to the S32K1XX arch, which has been tested with the UCANS32K146 board as well. 2020-06-16: Added Emulated EEPROM driver and initialization. Serial Console ============== By default, the serial console will be provided on the DCD-LZ UART (available on the 7-pin DCD-LZ debug connector P6): OpenSDA UART RX PTC6 (LPUART1_RX) OpenSDA UART TX PTC7 (LPUART1_TX) USB drivers for the PEmicro CDC Serial Port are available here: http://www.pemicro.com/opensda/ LEDs and Buttons ================ LEDs ---- The UCANS32K146 has one RGB LED: RedLED PTD15 (FTM0 CH0) GreenLED PTD16 (FTM0 CH1) BlueLED PTD0 (FTM0 CH2) An output of '0' illuminates the LED. If CONFIG_ARCH_LEDS is not defined, then the user can control the LEDs in any way. The following definitions are used to access individual RGB components (see ucans32k146.h): GPIO_LED_R GPIO_LED_G GPIO_LED_B The RGB components could, alternatively, be controlled through PWM using the common RGB LED driver. If CONFIG_ARCH_LEDs is defined, then NuttX will control the LEDs on board the UCANS32K146. The following definitions describe how NuttX controls the LEDs: ==========================================+========+========+========= RED GREEN BLUE ==========================================+========+========+========= LED_STARTED NuttX has been started OFF OFF OFF LED_HEAPALLOCATE Heap has been allocated OFF OFF ON LED_IRQSENABLED Interrupts enabled OFF OFF ON LED_STACKCREATED Idle stack created OFF ON OFF LED_INIRQ In an interrupt (no change) LED_SIGNAL In a signal handler (no change) LED_ASSERTION An assertion failed (no change) LED_PANIC The system has crashed FLASH OFF OFF LED_IDLE S32K146 in sleep mode (no change) ==========================================+========+========+========= Buttons ------- The UCANS32K146 supports one button: SW3 PTC14 Thread-Aware Debugging with Eclipse =================================== Thread-aware debugging is possible with openocd-nuttx ( https://github.com/sony/openocd-nuttx ) and was tested together with the Eclipse-based S32 Design Studio for Arm: https://www.nxp.com/design/software/development-software/s32-design-studio-ide/s32-design-studio-for-arm:S32DS-ARM NOTE: This method was last tested with NuttX 8.2 and S32DS for Arm 2018.R1. It may not work anymore with recent releases of NuttX and/or S32DS. 1. NuttX should be build with debug symbols enabled. 2. Build OpenOCD as described here (using the same parameters as well): https://micro.ros.org/docs/tutorials/old/debugging/ 3. A s32k146.cfg file is available in the scripts/ folder. Start OpenOCD with the following command (adapt the path info): /usr/local/bin/openocd -f /usr/share/openocd/scripts/interface/jlink.cfg \ -f boards/s32k1xx/ucans32k146/scripts/s32k146.cfg -c init -c "reset halt" 4. Setup a GDB debug session in Eclipse. The resulting debug window shows the NuttX threads. The full stack details can be viewed. Configurations ============== Common Information ------------------ Each UCANS32K146 configuration is maintained in a sub-directory and can be selected as follows: tools/configure.sh ucans32k146:<subdir> Where <subdir> is one of the sub-directories listed in the next paragraph. NOTES (common for all configurations): 1. This configuration uses the mconf-based configuration tool. To change this configuration using that tool, you should: a. Build and install the kconfig-mconf tool. See nuttx/README.txt. Also see additional README.txt files in the NuttX tools repository. b. Execute 'make menuconfig' in nuttx/ in order to start the reconfiguration process. 2. Unless otherwise stated, the serial console used is LPUART1 at 115,200 8N1. This corresponds to the OpenSDA VCOM port. Configuration Sub-directories ----------------------------- nsh: --- Configures the NuttShell (nsh) located at apps/examples/nsh. Support for builtin applications is enabled, but in the base configuration the only application selected is the "Hello, World!" example. can: --- Besides the NuttShell this configuration also enables (Socket)CAN support, as well as I2C and SPI support. It includes the SLCAN and can-utils applications for monitoring and debugging CAN applications.