542 lines
23 KiB
C
542 lines
23 KiB
C
/*****************************************************************************
|
|
* security.c - CC3000 Host Driver Implementation.
|
|
* Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* Neither the name of Texas Instruments Incorporated nor the names of
|
|
* its contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/*****************************************************************************
|
|
* Included Files
|
|
*****************************************************************************/
|
|
|
|
#include <nuttx/wireless/cc3000/security.h>
|
|
|
|
#ifndef CC3000_UNENCRYPTED_SMART_CONFIG
|
|
|
|
/*****************************************************************************
|
|
* Private Data
|
|
*****************************************************************************/
|
|
|
|
// foreward sbox
|
|
|
|
const uint8_t sbox[256] =
|
|
{
|
|
//0 1 2 3 4 5 6 7 8 9 A B C D E F
|
|
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, //0
|
|
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, //1
|
|
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, //2
|
|
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, //3
|
|
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, //4
|
|
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, //5
|
|
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, //6
|
|
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, //7
|
|
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, //8
|
|
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, //9
|
|
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, //A
|
|
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, //B
|
|
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, //C
|
|
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, //D
|
|
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, //E
|
|
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 //F
|
|
};
|
|
|
|
// inverse sbox
|
|
|
|
const uint8_t rsbox[256] =
|
|
{
|
|
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb
|
|
, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb
|
|
, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e
|
|
, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25
|
|
, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92
|
|
, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84
|
|
, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06
|
|
, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b
|
|
, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73
|
|
, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e
|
|
, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b
|
|
, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4
|
|
, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f
|
|
, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef
|
|
, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61
|
|
, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
|
|
};
|
|
|
|
// round constant
|
|
|
|
const uint8_t Rcon[11] =
|
|
{
|
|
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
|
|
};
|
|
|
|
uint8_t aexpandedKey[176];
|
|
|
|
/*****************************************************************************
|
|
* Public Functions
|
|
*****************************************************************************/
|
|
//*****************************************************************************
|
|
//
|
|
//! expandKey
|
|
//!
|
|
//! @param key AES128 key - 16 bytes
|
|
//! @param expandedKey expanded AES128 key
|
|
//!
|
|
//! @return none
|
|
//!
|
|
//! @brief expend a 16 bytes key for AES128 implementation
|
|
//!
|
|
//*****************************************************************************
|
|
|
|
void expandKey(uint8_t *expandedKey,
|
|
uint8_t *key)
|
|
{
|
|
uint16_t ii, buf1;
|
|
|
|
for (ii=0;ii<16;ii++)
|
|
expandedKey[ii] = key[ii];
|
|
|
|
for (ii=1;ii<11;ii++)
|
|
{
|
|
buf1 = expandedKey[ii*16 - 4];
|
|
expandedKey[ii*16 + 0] = sbox[expandedKey[ii*16 - 3]]^expandedKey[(ii-1)*16 + 0]^Rcon[ii];
|
|
expandedKey[ii*16 + 1] = sbox[expandedKey[ii*16 - 2]]^expandedKey[(ii-1)*16 + 1];
|
|
expandedKey[ii*16 + 2] = sbox[expandedKey[ii*16 - 1]]^expandedKey[(ii-1)*16 + 2];
|
|
expandedKey[ii*16 + 3] = sbox[buf1 ]^expandedKey[(ii-1)*16 + 3];
|
|
expandedKey[ii*16 + 4] = expandedKey[(ii-1)*16 + 4]^expandedKey[ii*16 + 0];
|
|
expandedKey[ii*16 + 5] = expandedKey[(ii-1)*16 + 5]^expandedKey[ii*16 + 1];
|
|
expandedKey[ii*16 + 6] = expandedKey[(ii-1)*16 + 6]^expandedKey[ii*16 + 2];
|
|
expandedKey[ii*16 + 7] = expandedKey[(ii-1)*16 + 7]^expandedKey[ii*16 + 3];
|
|
expandedKey[ii*16 + 8] = expandedKey[(ii-1)*16 + 8]^expandedKey[ii*16 + 4];
|
|
expandedKey[ii*16 + 9] = expandedKey[(ii-1)*16 + 9]^expandedKey[ii*16 + 5];
|
|
expandedKey[ii*16 +10] = expandedKey[(ii-1)*16 +10]^expandedKey[ii*16 + 6];
|
|
expandedKey[ii*16 +11] = expandedKey[(ii-1)*16 +11]^expandedKey[ii*16 + 7];
|
|
expandedKey[ii*16 +12] = expandedKey[(ii-1)*16 +12]^expandedKey[ii*16 + 8];
|
|
expandedKey[ii*16 +13] = expandedKey[(ii-1)*16 +13]^expandedKey[ii*16 + 9];
|
|
expandedKey[ii*16 +14] = expandedKey[(ii-1)*16 +14]^expandedKey[ii*16 +10];
|
|
expandedKey[ii*16 +15] = expandedKey[(ii-1)*16 +15]^expandedKey[ii*16 +11];
|
|
}
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! galois_mul2
|
|
//!
|
|
//! @param value argument to multiply
|
|
//!
|
|
//! @return multiplied argument
|
|
//!
|
|
//! @brief multiply by 2 in the galois field
|
|
//!
|
|
//*****************************************************************************
|
|
|
|
uint8_t galois_mul2(uint8_t value)
|
|
{
|
|
if (value>>7)
|
|
{
|
|
value = value << 1;
|
|
return (value^0x1b);
|
|
} else
|
|
return value<<1;
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! aes_encr
|
|
//!
|
|
//! @param[in] expandedKey expanded AES128 key
|
|
//! @param[in/out] state 16 bytes of plain text and cipher text
|
|
//!
|
|
//! @return none
|
|
//!
|
|
//! @brief internal implementation of AES128 encryption.
|
|
//! straight forward aes encryption implementation
|
|
//! first the group of operations
|
|
//! - addRoundKey
|
|
//! - subbytes
|
|
//! - shiftrows
|
|
//! - mixcolums
|
|
//! is executed 9 times, after this addroundkey to finish the 9th
|
|
//! round, after that the 10th round without mixcolums
|
|
//! no further subfunctions to save cycles for function calls
|
|
//! no structuring with "for (....)" to save cycles.
|
|
//!
|
|
//!
|
|
//*****************************************************************************
|
|
|
|
void aes_encr(uint8_t *state, uint8_t *expandedKey)
|
|
{
|
|
uint8_t buf1, buf2, buf3, round;
|
|
|
|
for (round = 0; round < 9; round ++){
|
|
// addroundkey, sbox and shiftrows
|
|
// row 0
|
|
state[ 0] = sbox[(state[ 0] ^ expandedKey[(round*16) ])];
|
|
state[ 4] = sbox[(state[ 4] ^ expandedKey[(round*16) + 4])];
|
|
state[ 8] = sbox[(state[ 8] ^ expandedKey[(round*16) + 8])];
|
|
state[12] = sbox[(state[12] ^ expandedKey[(round*16) + 12])];
|
|
// row 1
|
|
buf1 = state[1] ^ expandedKey[(round*16) + 1];
|
|
state[ 1] = sbox[(state[ 5] ^ expandedKey[(round*16) + 5])];
|
|
state[ 5] = sbox[(state[ 9] ^ expandedKey[(round*16) + 9])];
|
|
state[ 9] = sbox[(state[13] ^ expandedKey[(round*16) + 13])];
|
|
state[13] = sbox[buf1];
|
|
// row 2
|
|
buf1 = state[2] ^ expandedKey[(round*16) + 2];
|
|
buf2 = state[6] ^ expandedKey[(round*16) + 6];
|
|
state[ 2] = sbox[(state[10] ^ expandedKey[(round*16) + 10])];
|
|
state[ 6] = sbox[(state[14] ^ expandedKey[(round*16) + 14])];
|
|
state[10] = sbox[buf1];
|
|
state[14] = sbox[buf2];
|
|
// row 3
|
|
buf1 = state[15] ^ expandedKey[(round*16) + 15];
|
|
state[15] = sbox[(state[11] ^ expandedKey[(round*16) + 11])];
|
|
state[11] = sbox[(state[ 7] ^ expandedKey[(round*16) + 7])];
|
|
state[ 7] = sbox[(state[ 3] ^ expandedKey[(round*16) + 3])];
|
|
state[ 3] = sbox[buf1];
|
|
|
|
// mixcolums //////////
|
|
// col1
|
|
buf1 = state[0] ^ state[1] ^ state[2] ^ state[3];
|
|
buf2 = state[0];
|
|
buf3 = state[0]^state[1]; buf3=galois_mul2(buf3); state[0] = state[0] ^ buf3 ^ buf1;
|
|
buf3 = state[1]^state[2]; buf3=galois_mul2(buf3); state[1] = state[1] ^ buf3 ^ buf1;
|
|
buf3 = state[2]^state[3]; buf3=galois_mul2(buf3); state[2] = state[2] ^ buf3 ^ buf1;
|
|
buf3 = state[3]^buf2; buf3=galois_mul2(buf3); state[3] = state[3] ^ buf3 ^ buf1;
|
|
// col2
|
|
buf1 = state[4] ^ state[5] ^ state[6] ^ state[7];
|
|
buf2 = state[4];
|
|
buf3 = state[4]^state[5]; buf3=galois_mul2(buf3); state[4] = state[4] ^ buf3 ^ buf1;
|
|
buf3 = state[5]^state[6]; buf3=galois_mul2(buf3); state[5] = state[5] ^ buf3 ^ buf1;
|
|
buf3 = state[6]^state[7]; buf3=galois_mul2(buf3); state[6] = state[6] ^ buf3 ^ buf1;
|
|
buf3 = state[7]^buf2; buf3=galois_mul2(buf3); state[7] = state[7] ^ buf3 ^ buf1;
|
|
// col3
|
|
buf1 = state[8] ^ state[9] ^ state[10] ^ state[11];
|
|
buf2 = state[8];
|
|
buf3 = state[8]^state[9]; buf3=galois_mul2(buf3); state[8] = state[8] ^ buf3 ^ buf1;
|
|
buf3 = state[9]^state[10]; buf3=galois_mul2(buf3); state[9] = state[9] ^ buf3 ^ buf1;
|
|
buf3 = state[10]^state[11]; buf3=galois_mul2(buf3); state[10] = state[10] ^ buf3 ^ buf1;
|
|
buf3 = state[11]^buf2; buf3=galois_mul2(buf3); state[11] = state[11] ^ buf3 ^ buf1;
|
|
// col4
|
|
buf1 = state[12] ^ state[13] ^ state[14] ^ state[15];
|
|
buf2 = state[12];
|
|
buf3 = state[12]^state[13]; buf3=galois_mul2(buf3); state[12] = state[12] ^ buf3 ^ buf1;
|
|
buf3 = state[13]^state[14]; buf3=galois_mul2(buf3); state[13] = state[13] ^ buf3 ^ buf1;
|
|
buf3 = state[14]^state[15]; buf3=galois_mul2(buf3); state[14] = state[14] ^ buf3 ^ buf1;
|
|
buf3 = state[15]^buf2; buf3=galois_mul2(buf3); state[15] = state[15] ^ buf3 ^ buf1;
|
|
|
|
}
|
|
// 10th round without mixcols
|
|
state[ 0] = sbox[(state[ 0] ^ expandedKey[(round*16) ])];
|
|
state[ 4] = sbox[(state[ 4] ^ expandedKey[(round*16) + 4])];
|
|
state[ 8] = sbox[(state[ 8] ^ expandedKey[(round*16) + 8])];
|
|
state[12] = sbox[(state[12] ^ expandedKey[(round*16) + 12])];
|
|
// row 1
|
|
buf1 = state[1] ^ expandedKey[(round*16) + 1];
|
|
state[ 1] = sbox[(state[ 5] ^ expandedKey[(round*16) + 5])];
|
|
state[ 5] = sbox[(state[ 9] ^ expandedKey[(round*16) + 9])];
|
|
state[ 9] = sbox[(state[13] ^ expandedKey[(round*16) + 13])];
|
|
state[13] = sbox[buf1];
|
|
// row 2
|
|
buf1 = state[2] ^ expandedKey[(round*16) + 2];
|
|
buf2 = state[6] ^ expandedKey[(round*16) + 6];
|
|
state[ 2] = sbox[(state[10] ^ expandedKey[(round*16) + 10])];
|
|
state[ 6] = sbox[(state[14] ^ expandedKey[(round*16) + 14])];
|
|
state[10] = sbox[buf1];
|
|
state[14] = sbox[buf2];
|
|
// row 3
|
|
buf1 = state[15] ^ expandedKey[(round*16) + 15];
|
|
state[15] = sbox[(state[11] ^ expandedKey[(round*16) + 11])];
|
|
state[11] = sbox[(state[ 7] ^ expandedKey[(round*16) + 7])];
|
|
state[ 7] = sbox[(state[ 3] ^ expandedKey[(round*16) + 3])];
|
|
state[ 3] = sbox[buf1];
|
|
// last addroundkey
|
|
state[ 0]^=expandedKey[160];
|
|
state[ 1]^=expandedKey[161];
|
|
state[ 2]^=expandedKey[162];
|
|
state[ 3]^=expandedKey[163];
|
|
state[ 4]^=expandedKey[164];
|
|
state[ 5]^=expandedKey[165];
|
|
state[ 6]^=expandedKey[166];
|
|
state[ 7]^=expandedKey[167];
|
|
state[ 8]^=expandedKey[168];
|
|
state[ 9]^=expandedKey[169];
|
|
state[10]^=expandedKey[170];
|
|
state[11]^=expandedKey[171];
|
|
state[12]^=expandedKey[172];
|
|
state[13]^=expandedKey[173];
|
|
state[14]^=expandedKey[174];
|
|
state[15]^=expandedKey[175];
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! aes_decr
|
|
//!
|
|
//! @param[in] expandedKey expanded AES128 key
|
|
//! @param[in\out] state 16 bytes of cipher text and plain text
|
|
//!
|
|
//! @return none
|
|
//!
|
|
//! @brief internal implementation of AES128 decryption.
|
|
//! straight forward aes decryption implementation
|
|
//! the order of substeps is the exact reverse of decryption
|
|
//! inverse functions:
|
|
//! - addRoundKey is its own inverse
|
|
//! - rsbox is inverse of sbox
|
|
//! - rightshift instead of leftshift
|
|
//! - invMixColumns = barreto + mixColumns
|
|
//! no further subfunctions to save cycles for function calls
|
|
//! no structuring with "for (....)" to save cycles
|
|
//!
|
|
//*****************************************************************************
|
|
|
|
void aes_decr(uint8_t *state, uint8_t *expandedKey)
|
|
{
|
|
uint8_t buf1, buf2, buf3;
|
|
int8_t round;
|
|
round = 9;
|
|
|
|
// initial addroundkey
|
|
state[ 0]^=expandedKey[160];
|
|
state[ 1]^=expandedKey[161];
|
|
state[ 2]^=expandedKey[162];
|
|
state[ 3]^=expandedKey[163];
|
|
state[ 4]^=expandedKey[164];
|
|
state[ 5]^=expandedKey[165];
|
|
state[ 6]^=expandedKey[166];
|
|
state[ 7]^=expandedKey[167];
|
|
state[ 8]^=expandedKey[168];
|
|
state[ 9]^=expandedKey[169];
|
|
state[10]^=expandedKey[170];
|
|
state[11]^=expandedKey[171];
|
|
state[12]^=expandedKey[172];
|
|
state[13]^=expandedKey[173];
|
|
state[14]^=expandedKey[174];
|
|
state[15]^=expandedKey[175];
|
|
|
|
// 10th round without mixcols
|
|
state[ 0] = rsbox[state[ 0]] ^ expandedKey[(round*16) ];
|
|
state[ 4] = rsbox[state[ 4]] ^ expandedKey[(round*16) + 4];
|
|
state[ 8] = rsbox[state[ 8]] ^ expandedKey[(round*16) + 8];
|
|
state[12] = rsbox[state[12]] ^ expandedKey[(round*16) + 12];
|
|
// row 1
|
|
buf1 = rsbox[state[13]] ^ expandedKey[(round*16) + 1];
|
|
state[13] = rsbox[state[ 9]] ^ expandedKey[(round*16) + 13];
|
|
state[ 9] = rsbox[state[ 5]] ^ expandedKey[(round*16) + 9];
|
|
state[ 5] = rsbox[state[ 1]] ^ expandedKey[(round*16) + 5];
|
|
state[ 1] = buf1;
|
|
// row 2
|
|
buf1 = rsbox[state[ 2]] ^ expandedKey[(round*16) + 10];
|
|
buf2 = rsbox[state[ 6]] ^ expandedKey[(round*16) + 14];
|
|
state[ 2] = rsbox[state[10]] ^ expandedKey[(round*16) + 2];
|
|
state[ 6] = rsbox[state[14]] ^ expandedKey[(round*16) + 6];
|
|
state[10] = buf1;
|
|
state[14] = buf2;
|
|
// row 3
|
|
buf1 = rsbox[state[ 3]] ^ expandedKey[(round*16) + 15];
|
|
state[ 3] = rsbox[state[ 7]] ^ expandedKey[(round*16) + 3];
|
|
state[ 7] = rsbox[state[11]] ^ expandedKey[(round*16) + 7];
|
|
state[11] = rsbox[state[15]] ^ expandedKey[(round*16) + 11];
|
|
state[15] = buf1;
|
|
|
|
for (round = 8; round >= 0; round--){
|
|
// barreto
|
|
//col1
|
|
buf1 = galois_mul2(galois_mul2(state[0]^state[2]));
|
|
buf2 = galois_mul2(galois_mul2(state[1]^state[3]));
|
|
state[0] ^= buf1; state[1] ^= buf2; state[2] ^= buf1; state[3] ^= buf2;
|
|
//col2
|
|
buf1 = galois_mul2(galois_mul2(state[4]^state[6]));
|
|
buf2 = galois_mul2(galois_mul2(state[5]^state[7]));
|
|
state[4] ^= buf1; state[5] ^= buf2; state[6] ^= buf1; state[7] ^= buf2;
|
|
//col3
|
|
buf1 = galois_mul2(galois_mul2(state[8]^state[10]));
|
|
buf2 = galois_mul2(galois_mul2(state[9]^state[11]));
|
|
state[8] ^= buf1; state[9] ^= buf2; state[10] ^= buf1; state[11] ^= buf2;
|
|
//col4
|
|
buf1 = galois_mul2(galois_mul2(state[12]^state[14]));
|
|
buf2 = galois_mul2(galois_mul2(state[13]^state[15]));
|
|
state[12] ^= buf1; state[13] ^= buf2; state[14] ^= buf1; state[15] ^= buf2;
|
|
// mixcolums //////////
|
|
// col1
|
|
buf1 = state[0] ^ state[1] ^ state[2] ^ state[3];
|
|
buf2 = state[0];
|
|
buf3 = state[0]^state[1]; buf3=galois_mul2(buf3); state[0] = state[0] ^ buf3 ^ buf1;
|
|
buf3 = state[1]^state[2]; buf3=galois_mul2(buf3); state[1] = state[1] ^ buf3 ^ buf1;
|
|
buf3 = state[2]^state[3]; buf3=galois_mul2(buf3); state[2] = state[2] ^ buf3 ^ buf1;
|
|
buf3 = state[3]^buf2; buf3=galois_mul2(buf3); state[3] = state[3] ^ buf3 ^ buf1;
|
|
// col2
|
|
buf1 = state[4] ^ state[5] ^ state[6] ^ state[7];
|
|
buf2 = state[4];
|
|
buf3 = state[4]^state[5]; buf3=galois_mul2(buf3); state[4] = state[4] ^ buf3 ^ buf1;
|
|
buf3 = state[5]^state[6]; buf3=galois_mul2(buf3); state[5] = state[5] ^ buf3 ^ buf1;
|
|
buf3 = state[6]^state[7]; buf3=galois_mul2(buf3); state[6] = state[6] ^ buf3 ^ buf1;
|
|
buf3 = state[7]^buf2; buf3=galois_mul2(buf3); state[7] = state[7] ^ buf3 ^ buf1;
|
|
// col3
|
|
buf1 = state[8] ^ state[9] ^ state[10] ^ state[11];
|
|
buf2 = state[8];
|
|
buf3 = state[8]^state[9]; buf3=galois_mul2(buf3); state[8] = state[8] ^ buf3 ^ buf1;
|
|
buf3 = state[9]^state[10]; buf3=galois_mul2(buf3); state[9] = state[9] ^ buf3 ^ buf1;
|
|
buf3 = state[10]^state[11]; buf3=galois_mul2(buf3); state[10] = state[10] ^ buf3 ^ buf1;
|
|
buf3 = state[11]^buf2; buf3=galois_mul2(buf3); state[11] = state[11] ^ buf3 ^ buf1;
|
|
// col4
|
|
buf1 = state[12] ^ state[13] ^ state[14] ^ state[15];
|
|
buf2 = state[12];
|
|
buf3 = state[12]^state[13]; buf3=galois_mul2(buf3); state[12] = state[12] ^ buf3 ^ buf1;
|
|
buf3 = state[13]^state[14]; buf3=galois_mul2(buf3); state[13] = state[13] ^ buf3 ^ buf1;
|
|
buf3 = state[14]^state[15]; buf3=galois_mul2(buf3); state[14] = state[14] ^ buf3 ^ buf1;
|
|
buf3 = state[15]^buf2; buf3=galois_mul2(buf3); state[15] = state[15] ^ buf3 ^ buf1;
|
|
|
|
// addroundkey, rsbox and shiftrows
|
|
// row 0
|
|
state[ 0] = rsbox[state[ 0]] ^ expandedKey[(round*16) ];
|
|
state[ 4] = rsbox[state[ 4]] ^ expandedKey[(round*16) + 4];
|
|
state[ 8] = rsbox[state[ 8]] ^ expandedKey[(round*16) + 8];
|
|
state[12] = rsbox[state[12]] ^ expandedKey[(round*16) + 12];
|
|
// row 1
|
|
buf1 = rsbox[state[13]] ^ expandedKey[(round*16) + 1];
|
|
state[13] = rsbox[state[ 9]] ^ expandedKey[(round*16) + 13];
|
|
state[ 9] = rsbox[state[ 5]] ^ expandedKey[(round*16) + 9];
|
|
state[ 5] = rsbox[state[ 1]] ^ expandedKey[(round*16) + 5];
|
|
state[ 1] = buf1;
|
|
// row 2
|
|
buf1 = rsbox[state[ 2]] ^ expandedKey[(round*16) + 10];
|
|
buf2 = rsbox[state[ 6]] ^ expandedKey[(round*16) + 14];
|
|
state[ 2] = rsbox[state[10]] ^ expandedKey[(round*16) + 2];
|
|
state[ 6] = rsbox[state[14]] ^ expandedKey[(round*16) + 6];
|
|
state[10] = buf1;
|
|
state[14] = buf2;
|
|
// row 3
|
|
buf1 = rsbox[state[ 3]] ^ expandedKey[(round*16) + 15];
|
|
state[ 3] = rsbox[state[ 7]] ^ expandedKey[(round*16) + 3];
|
|
state[ 7] = rsbox[state[11]] ^ expandedKey[(round*16) + 7];
|
|
state[11] = rsbox[state[15]] ^ expandedKey[(round*16) + 11];
|
|
state[15] = buf1;
|
|
}
|
|
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Name: aes_encrypt
|
|
*
|
|
* Description:
|
|
* AES128 encryption: Given AES128 key and 16 bytes plain text, cipher
|
|
* text of 16 bytes is computed. The AES implementation is in mode ECB
|
|
* (Electronic Code Book).
|
|
*
|
|
* Input Parameters:
|
|
* key AES128 key of size 16 bytes
|
|
* state 16 bytes of plain text and cipher text
|
|
*
|
|
* Returned Value
|
|
* None
|
|
*
|
|
*****************************************************************************/
|
|
|
|
void aes_encrypt(uint8_t *state, uint8_t *key)
|
|
{
|
|
// expand the key into 176 bytes
|
|
expandKey(aexpandedKey, key);
|
|
aes_encr(state, aexpandedKey);
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Name: aes_decrypt
|
|
*
|
|
* Description:
|
|
* AES128 decryption: Given AES128 key and 16 bytes cipher text, plain
|
|
* text of 16 bytes is computed The AES implementation is in mode ECB
|
|
* (Electronic Code Book).
|
|
*
|
|
* Input Parameters:
|
|
* key AES128 key of size 16 bytes
|
|
* state 16 bytes of plain text and cipher text
|
|
*
|
|
* Returned Value
|
|
* None
|
|
*
|
|
*****************************************************************************/
|
|
|
|
void aes_decrypt(uint8_t *state, uint8_t *key)
|
|
{
|
|
expandKey(aexpandedKey, key); // expand the key into 176 bytes
|
|
aes_decr(state, aexpandedKey);
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Name: aes_read_key
|
|
*
|
|
* Description:
|
|
* Reads AES128 key from EEPROM. Reads the AES128 key from fileID #12 in
|
|
* EEPROM returns an error if the key does not exist.
|
|
*
|
|
* Input Parameters:
|
|
* key AES128 key of size 16 bytes
|
|
*
|
|
* Returned Value
|
|
* On success 0, error otherwise.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
signed long aes_read_key(uint8_t *key)
|
|
{
|
|
signed long returnValue;
|
|
|
|
returnValue = nvmem_read(NVMEM_AES128_KEY_FILEID, AES128_KEY_SIZE, 0, key);
|
|
|
|
return returnValue;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Name: aes_write_key
|
|
*
|
|
* Description:
|
|
* Writes AES128 key from EEPROM Writes the AES128 key to fileID #12 in
|
|
* EEPROM
|
|
*
|
|
* Input Parameters:
|
|
* key AES128 key of size 16 bytes
|
|
*
|
|
* Returned Value
|
|
* On success 0, error otherwise.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
signed long aes_write_key(uint8_t *key)
|
|
{
|
|
signed long returnValue;
|
|
|
|
returnValue = nvmem_write(NVMEM_AES128_KEY_FILEID, AES128_KEY_SIZE, 0, key);
|
|
|
|
return returnValue;
|
|
}
|
|
|
|
#endif //CC3000_UNENCRYPTED_SMART_CONFIG
|