README
^^^^^^
README for NuttX port to the mbed.org LPC1768 board (http://mbed.org/)
Contents
^^^^^^^^
Development Environment
GNU Toolchain Options
IDEs
NuttX EABI "buildroot" Toolchain
NuttX OABI "buildroot" Toolchain
NXFLAT Toolchain
USB Device Controller Functions
mbed Configuration Options
USB Host Configuration
Configurations
Development Environment
^^^^^^^^^^^^^^^^^^^^^^^
Either Linux or Cygwin on Windows can be used for the development environment.
The source has been built only using the GNU toolchain (see below). Other
toolchains will likely cause problems. Testing was performed using the Cygwin
environment.
GNU Toolchain Options
^^^^^^^^^^^^^^^^^^^^^
The NuttX make system has been modified to support the following different
toolchain options.
1. The CodeSourcery GNU toolchain,
2. The devkitARM GNU toolchain,
3. The NuttX buildroot Toolchain (see below).
All testing has been conducted using the NuttX buildroot toolchain. However,
the make system is setup to default to use the devkitARM toolchain. To use
the CodeSourcery or devkitARM toolchain, you simply need add one of the
following configuration options to your .config (or defconfig) file:
CONFIG_ARMV7M_TOOLCHAIN_CODESOURCERYW=y : CodeSourcery under Windows
CONFIG_ARMV7M_TOOLCHAIN_CODESOURCERYL=y : CodeSourcery under Linux
CONFIG_ARMV7M_TOOLCHAIN_DEVKITARM=y : devkitARM under Windows
CONFIG_ARMV7M_TOOLCHAIN_BUILDROOT=y : NuttX buildroot under Linux or Cygwin (default)
If you are not using CONFIG_ARMV7M_TOOLCHAIN_BUILDROOT, then you may also
have to modify the PATH in the setenv.h file if your make cannot find the tools.
NOTE: the CodeSourcery (for Windows)and devkitARM are Windows native toolchains.
The CodeSourcey (for Linux) and NuttX buildroot toolchains are Cygwin and/or
Linux native toolchains. There are several limitations to using a Windows based
toolchain in a Cygwin environment. The three biggest are:
1. The Windows toolchain cannot follow Cygwin paths. Path conversions are
performed automatically in the Cygwin makefiles using the 'cygpath' utility
but you might easily find some new path problems. If so, check out 'cygpath -w'
2. Windows toolchains cannot follow Cygwin symbolic links. Many symbolic links
are used in Nuttx (e.g., include/arch). The make system works around these
problems for the Windows tools by copying directories instead of linking them.
But this can also cause some confusion for you: For example, you may edit
a file in a "linked" directory and find that your changes had no effect.
That is because you are building the copy of the file in the "fake" symbolic
directory. If you use a Windows toolchain, you should get in the habit of
making like this:
make clean_context all
An alias in your .bashrc file might make that less painful.
NOTE 1: The CodeSourcery toolchain (2009q1) does not work with default optimization
level of -Os (See Make.defs). It will work with -O0, -O1, or -O2, but not with
-Os.
NOTE 2: The devkitARM toolchain includes a version of MSYS make. Make sure that
the paths to Cygwin's /bin and /usr/bin directories appear BEFORE the devkitARM
path or will get the wrong version of make.
IDEs
^^^^
NuttX is built using command-line make. It can be used with an IDE, but some
effort will be required to create the project.
Makefile Build
--------------
Under Eclipse, it is pretty easy to set up an "empty makefile project" and
simply use the NuttX makefile to build the system. That is almost for free
under Linux. Under Windows, you will need to set up the "Cygwin GCC" empty
makefile project in order to work with Windows (Google for "Eclipse Cygwin" -
there is a lot of help on the internet).
Native Build
------------
Here are a few tips before you start that effort:
1) Select the toolchain that you will be using in your .config file
2) Start the NuttX build at least one time from the Cygwin command line
before trying to create your project. This is necessary to create
certain auto-generated files and directories that will be needed.
3) Set up include pathes: You will need include/, arch/arm/src/lpc17xx,
arch/arm/src/common, arch/arm/src/armv7-m, and sched/.
4) All assembly files need to have the definition option -D __ASSEMBLY__
on the command line.
Startup files will probably cause you some headaches. The NuttX startup file
is arch/arm/src/lpc17x/lpc17_vectors.S.
NuttX EABI "buildroot" Toolchain
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A GNU GCC-based toolchain is assumed. The files */setenv.sh should
be modified to point to the correct path to the Cortex-M3 GCC toolchain (if
different from the default in your PATH variable).
If you have no Cortex-M3 toolchain, one can be downloaded from the NuttX
Bitbucket download site (https://bitbucket.org/nuttx/buildroot/downloads/).
This GNU toolchain builds and executes in the Linux or Cygwin environment.
1. You must have already configured Nuttx in <some-dir>/nuttx.
cd tools
./configure.sh mbed/<sub-dir>
2. Download the latest buildroot package into <some-dir>
3. unpack the buildroot tarball. The resulting directory may
have versioning information on it like buildroot-x.y.z. If so,
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
4. cd <some-dir>/buildroot
5. cp configs/cortexm3-eabi-defconfig-4.6.3 .config
6. make oldconfig
7. make
8. Edit setenv.h, if necessary, so that the PATH variable includes
the path to the newly built binaries.
See the file configs/README.txt in the buildroot source tree. That has more
details PLUS some special instructions that you will need to follow if you
are building a Cortex-M3 toolchain for Cygwin under Windows.
NOTE: Unfortunately, the 4.6.3 EABI toolchain is not compatible with the
the NXFLAT tools. See the top-level TODO file (under "Binary loaders") for
more information about this problem. If you plan to use NXFLAT, please do not
use the GCC 4.6.3 EABI toochain; instead use the GCC 4.3.3 OABI toolchain.
See instructions below.
NuttX OABI "buildroot" Toolchain
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The older, OABI buildroot toolchain is also available. To use the OABI
toolchain:
1. When building the buildroot toolchain, either (1) modify the cortexm3-eabi-defconfig-4.6.3
configuration to use EABI (using 'make menuconfig'), or (2) use an exising OABI
configuration such as cortexm3-defconfig-4.3.3
2. Modify the Make.defs file to use the OABI conventions:
+CROSSDEV = arm-nuttx-elf-
+ARCHCPUFLAGS = -mtune=cortex-m3 -march=armv7-m -mfloat-abi=soft
+NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-gotoff.ld -no-check-sections
-CROSSDEV = arm-nuttx-eabi-
-ARCHCPUFLAGS = -mcpu=cortex-m3 -mthumb -mfloat-abi=soft
-NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-pcrel.ld -no-check-sections
NXFLAT Toolchain
^^^^^^^^^^^^^^^^
If you are *not* using the NuttX buildroot toolchain and you want to use
the NXFLAT tools, then you will still have to build a portion of the buildroot
tools -- just the NXFLAT tools. The buildroot with the NXFLAT tools can
be downloaded from the NuttX Bitbucket download site
(https://bitbucket.org/patacongo/nuttx/downloads/).
This GNU toolchain builds and executes in the Linux or Cygwin environment.
1. You must have already configured Nuttx in <some-dir>/nuttx.
cd tools
./configure.sh lpcxpresso-lpc1768/<sub-dir>
2. Download the latest buildroot package into <some-dir>
3. unpack the buildroot tarball. The resulting directory may
have versioning information on it like buildroot-x.y.z. If so,
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
4. cd <some-dir>/buildroot
5. cp configs/cortexm3-defconfig-nxflat .config
6. make oldconfig
7. make
8. Edit setenv.h, if necessary, so that the PATH variable includes
the path to the newly builtNXFLAT binaries.
mbed Configuration Options
^^^^^^^^^^^^^^^^^^^^^^^^^^
CONFIG_ARCH - Identifies the arch/ subdirectory. This should
be set to:
CONFIG_ARCH=arm
CONFIG_ARCH_family - For use in C code:
CONFIG_ARCH_ARM=y
CONFIG_ARCH_architecture - For use in C code:
CONFIG_ARCH_CORTEXM3=y
CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory
CONFIG_ARCH_CHIP=lpc17xx
CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
chip:
CONFIG_ARCH_CHIP_LPC1768=y
CONFIG_ARCH_BOARD - Identifies the configs subdirectory and
hence, the board that supports the particular chip or SoC.
CONFIG_ARCH_BOARD=mbed (for the mbed.org board)
CONFIG_ARCH_BOARD_name - For use in C code
CONFIG_ARCH_BOARD_MBED=y
CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
of delay loops
CONFIG_ENDIAN_BIG - define if big endian (default is little
endian)
CONFIG_RAM_SIZE - Describes the installed DRAM (CPU SRAM in this case):
CONFIG_RAM_SIZE=(32*1024) (32Kb)
There is an additional 32Kb of SRAM in AHB SRAM banks 0 and 1.
CONFIG_RAM_START - The start address of installed DRAM
CONFIG_RAM_START=0x10000000
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that
have LEDs
CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
stack. If defined, this symbol is the size of the interrupt
stack in bytes. If not defined, the user task stacks will be
used during interrupt handling.
CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture.
CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that
cause a 100 second delay during boot-up. This 100 second delay
serves no purpose other than it allows you to calibratre
CONFIG_ARCH_LOOPSPERMSEC. You simply use a stop watch to measure
the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until
the delay actually is 100 seconds.
Individual subsystems can be enabled:
CONFIG_LPC17_MAINOSC=y
CONFIG_LPC17_PLL0=y
CONFIG_LPC17_PLL1=n
CONFIG_LPC17_ETHERNET=n
CONFIG_LPC17_USBHOST=n
CONFIG_LPC17_USBOTG=n
CONFIG_LPC17_USBDEV=n
CONFIG_LPC17_UART0=y
CONFIG_LPC17_UART1=n
CONFIG_LPC17_UART2=n
CONFIG_LPC17_UART3=n
CONFIG_LPC17_CAN1=n
CONFIG_LPC17_CAN2=n
CONFIG_LPC17_SPI=n
CONFIG_LPC17_SSP0=n
CONFIG_LPC17_SSP1=n
CONFIG_LPC17_I2C0=n
CONFIG_LPC17_I2C1=n
CONFIG_LPC17_I2S=n
CONFIG_LPC17_TMR0=n
CONFIG_LPC17_TMR1=n
CONFIG_LPC17_TMR2=n
CONFIG_LPC17_TMR3=n
CONFIG_LPC17_RIT=n
CONFIG_LPC17_PWM0=n
CONFIG_LPC17_MCPWM=n
CONFIG_LPC17_QEI=n
CONFIG_LPC17_RTC=n
CONFIG_LPC17_WDT=n
CONFIG_LPC17_ADC=n
CONFIG_LPC17_DAC=n
CONFIG_LPC17_GPDMA=n
CONFIG_LPC17_FLASH=n
LPC17xx specific device driver settings
CONFIG_UARTn_SERIAL_CONSOLE - selects the UARTn for the
console and ttys0 (default is the UART0).
CONFIG_UARTn_RXBUFSIZE - Characters are buffered as received.
This specific the size of the receive buffer
CONFIG_UARTn_TXBUFSIZE - Characters are buffered before
being sent. This specific the size of the transmit buffer
CONFIG_UARTn_BAUD - The configure BAUD of the UART. Must be
CONFIG_UARTn_BITS - The number of bits. Must be either 7 or 8.
CONFIG_UARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
CONFIG_UARTn_2STOP - Two stop bits
LPC17xx specific CAN device driver settings. These settings all
require CONFIG_CAN:
CONFIG_CAN_EXTID - Enables support for the 29-bit extended ID. Default
Standard 11-bit IDs.
CONFIG_CAN1_BAUD - CAN1 BAUD rate. Required if CONFIG_LPC17_CAN1 is defined.
CONFIG_CAN2_BAUD - CAN1 BAUD rate. Required if CONFIG_LPC17_CAN2 is defined.
CONFIG_CAN1_DIVISOR - CAN1 is clocked at CCLK divided by this number.
(the CCLK frequency is divided by this number to get the CAN clock).
Options = {1,2,4,6}. Default: 4.
CONFIG_CAN2_DIVISOR - CAN2 is clocked at CCLK divided by this number.
(the CCLK frequency is divided by this number to get the CAN clock).
Options = {1,2,4,6}. Default: 4.
CONFIG_CAN_TSEG1 - The number of CAN time quanta in segment 1. Default: 6
CONFIG_CAN_TSEG2 = the number of CAN time quanta in segment 2. Default: 7
LPC17xx specific PHY/Ethernet device driver settings. These setting
also require CONFIG_NET and CONFIG_LPC17_ETHERNET.
CONFIG_ETH0_PHY_KS8721 - Selects Micrel KS8721 PHY
CONFIG_PHY_AUTONEG - Enable auto-negotion
CONFIG_PHY_SPEED100 - Select 100Mbit vs. 10Mbit speed.
CONFIG_PHY_FDUPLEX - Select full (vs. half) duplex
CONFIG_NET_EMACRAM_SIZE - Size of EMAC RAM. Default: 16Kb
CONFIG_NET_NTXDESC - Configured number of Tx descriptors. Default: 18
CONFIG_NET_NRXDESC - Configured number of Rx descriptors. Default: 18
CONFIG_NET_WOL - Enable Wake-up on Lan (not fully implemented).
CONFIG_NET_REGDEBUG - Enabled low level register debug. Also needs
CONFIG_DEBUG.
CONFIG_NET_DUMPPACKET - Dump all received and transmitted packets.
Also needs CONFIG_DEBUG.
CONFIG_NET_HASH - Enable receipt of near-perfect match frames.
CONFIG_LPC17_MULTICAST - Enable receipt of multicast (and unicast) frames.
Automatically set if CONFIG_NET_IGMP is selected.
LPC17xx USB Device Configuration
CONFIG_LPC17_USBDEV_FRAME_INTERRUPT
Handle USB Start-Of-Frame events.
Enable reading SOF from interrupt handler vs. simply reading on demand.
Probably a bad idea... Unless there is some issue with sampling the SOF
from hardware asynchronously.
CONFIG_LPC17_USBDEV_EPFAST_INTERRUPT
Enable high priority interrupts. I have no idea why you might want to
do that
CONFIG_LPC17_USBDEV_NDMADESCRIPTORS
Number of DMA descriptors to allocate in SRAM.
CONFIG_LPC17_USBDEV_DMA
Enable lpc17xx-specific DMA support
CONFIG_LPC17_USBDEV_NOVBUS
Define if the hardware implementation does not support the VBUS signal
CONFIG_LPC17_USBDEV_NOLED
Define if the hardware implementation does not support the LED output
LPC17xx USB Host Configuration
CONFIG_USBHOST_OHCIRAM_SIZE
Total size of OHCI RAM (in AHB SRAM Bank 1)
CONFIG_USBHOST_NEDS
Number of endpoint descriptors
CONFIG_USBHOST_NTDS
Number of transfer descriptors
CONFIG_USBHOST_TDBUFFERS
Number of transfer descriptor buffers
CONFIG_USBHOST_TDBUFSIZE
Size of one transfer descriptor buffer
CONFIG_USBHOST_IOBUFSIZE
Size of one end-user I/O buffer. This can be zero if the
application can guarantee that all end-user I/O buffers
reside in AHB SRAM.
USB Host Configuration
^^^^^^^^^^^^^^^^^^^^^^
The mbed board can be easily modified to support a USB host interface
(Remember to add 2 resistors of 15K to D+ and D- pins). The hidkbd
configuration assumes that this change has been made.
The NuttShell (NSH) mbed can also be modified in order to support USB
host operations. To make these modifications, do the following:
1. First configure to build the NSH configuration from the top-level
NuttX directory:
cd tools
./configure mbed/nsh
cd ..
2. Then edit the top-level .config file to enable USB host. Make the
following changes using 'make menuconfig':
System Type -> LPC17xx Peripheral Support
CONFIG_LPC17_USBHOST=y : USB host controller driver support
Device Drivers -> USB Host Driver Support
CONFIG_USBHOST=y : USB host support
CONFIG_USBHOST_ISOC_DISABLE=y : Not needed
CONFIG_USBHOST_MSC=y : Mass storage class support
Library Routines
CONFIG_SCHED_WORKQUEUE=y : Enable worker thread
When this change is made, NSH should be extended to support USB flash
devices. When a FLASH device is inserted, you should see a device
appear in the /dev (pseudo) directory. The device name should be
like /dev/sda, /dev/sdb, etc. The USB mass storage device, is present
it can be mounted from the NSH command line like:
ls /dev
mount -t vfat /dev/sda /mnt/flash
Files on the connect USB flash device should then be accessible under
the mountpoint /mnt/flash.
Configurations
^^^^^^^^^^^^^^
General
-------
Each mbed configuration is maintained in a sub-directory and can be selected
as follow:
cd tools
./configure.sh mbed/<subdir>
cd -
. ./setenv.sh
Where <subdir> is one of the mbed subdirectories described in the
following paragraph.
NOTES:
1. These configurations use the mconf-based configuration tool. To
change any of these configurations using that tool, you should:
a. Build and install the kconfig-mconf tool. See nuttx/README.txt
see additional README.txt files in the NuttX tools repository.
b. Execute 'make menuconfig' in nuttx/ in order to start the
reconfiguration process.
Configuration Sub-directories
-----------------------------
hidkbd:
This configuration directory, performs a simple test of the USB host
HID keyboard class driver using the test logic in examples/hidkbd.
This configuration assumes that you have modified your mbed for USB
host support.
nsh:
Configures the NuttShell (nsh) located at examples/nsh. The
Configuration enables only the serial NSH interfaces. See notes
above for enabling USB host support in this configuration.