nuttx/arch/rgmp/src/nuttx.c

551 lines
16 KiB
C

/****************************************************************************
* arch/rgmp/src/nuttx.c
*
* Copyright (C) 2011 Yu Qiang. All rights reserved.
* Author: Yu Qiang <yuq825@gmail.com>
*
* This file is a part of NuttX:
*
* Copyright (C) 2011 Gregory Nutt. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include <rgmp/boot.h>
#include <rgmp/cxx.h>
#include <rgmp/memlayout.h>
#include <rgmp/allocator.h>
#include <rgmp/assert.h>
#include <rgmp/string.h>
#include <rgmp/arch/arch.h>
#include <nuttx/sched.h>
#include <nuttx/kmalloc.h>
#include <nuttx/arch.h>
#include <stdio.h>
#include <stdlib.h>
#include <arch/irq.h>
#include <arch/arch.h>
#include <os_internal.h>
struct tcb_s *current_task = NULL;
/**
* This function is called in non-interrupt context
* to switch tasks.
* Assumption: global interrupt is disabled.
*/
static inline void up_switchcontext(struct tcb_s *ctcb, struct tcb_s *ntcb)
{
// do nothing if two tasks are the same
if (ctcb == ntcb)
return;
// this function can not be called in interrupt
if (up_interrupt_context()) {
panic("%s: try to switch context in interrupt\n", __func__);
}
// start switch
current_task = ntcb;
rgmp_context_switch(ctcb ? &ctcb->xcp.ctx : NULL, &ntcb->xcp.ctx);
}
void up_initialize(void)
{
extern pidhash_t g_pidhash[];
extern void vdev_init(void);
extern void nuttx_arch_init(void);
// initialize the current_task to g_idletcb
current_task = g_pidhash[PIDHASH(0)].tcb;
// OS memory alloc system is ready
use_os_kmalloc = 1;
// rgmp vdev init
vdev_init();
nuttx_arch_init();
// enable interrupt
local_irq_enable();
}
void up_idle(void)
{
arch_hlt();
}
void up_allocate_heap(void **heap_start, size_t *heap_size)
{
void *boot_freemem = boot_alloc(0, sizeof(int));
*heap_start = boot_freemem;
*heap_size = KERNBASE + kmem_size - (uint32_t)boot_freemem;
}
int up_create_stack(struct tcb_s *tcb, size_t stack_size, uint8_t ttype)
{
uint32_t *stack_alloc_ptr;
int ret = ERROR;
size_t *adj_stack_ptr;
/* Move up to next even word boundary if necessary */
size_t adj_stack_size = (stack_size + 3) & ~3;
size_t adj_stack_words = adj_stack_size >> 2;
/* Allocate the memory for the stack */
#if defined(CONFIG_NUTTX_KERNEL) && defined(CONFIG_MM_KERNEL_HEAP)
/* Use the kernel allocator if this is a kernel thread */
if (ttype == TCB_FLAG_TTYPE_KERNEL) {
stack_alloc_ptr = (uint32_t *)kmalloc(stack_size);
} else
#endif
{
stack_alloc_ptr = (uint32_t*)kumalloc(adj_stack_size);
}
if (stack_alloc_ptr) {
/* This is the address of the last word in the allocation */
adj_stack_ptr = &stack_alloc_ptr[adj_stack_words - 1];
/* Save the values in the TCB */
tcb->adj_stack_size = adj_stack_size;
tcb->stack_alloc_ptr = stack_alloc_ptr;
tcb->adj_stack_ptr = (void *)((unsigned int)adj_stack_ptr & ~7);
ret = OK;
}
return ret;
}
int up_use_stack(struct tcb_s *tcb, void *stack, size_t stack_size)
{
/* Move up to next even word boundary if necessary */
size_t adj_stack_size = stack_size & ~3;
size_t adj_stack_words = adj_stack_size >> 2;
/* This is the address of the last word in the allocation */
size_t *adj_stack_ptr = &((size_t*)stack)[adj_stack_words - 1];
/* Save the values in the TCB */
tcb->adj_stack_size = adj_stack_size;
tcb->stack_alloc_ptr = stack;
tcb->adj_stack_ptr = (void *)((unsigned int)adj_stack_ptr & ~7);
return OK;
}
#ifdef CONFIG_NUTTX_KERNEL
FAR void *up_stack_frame(FAR struct tcb_s *tcb, size_t frame_size)
{
uintptr_t topaddr;
/* Align the frame_size */
frame_size = (frame_size + 3) & ~3;
/* Is there already a stack allocated? Is it big enough? */
if (!tcb->stack_alloc_ptr || tcb->adj_stack_size <= frame_size) {
return NULL;
}
/* Save the adjusted stack values in the struct tcb_s */
topaddr = (uintptr_t)tcb->adj_stack_ptr - frame_size;
tcb->adj_stack_ptr = (FAR void *)topaddr;
tcb->adj_stack_size -= frame_size;
/* Reset the initial state */
up_initial_state(tcb);
/* And return a pointer to the allocated memory region */
return (FAR void *)(topaddr + sizeof(uint32_t));
}
#endif
void up_release_stack(struct tcb_s *dtcb, uint8_t ttype)
{
/* Is there a stack allocated? */
if (dtcb->stack_alloc_ptr) {
#if defined(CONFIG_NUTTX_KERNEL) && defined(CONFIG_MM_KERNEL_HEAP)
/* Use the kernel allocator if this is a kernel thread */
if (ttype == TCB_FLAG_TTYPE_KERNEL) {
kfree(dtcb->stack_alloc_ptr);
} else
#endif
{
/* Use the user-space allocator if this is a task or pthread */
kufree(dtcb->stack_alloc_ptr);
}
}
/* Mark the stack freed */
dtcb->stack_alloc_ptr = NULL;
dtcb->adj_stack_size = 0;
dtcb->adj_stack_ptr = NULL;
}
/****************************************************************************
* Name: up_block_task
*
* Description:
* The currently executing task at the head of
* the ready to run list must be stopped. Save its context
* and move it to the inactive list specified by task_state.
*
* This function is called only from the NuttX scheduling
* logic. Interrupts will always be disabled when this
* function is called.
*
* Inputs:
* tcb: Refers to a task in the ready-to-run list (normally
* the task at the head of the list). It most be
* stopped, its context saved and moved into one of the
* waiting task lists. It it was the task at the head
* of the ready-to-run list, then a context to the new
* ready to run task must be performed.
* task_state: Specifies which waiting task list should be
* hold the blocked task TCB.
*
****************************************************************************/
void up_block_task(struct tcb_s *tcb, tstate_t task_state)
{
/* Verify that the context switch can be performed */
if ((tcb->task_state < FIRST_READY_TO_RUN_STATE) ||
(tcb->task_state > LAST_READY_TO_RUN_STATE)) {
warn("%s: task sched error\n", __func__);
return;
}
else {
struct tcb_s *rtcb = current_task;
bool switch_needed;
/* Remove the tcb task from the ready-to-run list. If we
* are blocking the task at the head of the task list (the
* most likely case), then a context switch to the next
* ready-to-run task is needed. In this case, it should
* also be true that rtcb == tcb.
*/
switch_needed = sched_removereadytorun(tcb);
/* Add the task to the specified blocked task list */
sched_addblocked(tcb, (tstate_t)task_state);
/* Now, perform the context switch if one is needed */
if (switch_needed) {
struct tcb_s *nexttcb;
// this part should not be executed in interrupt context
if (up_interrupt_context()) {
panic("%s: %d\n", __func__, __LINE__);
}
// If there are any pending tasks, then add them to the g_readytorun
// task list now. It should be the up_realease_pending() called from
// sched_unlock() to do this for disable preemption. But it block
// itself, so it's OK.
if (g_pendingtasks.head) {
warn("Disable preemption failed for task block itself\n");
sched_mergepending();
}
nexttcb = (struct tcb_s*)g_readytorun.head;
// context switch
up_switchcontext(rtcb, nexttcb);
}
}
}
/****************************************************************************
* Name: up_unblock_task
*
* Description:
* A task is currently in an inactive task list
* but has been prepped to execute. Move the TCB to the
* ready-to-run list, restore its context, and start execution.
*
* Inputs:
* tcb: Refers to the tcb to be unblocked. This tcb is
* in one of the waiting tasks lists. It must be moved to
* the ready-to-run list and, if it is the highest priority
* ready to run taks, executed.
*
****************************************************************************/
void up_unblock_task(struct tcb_s *tcb)
{
/* Verify that the context switch can be performed */
if ((tcb->task_state < FIRST_BLOCKED_STATE) ||
(tcb->task_state > LAST_BLOCKED_STATE)) {
warn("%s: task sched error\n", __func__);
return;
}
else {
struct tcb_s *rtcb = current_task;
/* Remove the task from the blocked task list */
sched_removeblocked(tcb);
/* Reset its timeslice. This is only meaningful for round
* robin tasks but it doesn't here to do it for everything
*/
#if CONFIG_RR_INTERVAL > 0
tcb->timeslice = CONFIG_RR_INTERVAL / MSEC_PER_TICK;
#endif
// Add the task in the correct location in the prioritized
// g_readytorun task list.
if (sched_addreadytorun(tcb) && !up_interrupt_context()) {
/* The currently active task has changed! */
struct tcb_s *nexttcb = (struct tcb_s*)g_readytorun.head;
// context switch
up_switchcontext(rtcb, nexttcb);
}
}
}
/**
* This function is called from sched_unlock() which will check not
* in interrupt context and disable interrupt.
*/
void up_release_pending(void)
{
struct tcb_s *rtcb = current_task;
/* Merge the g_pendingtasks list into the g_readytorun task list */
if (sched_mergepending()) {
/* The currently active task has changed! */
struct tcb_s *nexttcb = (struct tcb_s*)g_readytorun.head;
// context switch
up_switchcontext(rtcb, nexttcb);
}
}
void up_reprioritize_rtr(struct tcb_s *tcb, uint8_t priority)
{
/* Verify that the caller is sane */
if (tcb->task_state < FIRST_READY_TO_RUN_STATE ||
tcb->task_state > LAST_READY_TO_RUN_STATE
#if SCHED_PRIORITY_MIN > UINT8_MIN
|| priority < SCHED_PRIORITY_MIN
#endif
#if SCHED_PRIORITY_MAX < UINT8_MAX
|| priority > SCHED_PRIORITY_MAX
#endif
) {
warn("%s: task sched error\n", __func__);
return;
}
else {
struct tcb_s *rtcb = current_task;
bool switch_needed;
/* Remove the tcb task from the ready-to-run list.
* sched_removereadytorun will return true if we just
* remove the head of the ready to run list.
*/
switch_needed = sched_removereadytorun(tcb);
/* Setup up the new task priority */
tcb->sched_priority = (uint8_t)priority;
/* Return the task to the specified blocked task list.
* sched_addreadytorun will return true if the task was
* added to the new list. We will need to perform a context
* switch only if the EXCLUSIVE or of the two calls is non-zero
* (i.e., one and only one the calls changes the head of the
* ready-to-run list).
*/
switch_needed ^= sched_addreadytorun(tcb);
/* Now, perform the context switch if one is needed */
if (switch_needed && !up_interrupt_context()) {
struct tcb_s *nexttcb;
// If there are any pending tasks, then add them to the g_readytorun
// task list now. It should be the up_realease_pending() called from
// sched_unlock() to do this for disable preemption. But it block
// itself, so it's OK.
if (g_pendingtasks.head) {
warn("Disable preemption failed for reprioritize task\n");
sched_mergepending();
}
nexttcb = (struct tcb_s*)g_readytorun.head;
// context switch
up_switchcontext(rtcb, nexttcb);
}
}
}
void _exit(int status)
{
struct tcb_s* tcb;
/* Destroy the task at the head of the ready to run list. */
(void)task_exit();
/* Now, perform the context switch to the new ready-to-run task at the
* head of the list.
*/
tcb = (struct tcb_s*)g_readytorun.head;
/* Then switch contexts */
up_switchcontext(NULL, tcb);
}
void up_assert(const uint8_t *filename, int line)
{
fprintf(stderr, "Assertion failed at file:%s line: %d\n", filename, line);
// in interrupt context or idle task means kernel error
// which will stop the OS
// if in user space just terminate the task
if (up_interrupt_context() || current_task->pid == 0) {
panic("%s: %d\n", __func__, __LINE__);
}
else {
exit(EXIT_FAILURE);
}
}
#ifndef CONFIG_DISABLE_SIGNALS
void up_schedule_sigaction(struct tcb_s *tcb, sig_deliver_t sigdeliver)
{
/* Refuse to handle nested signal actions */
if (!tcb->xcp.sigdeliver) {
int flags;
/* Make sure that interrupts are disabled */
local_irq_save(flags);
// First, handle some special cases when the signal is
// being delivered to the currently executing task.
if (tcb == current_task) {
// CASE 1: We are not in an interrupt handler and
// a task is signalling itself for some reason.
if (!up_interrupt_context()) {
// In this case just deliver the signal now.
sigdeliver(tcb);
}
// CASE 2: We are in an interrupt handler AND the
// interrupted task is the same as the one that
// must receive the signal.
else {
tcb->xcp.sigdeliver = sigdeliver;
}
}
// Otherwise, we are (1) signaling a task is not running
// from an interrupt handler or (2) we are not in an
// interrupt handler and the running task is signalling
// some non-running task.
else {
tcb->xcp.sigdeliver = sigdeliver;
push_xcptcontext(&tcb->xcp);
}
local_irq_restore(flags);
}
}
#endif /* !CONFIG_DISABLE_SIGNALS */
bool up_interrupt_context(void)
{
if (nest_irq)
return true;
return false;
}
#ifndef CONFIG_ARCH_NOINTC
void up_disable_irq(int irq)
{
}
void up_enable_irq(int irq)
{
}
#endif
#ifdef CONFIG_ARCH_IRQPRIO
int up_prioritize_irq(int irq, int priority)
{
}
#endif
void up_sigdeliver(struct Trapframe *tf)
{
sig_deliver_t sigdeliver;
pop_xcptcontext(&current_task->xcp);
sigdeliver = current_task->xcp.sigdeliver;
current_task->xcp.sigdeliver = NULL;
local_irq_enable();
sigdeliver(current_task);
local_irq_disable();
}
#if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE)
void up_cxxinitialize(void)
{
rgmp_cxx_init();
}
#endif