nuttx/drivers/net/encx24j600.c
Xiang Xiao cde88cabcc Run codespell -w with the latest dictonary again
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
2020-02-23 22:27:46 +01:00

2895 lines
83 KiB
C

/****************************************************************************
* drivers/net/encx24j600.c
*
* Copyright (C) 2017-2018 Gregory Nutt. All rights reserved.
* Copyright (C) 2013-2014 UVC Ingenieure. All rights reserved.
* Author: Max Holtzberg <mh@uvc.de>
*
* References:
* - ENC424J600/624J600 Data Sheet, Stand-Alone 10/100 Ethernet Controller
* with SPI or Parallel Interface, DS39935C, 2010 Microchip Technology Inc.
*
* Derived from enc28j60 driver written by:
*
* Copyright (C) 2010-2012 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#if defined(CONFIG_NET) && defined(CONFIG_ENCX24J600)
#include <stdint.h>
#include <stdbool.h>
#include <stdint.h>
#include <time.h>
#include <string.h>
#include <debug.h>
#include <errno.h>
#include <queue.h>
#include <arpa/inet.h>
#include <nuttx/arch.h>
#include <nuttx/irq.h>
#include <nuttx/wdog.h>
#include <nuttx/spi/spi.h>
#include <nuttx/wqueue.h>
#include <nuttx/clock.h>
#include <nuttx/net/net.h>
#include <nuttx/net/arp.h>
#include <nuttx/net/netdev.h>
#include <nuttx/net/encx24j600.h>
#ifdef CONFIG_NET_PKT
# include <nuttx/net/pkt.h>
#endif
#include "encx24j600.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
/* ENCX24J600 Configuration Settings:
*
* CONFIG_ENCX24J600 - Enabled ENCX24J600 support
* CONFIG_ENCX24J600_SPIMODE - Controls the SPI mode
* CONFIG_ENCX24J600_FREQUENCY - Define to use a different bus frequency
* CONFIG_ENCX24J600_NINTERFACES - Specifies the number of physical ENCX24J600
* devices that will be supported.
*/
/* The ENCX24J600 spec says that it supports SPI mode 0,0 only: "The
* implementation used on this device supports SPI mode 0,0 only. In
* addition, the SPI port requires that SCK be at Idle in a low state;
* selectable clock polarity is not supported." However, sometimes you
* need to tinker with these things.
*/
#ifndef CONFIG_ENCX24J600_SPIMODE
# define CONFIG_ENCX24J600_SPIMODE SPIDEV_MODE0
#endif
/* CONFIG_ENCX24J600_NINTERFACES determines the number of physical interfaces
* that will be supported.
*/
#ifndef CONFIG_ENCX24J600_NINTERFACES
# define CONFIG_ENCX24J600_NINTERFACES 1
#endif
/* CONFIG_NET_ETH_PKTSIZE must always be defined */
#if !defined(CONFIG_NET_ETH_PKTSIZE) && (CONFIG_NET_ETH_PKTSIZE <= MAX_FRAMELEN)
# error "CONFIG_NET_ETH_PKTSIZE is not valid for the ENCX24J600"
#endif
/* We need to have the work queue to handle SPI interrupts */
#if !defined(CONFIG_SCHED_WORKQUEUE)
# error "Worker thread support is required (CONFIG_SCHED_WORKQUEUE)"
#endif
/* The low priority work queue is preferred. If it is not enabled, LPWORK
* will be the same as HPWORK.
*
* NOTE: However, the network should NEVER run on the high priority work
* queue! That queue is intended only to service short back end interrupt
* processing that never suspends. Suspending the high priority work queue
* may bring the system to its knees!
*/
#define ENCWORK LPWORK
/* CONFIG_ENCX24J600_DUMPPACKET will dump the contents of each packet to the console. */
#ifdef CONFIG_ENCX24J600_DUMPPACKET
# define enc_dumppacket(m,a,n) lib_dumpbuffer(m,a,n)
#else
# define enc_dumppacket(m,a,n)
#endif
/* Low-level register debug */
#if !defined(CONFIG_DEBUG_FEATURES) || !defined(CONFIG_DEBUG_NET)
# undef CONFIG_ENCX24J600_REGDEBUG
#endif
/* Timing *******************************************************************/
/* TX poll delay = 1 seconds. CLK_TCK is the number of clock ticks per second */
#define ENC_WDDELAY (1*CLK_TCK)
/* TX timeout = 1 minute */
#define ENC_TXTIMEOUT (60*CLK_TCK)
/* Poll timeout */
#define ENC_POLLTIMEOUT MSEC2TICK(50)
/* Register poll timeout */
#define ENC_REGPOLLTIMEOUT MSEC2TICK(5000)
/* Packet Memory ************************************************************/
/* Packet memory layout */
#define PKTMEM_ALIGNED_BUFSIZE ((CONFIG_NET_ETH_PKTSIZE + 1) & ~1)
#define PKTMEM_RX_START (PKTMEM_START + PKTMEM_SIZE / 2) /* Followed by RX buffer */
#define PKTMEM_RX_SIZE (PKTMEM_SIZE - PKTMEM_RX_START)
#define PKTMEM_RX_END (PKTMEM_START + PKTMEM_SIZE) /* RX buffer goes to the end of SRAM */
/* We use preinitialized TX descriptors */
#define ENC_NTXDESCR ((PKTMEM_RX_START - PKTMEM_START) / PKTMEM_ALIGNED_BUFSIZE)
/* This is a helper pointer for accessing the contents of the Ethernet header */
#define BUF ((struct eth_hdr_s *)priv->dev.d_buf)
/* Debug ********************************************************************/
#ifdef CONFIG_ENCX24J600_REGDEBUG
# define enc_wrdump(a,v) \
syslog(LOG_DEBUG, "ENCX24J600: %02x<-%04x\n", a, v);
# define enc_rddump(a,v) \
syslog(LOG_DEBUG, "ENCX24J600: %02x->%04x\n", a, v);
# define enc_bfsdump(a,m) \
syslog(LOG_DEBUG, "ENCX24J600: %02x|=%04x\n", a, m);
# define enc_bfcdump(a,m) \
syslog(LOG_DEBUG, "ENCX24J600: %02x&=~%04x\n", a, m);
# define enc_cmddump(c) \
syslog(LOG_DEBUG, "ENCX24J600: CMD: %02x\n", c);
# define enc_bmdump(c,b,s) \
syslog(LOG_DEBUG, "ENCX24J600: CMD: %02x buffer: %p length: %d\n", c, b, s);
#else
# define enc_wrdump(a,v)
# define enc_rddump(a,v)
# define enc_bfsdump(a,m)
# define enc_bfcdump(a,m)
# define enc_cmddump(c)
# define enc_bmdump(c,b,s)
#endif
/****************************************************************************
* Private Types
****************************************************************************/
/* The state of the interface */
enum enc_state_e
{
ENCSTATE_UNINIT = 0, /* The interface is in an uninitialized state */
ENCSTATE_DOWN, /* The interface is down */
ENCSTATE_UP, /* The interface is up */
ENCSTATE_RUNNING /* The interface is has a cable plugged in and is ready to use */
};
struct enc_descr_s
{
struct enc_descr_next *flink;
uint16_t addr;
uint16_t len;
};
/* The enc_driver_s encapsulates all state information for a single hardware
* interface
*/
struct enc_driver_s
{
/* Device control */
uint8_t ifstate; /* Interface state: See ENCSTATE_* */
uint8_t bank; /* Currently selected bank command */
uint16_t nextpkt; /* Next packet address */
FAR const struct enc_lower_s *lower; /* Low-level MCU-specific support */
/* Timing */
WDOG_ID txpoll; /* TX poll timer */
WDOG_ID txtimeout; /* TX timeout timer */
/* Avoid SPI accesses from the interrupt handler by using the work queue */
struct work_s irqwork; /* Interrupt continuation work queue support */
struct work_s towork; /* Tx timeout work queue support */
struct work_s pollwork; /* Poll timeout work queue support */
struct enc_descr_s txdescralloc[ENC_NTXDESCR];
struct enc_descr_s rxdescralloc[CONFIG_ENCX24J600_NRXDESCR];
sq_queue_t txfreedescr; /* Free inititialized TX descriptors */
sq_queue_t rxfreedescr; /* Free RX descriptors */
sq_queue_t txqueue; /* Enqueued descriptors waiting for transmission */
sq_queue_t rxqueue; /* Unhandled incoming packets waiting for reception */
/* This is the contained SPI driver intstance */
FAR struct spi_dev_s *spi;
/* This holds the information visible to the NuttX network */
struct net_driver_s dev; /* Interface understood by the network */
};
/****************************************************************************
* Private Data
****************************************************************************/
/* A single packet buffer is used */
static uint8_t g_pktbuf[MAX_NETDEV_PKTSIZE + CONFIG_NET_GUARDSIZE];
/* Driver status structure */
static struct enc_driver_s g_encx24j600[CONFIG_ENCX24J600_NINTERFACES];
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Low-level SPI helpers */
static void enc_lock(FAR struct enc_driver_s *priv);
static inline void enc_unlock(FAR struct enc_driver_s *priv);
/* SPI control register access */
static inline void enc_setethrst(FAR struct enc_driver_s *priv);
static void enc_setbank(FAR struct enc_driver_s *priv, uint8_t bank);
static uint16_t enc_rdreg(FAR struct enc_driver_s *priv, uint16_t ctrlreg);
static void enc_wrreg(FAR struct enc_driver_s *priv, uint16_t ctrlreg,
uint16_t wrdata);
static int enc_waitreg(FAR struct enc_driver_s *priv, uint16_t ctrlreg,
uint16_t bits, uint16_t value);
static void enc_bfs(FAR struct enc_driver_s *priv, uint16_t ctrlreg,
uint16_t bits);
static void enc_bfc(FAR struct enc_driver_s *priv, uint16_t ctrlreg,
uint16_t bits);
static void enc_cmd(FAR struct enc_driver_s *priv, uint8_t cmd, uint16_t arg);
#if 0 /* Sometimes useful */
static void enc_rxdump(FAR struct enc_driver_s *priv);
static void enc_txdump(FAR struct enc_driver_s *priv);
#endif
/* SPI buffer transfers */
static void enc_rdbuffer(FAR struct enc_driver_s *priv, FAR uint8_t *buffer,
size_t buflen);
static inline void enc_wrbuffer(FAR struct enc_driver_s *priv,
FAR const uint8_t *buffer, size_t buflen);
/* PHY register access */
static uint16_t enc_rdphy(FAR struct enc_driver_s *priv, uint8_t phyaddr);
static void enc_wrphy(FAR struct enc_driver_s *priv, uint8_t phyaddr,
uint16_t phydata);
/* Common TX logic */
static int enc_txenqueue(FAR struct enc_driver_s *priv);
static int enc_transmit(FAR struct enc_driver_s *priv);
static int enc_txpoll(struct net_driver_s *dev);
/* Common RX logic */
static struct enc_descr_s *enc_rxgetdescr(FAR struct enc_driver_s *priv);
static void enc_rxldpkt(FAR struct enc_driver_s *priv,
FAR struct enc_descr_s *descr);
static void enc_rxrmpkt(FAR struct enc_driver_s *priv,
FAR struct enc_descr_s *descr);
static void enc_rxdispatch(FAR struct enc_driver_s *priv);
/* Interrupt handling */
static void enc_linkstatus(FAR struct enc_driver_s *priv);
static void enc_txif(FAR struct enc_driver_s *priv);
static void enc_pktif(FAR struct enc_driver_s *priv);
static void enc_rxabtif(FAR struct enc_driver_s *priv);
static void enc_irqworker(FAR void *arg);
static int enc_interrupt(int irq, FAR void *context, FAR void *arg);
/* Watchdog timer expirations */
static void enc_toworker(FAR void *arg);
static void enc_txtimeout(int argc, uint32_t arg, ...);
static void enc_pollworker(FAR void *arg);
static void enc_polltimer(int argc, uint32_t arg, ...);
/* NuttX callback functions */
static int enc_ifup(struct net_driver_s *dev);
static int enc_ifdown(struct net_driver_s *dev);
static int enc_txavail(struct net_driver_s *dev);
#ifdef CONFIG_NET_MCASTGROUP
static int enc_addmac(struct net_driver_s *dev, FAR const uint8_t *mac);
static int enc_rmmac(struct net_driver_s *dev, FAR const uint8_t *mac);
#endif
/* Initialization */
static void enc_pwrsave(FAR struct enc_driver_s *priv);
static void enc_setmacaddr(FAR struct enc_driver_s *priv);
static void enc_resetbuffers(FAR struct enc_driver_s *priv);
static int enc_reset(FAR struct enc_driver_s *priv);
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: enc_lock
*
* Description:
* Select the SPI, locking and re-configuring if necessary
*
* Input Parameters:
* spi - Reference to the SPI driver structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_lock(FAR struct enc_driver_s *priv)
{
/* Lock the SPI bus in case there are multiple devices competing for the SPI
* bus.
*/
SPI_LOCK(priv->spi, true);
/* Now make sure that the SPI bus is configured for the ENCX24J600 (it
* might have gotten configured for a different device while unlocked)
*/
SPI_SETMODE(priv->spi, CONFIG_ENCX24J600_SPIMODE);
SPI_SETBITS(priv->spi, 8);
SPI_HWFEATURES(priv->spi, 0);
SPI_SETFREQUENCY(priv->spi, CONFIG_ENCX24J600_FREQUENCY);
}
/****************************************************************************
* Name: enc_unlock
*
* Description:
* De-select the SPI
*
* Input Parameters:
* spi - Reference to the SPI driver structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static inline void enc_unlock(FAR struct enc_driver_s *priv)
{
/* Relinquish the lock on the bus. */
SPI_LOCK(priv->spi, false);
}
/****************************************************************************
* Name: enc_cmd
*
* Description:
* Execute two byte command.
*
* Input Parameters:
* priv - Reference to the driver state structure
* cmd - ENCX24J600 two-byte command
* arg - Two byte argument to the command
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_cmd(FAR struct enc_driver_s *priv, uint8_t cmd, uint16_t arg)
{
DEBUGASSERT(priv && priv->spi);
/* Select ENCX24J600 chip */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), true);
SPI_SEND(priv->spi, cmd); /* Clock out the command */
SPI_SEND(priv->spi, arg & 0xff); /* Clock out the low byte */
SPI_SEND(priv->spi, arg >> 8); /* Clock out the high byte */
/* De-select ENCX24J600 chip. */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), false);
enc_wrdump(cmd, arg);
}
/****************************************************************************
* Name: enc_setethrst
*
* Description:
* Issues System Reset by setting ETHRST (ECON2<4>)
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static inline void enc_setethrst(FAR struct enc_driver_s *priv)
{
DEBUGASSERT(priv && priv->spi);
/* Select ENCX24J600 chip */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), true);
/* Send the system reset command. */
SPI_SEND(priv->spi, ENC_SETETHRST);
up_udelay(25);
/* De-select ENCX24J600 chip. */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), false);
enc_cmddump(ENC_SETETHRST);
}
/****************************************************************************
* Name: enc_setbank
*
* Description:
* Set the bank for the next control register access.
*
* Assumption:
* The caller has exclusive access to the SPI bus
*
* Input Parameters:
* priv - Reference to the driver state structure
* bank - SPI command to select the bank with
*
* Returned Value:
* None
*
* Assumptions:
* The chip is selected and SPI is ready for communication.
*
****************************************************************************/
static void enc_setbank(FAR struct enc_driver_s *priv, uint8_t bank)
{
/* Check if a bank has to be set and if the bank setting has changed.
* For registers that are available on all banks, the bank command is set
* to 0.
*/
if (bank != 0 && bank != priv->bank)
{
/* Select bank with supplied command */
SPI_SEND(priv->spi, bank);
/* Then remember the bank setting */
priv->bank = bank;
}
}
/****************************************************************************
* Name: enc_rdreg
*
* Description:
* Read one word from a control register using the RCR command.
*
* Input Parameters:
* priv - Reference to the driver state structure
* ctrlreg - Bit encoded address of banked register to read
*
* Returned Value:
* The byte read from the banked register
*
* Assumptions:
*
****************************************************************************/
static uint16_t enc_rdreg(FAR struct enc_driver_s *priv, uint16_t ctrlreg)
{
uint16_t rddata;
DEBUGASSERT(priv && priv->spi);
DEBUGASSERT((ctrlreg & 0xe0) == 0); /* banked regeitsers only */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), true);
enc_setbank(priv, GETBANK(ctrlreg));
SPI_SEND(priv->spi, ENC_RCR | GETADDR(ctrlreg));
rddata = SPI_SEND(priv->spi, 0); /* Clock in the low byte */
rddata |= SPI_SEND(priv->spi, 0) << 8; /* Clock in the high byte */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), false);
enc_rddump(GETADDR(ctrlreg), rddata);
return rddata;
}
/****************************************************************************
* Name: enc_wrreg
*
* Description:
* Write one word to a control register using the WCR command.
*
* Input Parameters:
* priv - Reference to the driver state structure
* ctrlreg - Bit encoded address of banked register to write
* wrdata - The data to send
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_wrreg(FAR struct enc_driver_s *priv, uint16_t ctrlreg,
uint16_t wrdata)
{
DEBUGASSERT(priv && priv->spi);
DEBUGASSERT((ctrlreg & 0xe0) == 0); /* banked regeitsers only */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), true);
enc_setbank(priv, GETBANK(ctrlreg));
SPI_SEND(priv->spi, ENC_WCR | GETADDR(ctrlreg));
SPI_SEND(priv->spi, wrdata & 0xff); /* Clock out the low byte */
SPI_SEND(priv->spi, wrdata >> 8); /* Clock out the high byte */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), false);
enc_wrdump(GETADDR(ctrlreg), wrdata);
}
/****************************************************************************
* Name: enc_waitbreg
*
* Description:
* Wait until banked register bit(s) take a specific value (or a timeout
* occurs).
*
* Input Parameters:
* priv - Reference to the driver state structure
* ctrlreg - Bit encoded address of banked register to check
* bits - The bits to check (a mask)
* value - The value of the bits to return (value under mask)
*
* Returned Value:
* OK on success, negated errno on failure
*
* Assumptions:
*
****************************************************************************/
static int enc_waitreg(FAR struct enc_driver_s *priv, uint16_t ctrlreg,
uint16_t bits, uint16_t value)
{
clock_t start = clock_systimer();
clock_t elapsed;
uint16_t rddata;
/* Loop until the exit condition is met */
do
{
/* Read the byte from the requested banked register */
rddata = enc_rdreg(priv, ctrlreg);
elapsed = clock_systimer() - start;
}
while ((rddata & bits) != value && elapsed < ENC_REGPOLLTIMEOUT);
return (rddata & bits) == value ? OK : -ETIMEDOUT;
}
/****************************************************************************
* Name: enc_bfs
*
* Description:
* Bit Field Set.
*
* Input Parameters:
* priv - Reference to the driver state structure
* ctrlreg - Bit encoded address of banked register to set bits in
* bits - The bits to set (a mask)
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_bfs(FAR struct enc_driver_s *priv, uint16_t ctrlreg,
uint16_t bits)
{
DEBUGASSERT(priv && priv->spi);
/* Select ENCX24J600 chip */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), true);
/* Set the bank */
enc_setbank(priv, GETBANK(ctrlreg));
/* Send the BFS command and data. The sequence requires 24-clocks:
* 8 to clock out the cmd + 16 to clock out the data.
*/
SPI_SEND(priv->spi, ENC_BFS | GETADDR(ctrlreg)); /* Clock out the command */
SPI_SEND(priv->spi, bits & 0xff); /* Clock out the low byte */
SPI_SEND(priv->spi, bits >> 8); /* Clock out the high byte */
/* De-select ENCX24J600 chip. */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), false);
enc_bfsdump(GETADDR(ctrlreg), bits);
}
/****************************************************************************
* Name: enc_bfc
*
* Description:
* Bit Field Clear.
*
* Input Parameters:
* priv - Reference to the driver state structure
* ctrlreg - Bit encoded address of banked register to clear bits in
* bits - The bits to clear (a mask)
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_bfc(FAR struct enc_driver_s *priv, uint16_t ctrlreg,
uint16_t bits)
{
DEBUGASSERT(priv && priv->spi);
/* Select ENCX24J600 chip */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), true);
/* Set the bank */
enc_setbank(priv, GETBANK(ctrlreg));
/* Send the BFC command and data. The sequence requires 24-clocks:
* 8 to clock out the cmd + 16 to clock out the data.
*/
SPI_SEND(priv->spi, ENC_BFC | GETADDR(ctrlreg)); /* Clock out the command */
SPI_SEND(priv->spi, bits & 0xff); /* Clock out the low byte */
SPI_SEND(priv->spi, bits >> 8); /* Clock out the high byte */
/* De-select ENCX24J600 chip. */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), false);
enc_bfcdump(GETADDR(ctrlreg), bits);
}
/****************************************************************************
* Name: enc_txdump enc_rxdump
*
* Description:
* Dump registers associated with receiving or sending packets.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
#if 0 /* Sometimes useful */
static void enc_rxdump(FAR struct enc_driver_s *priv)
{
syslog(LOG_DEBUG, "Rx Registers:\n");
syslog(LOG_DEBUG, " EIE: %02x EIR: %02x\n",
enc_rdgreg(priv, ENC_EIE), enc_rdgreg(priv, ENC_EIR));
syslog(LOG_DEBUG, " ESTAT: %02x ECON1: %02x ECON2: %02x\n",
enc_rdgreg(priv, ENC_ESTAT), enc_rdgreg(priv, ENC_ECON1),
enc_rdgreg(priv, ENC_ECON2));
syslog(LOG_DEBUG, " ERXST: %02x %02x\n",
enc_rdbreg(priv, ENC_ERXSTH), enc_rdbreg(priv, ENC_ERXSTL));
syslog(LOG_DEBUG, " ERXND: %02x %02x\n",
enc_rdbreg(priv, ENC_ERXNDH), enc_rdbreg(priv, ENC_ERXNDL));
syslog(LOG_DEBUG, " ERXRDPT: %02x %02x\n",
enc_rdbreg(priv, ENC_ERXRDPTH), enc_rdbreg(priv, ENC_ERXRDPTL));
syslog(LOG_DEBUG, " ERXFCON: %02x EPKTCNT: %02x\n",
enc_rdbreg(priv, ENC_ERXFCON), enc_rdbreg(priv, ENC_EPKTCNT));
syslog(LOG_DEBUG, " MACON1: %02x MACON3: %02x\n",
enc_rdbreg(priv, ENC_MACON1), enc_rdbreg(priv, ENC_MACON3));
syslog(LOG_DEBUG, " MAMXFL: %02x %02x\n",
enc_rdbreg(priv, ENC_MAMXFLH), enc_rdbreg(priv, ENC_MAMXFLL));
syslog(LOG_DEBUG, " MAADR: %02x:%02x:%02x:%02x:%02x:%02x\n",
enc_rdbreg(priv, ENC_MAADR1), enc_rdbreg(priv, ENC_MAADR2),
enc_rdbreg(priv, ENC_MAADR3), enc_rdbreg(priv, ENC_MAADR4),
enc_rdbreg(priv, ENC_MAADR5), enc_rdbreg(priv, ENC_MAADR6));
}
#endif
#if 0 /* Sometimes useful */
static void enc_txdump(FAR struct enc_driver_s *priv)
{
syslog(LOG_DEBUG, "Tx Registers:\n");
syslog(LOG_DEBUG, " EIE: %02x EIR: %02x\n",
enc_rdgreg(priv, ENC_EIE), enc_rdgreg(priv, ENC_EIR));
syslog(LOG_DEBUG, " ESTAT: %02x ECON1: %02x\n",
enc_rdgreg(priv, ENC_ESTAT), enc_rdgreg(priv, ENC_ECON1));
syslog(LOG_DEBUG, " ETXST: %02x %02x\n",
enc_rdbreg(priv, ENC_ETXSTH), enc_rdbreg(priv, ENC_ETXSTL));
syslog(LOG_DEBUG, " ETXND: %02x %02x\n",
enc_rdbreg(priv, ENC_ETXNDH), enc_rdbreg(priv, ENC_ETXNDL));
syslog(LOG_DEBUG, " MACON1: %02x MACON3: %02x MACON4: %02x\n",
enc_rdbreg(priv, ENC_MACON1), enc_rdbreg(priv, ENC_MACON3),
enc_rdbreg(priv, ENC_MACON4));
syslog(LOG_DEBUG, " MACON1: %02x MACON3: %02x MACON4: %02x\n",
enc_rdbreg(priv, ENC_MACON1), enc_rdbreg(priv, ENC_MACON3),
enc_rdbreg(priv, ENC_MACON4));
syslog(LOG_DEBUG, " MABBIPG: %02x MAIPG %02x %02x\n",
enc_rdbreg(priv, ENC_MABBIPG), enc_rdbreg(priv, ENC_MAIPGH),
enc_rdbreg(priv, ENC_MAIPGL));
syslog(LOG_DEBUG, " MACLCON1: %02x MACLCON2: %02x\n",
enc_rdbreg(priv, ENC_MACLCON1), enc_rdbreg(priv, ENC_MACLCON2));
syslog(LOG_DEBUG, " MAMXFL: %02x %02x\n",
enc_rdbreg(priv, ENC_MAMXFLH), enc_rdbreg(priv, ENC_MAMXFLL));
}
#endif
/****************************************************************************
* Name: enc_rdbuffer
*
* Description:
* Read a buffer of data from RX Data Buffer.
*
* Input Parameters:
* priv - Reference to the driver state structure
* buffer - A pointer to the buffer to read into
* buflen - The number of bytes to read
*
* Returned Value:
* None
*
* Assumptions:
* RX Data pointer is set to the correct address
*
****************************************************************************/
static void enc_rdbuffer(FAR struct enc_driver_s *priv, FAR uint8_t *buffer,
size_t buflen)
{
DEBUGASSERT(priv && priv->spi);
/* Select ENCX24J600 chip */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), true);
/* Send the read buffer memory command (ignoring the response) */
SPI_SEND(priv->spi, ENC_RRXDATA);
/* Then read the buffer data */
SPI_RECVBLOCK(priv->spi, buffer, buflen);
/* De-select ENCX24J600 chip. */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), false);
enc_bmdump(ENC_RRXDATA, buffer, buflen);
}
/****************************************************************************
* Name: enc_wrbuffer
*
* Description:
* Write a buffer of data.
*
* Input Parameters:
* priv - Reference to the driver state structure
* buffer - A pointer to the buffer to write from
* buflen - The number of bytes to write
*
* Returned Value:
* None
*
* Assumptions:
* General Purpose Write pointer is set to the correct address
*
****************************************************************************/
static inline void enc_wrbuffer(FAR struct enc_driver_s *priv,
FAR const uint8_t *buffer, size_t buflen)
{
DEBUGASSERT(priv && priv->spi);
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), true);
SPI_SEND(priv->spi, ENC_WGPDATA);
SPI_SNDBLOCK(priv->spi, buffer, buflen);
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), false);
enc_bmdump(ENC_WGPDATA, buffer, buflen);
}
/****************************************************************************
* Name: enc_rdphy
*
* Description:
* Read 16-bits of PHY data.
*
* Input Parameters:
* priv - Reference to the driver state structure
* phyaddr - The PHY register address
*
* Returned Value:
* 16-bit value read from the PHY
*
* Assumptions:
*
****************************************************************************/
static uint16_t enc_rdphy(FAR struct enc_driver_s *priv, uint8_t phyaddr)
{
uint16_t data = 0;
/* "To read from a PHY register:
* 1. Write the address of the PHY register to read from into the MIREGADR
* register (Register 3-1). Make sure to also set reserved bit 8 of
* this register.
*/
enc_wrreg(priv, ENC_MIREGADR, phyaddr);
/* 2. Set the MIIRD bit (MICMD<0>, Register 3-2). The read operation
* begins and the BUSY bit (MISTAT<0>, Register 3-3) is automatically
* set by hardware.
*/
enc_bfs(priv, ENC_MICMD, MICMD_MIIRD);
/* 3. Wait 25.6 μs. Poll the BUSY (MISTAT<0>) bit to be certain that the
* operation is complete. While busy, the host controller should not
* start any MIISCAN operations or write to the MIWR register. When the
* MAC has obtained the register contents, the BUSY bit will clear
* itself.
*/
up_udelay(26);
if (enc_waitreg(priv, ENC_MISTAT, MISTAT_BUSY, 0x00) == OK)
{
/* 4. Clear the MIIRD (MICMD<0>) bit. */
enc_bfc(priv, ENC_MICMD, MICMD_MIIRD);
/* 5. Read the desired data from the MIRD register. For 8-bit
* interfaces, the order that these bytes are read is unimportant."
*/
data = enc_rdreg(priv, ENC_MIRD);
}
return data;
}
/****************************************************************************
* Name: enc_wrphy
*
* Description:
* write 16-bits of PHY data.
*
* Input Parameters:
* priv - Reference to the driver state structure
* phyaddr - The PHY register address
* phydata - 16-bit data to write to the PHY
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_wrphy(FAR struct enc_driver_s *priv, uint8_t phyaddr,
uint16_t phydata)
{
/* "To write to a PHY register:
*
* 1. Write the address of the PHY register to write to into the MIREGADR
* register. Make sure to also set reserved bit 8 of this register.
*/
enc_wrreg(priv, ENC_MIREGADR, 0x0100 | phyaddr);
/* 2. Write the 16 bits of data into the MIWR register. The low byte must
* be written first, followed by the high byte.
*/
enc_wrreg(priv, ENC_MIWR, phydata);
/* 3. Writing to the high byte of MIWR begins the MIIM transaction and
* the BUSY (MISTAT<0>) bit is automatically set by hardware.
*
* The PHY register is written after the MIIM operation completes, which
* takes 25.6 μs. When the write operation has completed, the BUSY bit
* clears itself. The host controller should not start any MIISCAN, MIWR
* or MIIRD operations while the BUSY bit is set.
*/
up_udelay(26);
enc_waitreg(priv, ENC_MISTAT, MISTAT_BUSY, 0);
}
/****************************************************************************
* Name: enc_transmit
*
* Description:
* Start hardware transmission. Called either from:
*
* - pkif interrupt when an application responds to the receipt of data
* by trying to send something, or
* - From watchdog based polling.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* OK on success; a negated errno on failure
*
* Assumptions:
*
****************************************************************************/
static int enc_transmit(FAR struct enc_driver_s *priv)
{
FAR struct enc_descr_s *descr;
/* dequeue next packet to transmit */
descr = (FAR struct enc_descr_s *)sq_remfirst(&priv->txqueue);
DEBUGASSERT(descr != NULL);
/* Verify that the hardware is ready to send another packet. The driver
* starts a transmission process by setting ECON1.TXRTS. When the packet is
* finished transmitting or is aborted due to an error/cancellation, the
* ECON1.TXRTS bit will be cleared.
*
* NOTE: If we got here, then we have committed to sending a packet.
* higher level logic must have assured that (1) there is no transmission
* in progress, and that (2) TX-related interrupts are disabled.
*/
DEBUGASSERT((enc_rdreg(priv, ENC_ECON1) & ECON1_TXRTS) == 0);
/* Set TXStart and TXLen registers. */
enc_wrreg(priv, ENC_ETXST, descr->addr);
enc_wrreg(priv, ENC_ETXLEN, descr->len);
/* Set TXRTS to send the packet in the transmit buffer */
enc_bfs(priv, ENC_ECON1, ECON1_TXRTS);
/* Setup the TX timeout watchdog (perhaps restarting the timer). Note:
* Is there a race condition. Could the TXIF interrupt occur before
* the timer is started?
*/
wd_start(priv->txtimeout, ENC_TXTIMEOUT, enc_txtimeout, 1,
(wdparm_t)priv);
/* free the descriptor */
sq_addlast((FAR sq_entry_t *)descr, &priv->txfreedescr);
return OK;
}
/****************************************************************************
* Name: enc_txenqueue
*
* Description:
* Write packet from d_buf to the enc's SRAM if a free descriptor is
* available. The filled descriptor is enqueued for transmission.
*
* Input Parameters:
* dev - Reference to the NuttX driver state structure
*
* Returned Value:
* OK on success; a negated errno on failure
*
* Assumptions:
* A packet is available in d_buf.
* Interrupts are enabled but the caller holds the network lock.
*
****************************************************************************/
static int enc_txenqueue(FAR struct enc_driver_s *priv)
{
int ret = OK;
FAR struct enc_descr_s *descr;
DEBUGASSERT(priv->dev.d_len > 0);
/* Increment statistics */
NETDEV_TXPACKETS(&priv->dev);
descr = (FAR struct enc_descr_s *)sq_remfirst(&priv->txfreedescr);
if (descr != NULL)
{
enc_dumppacket("Write packet to enc SRAM", priv->dev.d_buf,
priv->dev.d_len);
/* Copy the packet into the transmit buffer described by the current
* tx descriptor
*/
enc_cmd(priv, ENC_WGPWRPT, descr->addr);
enc_wrbuffer(priv, priv->dev.d_buf, priv->dev.d_len);
/* store packet length */
descr->len = priv->dev.d_len;
/* enqueue packet */
sq_addlast((FAR sq_entry_t *)descr, &priv->txqueue);
/* if currently no transmission is active, trigger the transmission */
if ((enc_rdreg(priv, ENC_ECON1) & ECON1_TXRTS) == 0)
{
enc_transmit(priv);
}
}
else
{
nerr("ERROR: no free descriptors\n");
ret = -ENOMEM;
}
return ret;
}
/****************************************************************************
* Name: enc_txpoll
*
* Description:
* Enqueues network packets if available.
* This is a callback from devif_poll(). devif_poll() may be called:
*
* 1. When the preceding TX packet send is complete,
* 2. When the preceding TX packet send timedout and the interface is reset
* 3. During normal TX polling
*
* Input Parameters:
* dev - Reference to the NuttX driver state structure
*
* Returned Value:
* OK on success; a negated errno on failure
*
* Assumptions:
* Interrupts are enabled but the caller holds the network lock.
*
****************************************************************************/
static int enc_txpoll(struct net_driver_s *dev)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)dev->d_private;
int ret = OK;
/* If the polling resulted in data that should be sent out on the network,
* the field d_len is set to a value > 0.
*/
ninfo("Poll result: d_len=%d\n", priv->dev.d_len);
if (priv->dev.d_len > 0)
{
/* Look up the destination MAC address and add it to the Ethernet
* header.
*/
#ifdef CONFIG_NET_IPv4
#ifdef CONFIG_NET_IPv6
if (IFF_IS_IPv4(priv->dev.d_flags))
#endif
{
arp_out(&priv->dev);
}
#endif /* CONFIG_NET_IPv4 */
#ifdef CONFIG_NET_IPv6
#ifdef CONFIG_NET_IPv4
else
#endif
{
neighbor_out(&priv->dev);
}
#endif /* CONFIG_NET_IPv6 */
if (!devif_loopback(&priv->dev))
{
/* Send the packet */
ret = enc_txenqueue(priv);
}
}
/* If zero is returned, the polling will continue until all connections have
* been examined.
*/
return ret;
}
/****************************************************************************
* Name: enc_linkstatus
*
* Description:
* The current link status can be obtained from the PHSTAT1.LLSTAT or
* PHSTAT2.LSTAT.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_linkstatus(FAR struct enc_driver_s *priv)
{
uint16_t regval;
/* Before transmitting the first packet after link establishment or
* auto-negotiation, the MAC duplex configuration must be manually set to
* match the duplex configuration of the PHY. To do this, configure
* FULDPX (MACON2<0>) to match PHYDPX (ESTAT<10>).
*/
regval = enc_rdreg(priv, ENC_ESTAT);
if (regval & ESTAT_PHYLNK)
{
if (regval & ESTAT_PHYDPX)
{
/* Configure full-duplex */
enc_wrreg(priv, ENC_MABBIPG, 0x15);
enc_bfs(priv, ENC_MACON2, MACON2_FULDPX);
}
else
{
/* Configure half-duplex */
enc_wrreg(priv, ENC_MABBIPG, 0x12);
enc_bfc(priv, ENC_MACON2, MACON2_FULDPX);
}
netdev_carrier_on(&priv->dev);
priv->ifstate = ENCSTATE_RUNNING;
}
else
{
netdev_carrier_off(&priv->dev);
priv->ifstate = ENCSTATE_UP;
}
}
/****************************************************************************
* Name: enc_txif
*
* Description:
* An TXIF interrupt was received indicating that the last TX packet(s) is
* done
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
* Interrupts are enabled but the caller holds the network lock.
*
****************************************************************************/
static void enc_txif(FAR struct enc_driver_s *priv)
{
NETDEV_TXDONE(&priv->dev);
if (sq_empty(&priv->txqueue))
{
/* If no further xmits are pending, then cancel the TX timeout */
wd_cancel(priv->txtimeout);
/* Poll for TX packets from the networking layer */
devif_poll(&priv->dev, enc_txpoll);
}
else
{
/* Process txqueue */
enc_transmit(priv);
}
}
/****************************************************************************
* Name: enc_rxldpkt
*
* Description:
* Load packet from the enc's RX buffer to the driver d_buf.
*
* Input Parameters:
* priv - Reference to the driver state structure
* descr - Reference to the descriptor that should be loaded
*
* Returned Value:
* None
*
* Assumptions:
* Interrupts are enabled but the caller holds the network lock.
*
****************************************************************************/
static void enc_rxldpkt(FAR struct enc_driver_s *priv,
FAR struct enc_descr_s *descr)
{
DEBUGASSERT(priv != NULL && descr != NULL);
ninfo("load packet @%04x len: %d\n", descr->addr, descr->len);
/* Set the rx data pointer to the start of the received packet (ERXRDPT) */
enc_cmd(priv, ENC_WRXRDPT, descr->addr);
/* Save the packet length (without the 4 byte CRC) in priv->dev.d_len */
priv->dev.d_len = descr->len - 4;
/* Copy the data data from the receive buffer to priv->dev.d_buf */
enc_rdbuffer(priv, priv->dev.d_buf, priv->dev.d_len);
enc_dumppacket("loaded RX packet", priv->dev.d_buf, priv->dev.d_len);
}
/****************************************************************************
* Name: enc_rxgetdescr
*
* Description:
* Check for a free descriptor in the free list. If no free descriptor is
* available a pending descriptor will be freed and returned
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* A free rx descriptor
*
* Assumptions:
* Interrupts are enabled but the caller holds the network lock.
*
****************************************************************************/
static struct enc_descr_s *enc_rxgetdescr(FAR struct enc_driver_s *priv)
{
if (sq_empty(&priv->rxfreedescr))
{
DEBUGASSERT(sq_peek(&priv->rxqueue) != NULL);
/* Packets are held in the enc's SRAM until the space is needed */
enc_rxrmpkt(priv, (FAR struct enc_descr_s *)sq_peek(&priv->rxqueue));
}
return (FAR struct enc_descr_s *)sq_remfirst(&priv->rxfreedescr);
}
/****************************************************************************
* Name: enc_rxrmpkt
*
* Description:
* Remove packet from the RX queue and free the block of memory in the enc's
* SRAM.
*
* Input Parameters:
* priv - Reference to the driver state structure
* descr - Reference to the descriptor that should be freed
*
* Returned Value:
* None
*
* Assumptions:
* Interrupts are enabled but the caller holds the network lock.
*
****************************************************************************/
static void enc_rxrmpkt(FAR struct enc_driver_s *priv,
FAR struct enc_descr_s *descr)
{
uint16_t addr;
ninfo("free descr: %p\n", descr);
/* If it is the last descriptor in the queue, advance ERXTAIL.
* This way it is possible that gaps occur. Maybe pending packets
* can be reordered th enc's DMA to free RX space?
*/
if (descr != NULL)
{
if (descr == (FAR struct enc_descr_s *)sq_peek(&priv->rxqueue))
{
/* Wrap address properly around */
addr = (descr->addr - PKTMEM_RX_START + descr->len - 2 +
PKTMEM_RX_SIZE)
% PKTMEM_RX_SIZE + PKTMEM_RX_START;
DEBUGASSERT(addr >= PKTMEM_RX_START && addr < PKTMEM_RX_END);
ninfo("ERXTAIL %04x\n", addr);
enc_wrreg(priv, ENC_ERXTAIL, addr);
/* Remove packet from RX queue */
sq_remfirst(&priv->rxqueue);
}
else
{
/* Remove packet from RX queue */
sq_rem((FAR sq_entry_t *)descr, &priv->rxqueue);
}
sq_addlast((FAR sq_entry_t *)descr, &priv->rxfreedescr);
}
}
/****************************************************************************
* Name: enc_rxdispatch
*
* Description:
* Give the newly received packet to the network.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
* Interrupts are enabled but the caller holds the network lock.
*
****************************************************************************/
static void enc_rxdispatch(FAR struct enc_driver_s *priv)
{
FAR struct enc_descr_s *descr;
struct enc_descr_s *next;
/* Process the RX queue */
descr = (FAR struct enc_descr_s *)sq_peek(&priv->rxqueue);
while (descr != NULL)
{
/* Store the next pointer, because removing the item from list will set
* flink to NULL
*/
next = (FAR struct enc_descr_s *)sq_next(descr);
/* Load the packet from the enc's SRAM */
enc_rxldpkt(priv, descr);
#ifdef CONFIG_NET_PKT
/* When packet sockets are enabled, feed the frame into the packet tap */
pkt_input(&priv->dev);
#endif
/* We only accept IP packets of the configured type and ARP packets */
#ifdef CONFIG_NET_IPv4
if (BUF->type == HTONS(ETHTYPE_IP))
{
ninfo("IPv4 frame\n");
NETDEV_RXIPV4(&priv->dev);
/* Handle ARP on input then give the IPv4 packet to the network
* layer
*/
arp_ipin(&priv->dev);
ipv4_input(&priv->dev);
/* Free the packet */
enc_rxrmpkt(priv, descr);
/* If the above function invocation resulted in data that should be
* sent out on the network, the field d_len will set to a value
* > 0.
*/
if (priv->dev.d_len > 0)
{
/* Update the Ethernet header with the correct MAC address */
#ifdef CONFIG_NET_IPv6
if (IFF_IS_IPv4(priv->dev.d_flags))
#endif
{
arp_out(&priv->dev);
}
#ifdef CONFIG_NET_IPv6
else
{
neighbor_out(&priv->dev);
}
#endif
/* And send the packet */
enc_txenqueue(priv);
}
}
else
#endif
#ifdef CONFIG_NET_IPv6
if (BUF->type == HTONS(ETHTYPE_IP6))
{
ninfo("Iv6 frame\n");
NETDEV_RXIPV6(&priv->dev);
/* Give the IPv6 packet to the network layer */
ipv6_input(&priv->dev);
/* Free the packet */
enc_rxrmpkt(priv, descr);
/* If the above function invocation resulted in data that should be
* sent out on the network, the field d_len will set to a value
* > 0.
*/
if (priv->dev.d_len > 0)
{
/* Update the Ethernet header with the correct MAC address */
#ifdef CONFIG_NET_IPv4
if (IFF_IS_IPv4(priv->dev.d_flags))
{
arp_out(&priv->dev);
}
else
#endif
#ifdef CONFIG_NET_IPv6
{
neighbor_out(&priv->dev);
}
#endif
/* And send the packet */
enc_txenqueue(priv);
}
}
else
#endif
#ifdef CONFIG_NET_ARP
if (BUF->type == htons(ETHTYPE_ARP))
{
ninfo("ARP packet received (%02x)\n", BUF->type);
NETDEV_RXARP(&priv->dev);
arp_arpin(&priv->dev);
/* ARP packets are freed immediately */
enc_rxrmpkt(priv, descr);
/* If the above function invocation resulted in data that should be
* sent out on the network, the field d_len will set to a value
* > 0.
*/
if (priv->dev.d_len > 0)
{
enc_txenqueue(priv);
}
}
else
#endif
{
/* free unsupported packet */
enc_rxrmpkt(priv, descr);
nerr("ERROR: Unsupported packet type dropped (%02x)\n",
htons(BUF->type));
NETDEV_RXDROPPED(&priv->dev);
}
descr = next;
}
}
/****************************************************************************
* Name: enc_pktif
*
* Description:
* An interrupt was received indicating the availability of a new RX packet
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
* Interrupts are enabled but the caller holds the network lock.
*
****************************************************************************/
static void enc_pktif(FAR struct enc_driver_s *priv)
{
FAR struct enc_descr_s *descr;
uint8_t rsv[8];
uint16_t pktlen;
uint32_t rxstat;
uint16_t curpkt;
int pktcnt;
DEBUGASSERT(priv->nextpkt >= PKTMEM_RX_START &&
priv->nextpkt < PKTMEM_RX_END);
/* Enqueue all pending packets to the RX queue until PKTCNT == 0 or
* no more descriptors are available.
*/
pktcnt = (enc_rdreg(priv, ENC_ESTAT) & ESTAT_PKTCNT_MASK) >>
ESTAT_PKTCNT_SHIFT;
while (pktcnt > 0)
{
curpkt = priv->nextpkt;
/* Set the rx data pointer to the start of the received packet (ERXRDPT) */
enc_cmd(priv, ENC_WRXRDPT, curpkt);
/* Read the next packet pointer and the 6 byte read status vector (RSV)
* at the beginning of the received packet. (ERXRDPT should auto-
* increment and wrap to the beginning of the read buffer as necessary)
*/
enc_rdbuffer(priv, rsv, 8);
/* Decode the new next packet pointer, and the RSV. The
* RSV is encoded as:
*
* Bits 0-15: Indicates length of the received frame. This includes
* the destination address, source address, type/length,
* data, padding and CRC fields. This field is stored in
* little-endian format.
* Bits 16-47: Bit encoded RX status.
*/
priv->nextpkt = (uint16_t)rsv[1] << 8 | (uint16_t)rsv[0];
pktlen = (uint16_t)rsv[3] << 8 | (uint16_t)rsv[2];
rxstat = (uint32_t)rsv[7] << 24 | (uint32_t)rsv[6] << 16 |
(uint32_t)rsv[5] << 8 | (uint32_t)rsv[4];
ninfo("Receiving packet, nextpkt: %04x pktlen: %d rxstat: %08x "
"pktcnt: %d\n",
priv->nextpkt, pktlen, rxstat, pktcnt);
/* We enqueue the packet first and remove it later if its faulty.
* This way we avoid freeing packets that are not processed yet.
*/
descr = enc_rxgetdescr(priv);
/* Store the start address of the frame without the enc's header */
descr->addr = curpkt + 8;
descr->len = pktlen;
sq_addlast((FAR sq_entry_t *)descr, &priv->rxqueue);
/* Check if the packet was received OK */
if ((rxstat & RXSTAT_OK) == 0)
{
nerr("ERROR: RXSTAT: %08x\n", rxstat);
/* Discard packet */
enc_rxrmpkt(priv, descr);
NETDEV_RXERRORS(&priv->dev);
}
/* Check for a usable packet length (4 added for the CRC) */
else if (pktlen > (CONFIG_NET_ETH_PKTSIZE + 4) ||
pktlen <= (ETH_HDRLEN + 4))
{
nerr("ERROR: Bad packet size dropped (%d)\n", pktlen);
/* Discard packet */
enc_rxrmpkt(priv, descr);
NETDEV_RXERRORS(&priv->dev);
}
/* Decrement PKTCNT */
enc_bfs(priv, ENC_ECON1, ECON1_PKTDEC);
/* Try to process the packet */
enc_rxdispatch(priv);
/* Read out again, maybe there has another packet arrived */
pktcnt = (enc_rdreg(priv, ENC_ESTAT) & ESTAT_PKTCNT_MASK) >>
ESTAT_PKTCNT_SHIFT;
}
}
/****************************************************************************
* Name: enc_rxabtif
*
* Description:
* An interrupt was received indicating the abortion of an RX packet
*
* "The receive abort interrupt occurs when the reception of a frame has
* been aborted. A frame being received is aborted when the Head Pointer
* attempts to overrun the Tail Pointer, or when the packet counter has
* reached FFh. In either case, the receive buffer is full and cannot
* fit the incoming frame, so the packet has been dropped. This
* interrupt does not occur when packets are dropped due to the receive
* filters rejecting a packet. The interrupt should be cleared by
* software once it has been serviced."
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
* Interrupts are enabled but the caller holds the network lock.
*
****************************************************************************/
static void enc_rxabtif(FAR struct enc_driver_s *priv)
{
FAR struct enc_descr_s *descr;
#if 0
/* Free the last received packet from the RX queue */
ninfo("rx abort\n");
ninfo("ESTAT: %04x\n", enc_rdreg(priv, ENC_ESTAT));
ninfo("EIR: %04x\n", enc_rdreg(priv, ENC_EIR));
ninfo("ERXTAIL: %04x\n", enc_rdreg(priv, ENC_ERXTAIL));
ninfo("ERXHAED: %04x\n", enc_rdreg(priv, ENC_ERXHEAD));
descr = (FAR struct enc_descr_s *)sq_peek(&priv->rxqueue);
while (descr != NULL)
{
ninfo("addr: %04x len: %d\n", descr->addr, descr->len);
descr = (FAR struct enc_descr_s *)sq_next(descr);
}
DEBUGASSERT(false);
#endif
descr = (FAR struct enc_descr_s *)sq_peek(&priv->rxqueue);
if (descr != NULL)
{
enc_rxrmpkt(priv, descr);
ninfo("pending packet freed\n");
}
else
{
/* If no pending packet blocks the reception, reset all buffers */
enc_resetbuffers(priv);
}
}
/****************************************************************************
* Name: enc_irqworker
*
* Description:
* Perform interrupt handling logic outside of the interrupt handler (on
* the work queue thread).
*
* Input Parameters:
* arg - The reference to the driver structure (case to void*)
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_irqworker(FAR void *arg)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)arg;
uint16_t eir;
DEBUGASSERT(priv);
/* Get exclusive access to both the network and the SPI bus. */
net_lock();
enc_lock(priv);
/* A good practice is for the host controller to clear the Global Interrupt
* Enable bit, INTIE (EIE<15>), immediately after an interrupt event. This
* causes the interrupt pin to return to the non-asserted (high) state. Once
* the interrupt has been serviced, the INTIE bit is set again to re-enable
* interrupts. If a new interrupt occurs while servicing another, the act of
* resetting the global enable bit will cause a new falling edge to occur on
* the interrupt pin and ensure that the host does not miss any events
*/
enc_bfc(priv, ENC_EIE, EIE_INTIE);
/* Loop until all interrupts have been processed (EIR==0). Note that
* there is no infinite loop check... if there are always pending
* interrupts, we are just broken.
*/
while ((eir = enc_rdreg(priv, ENC_EIR) & EIR_ALLINTS) != 0)
{
/* Handle interrupts according to interrupt register register bit
* settings.
*/
ninfo("EIR: %04x\n", eir);
if ((eir & EIR_DMAIF) != 0) /* DMA interrupt */
{
/* Not used by this driver. Just clear the interrupt request. */
enc_bfc(priv, ENC_EIR, EIR_DMAIF);
}
/* LINKIF: The link change interrupt occurs when the PHY link status
* changes. This flag is set by hardware when a link has either been
* established or broken between the device and a remote Ethernet
* partner. The current link status can be read from PHYLNK
* (ESTAT<8>). The interrupt should be cleared by software once it
* has been serviced.
*
* To enable the link change interrupt, set LINKIE (EIE<11>).
*/
if ((eir & EIR_LINKIF) != 0) /* PHY Link Status Change */
{
enc_linkstatus(priv); /* Get current link status */
enc_bfc(priv, ENC_EIR, EIR_LINKIF); /* Clear the LINKIF interrupt */
}
/* The transmit complete interrupt occurs when the transmission of a
* frame has ended (whether or not it was successful). This flag is set
* when TXRTS (ECON1<1>) is cleared. The interrupt should be cleared by
* software once it has been serviced.
*/
if ((eir & EIR_TXIF) != 0) /* Transmit Done */
{
enc_txif(priv);
enc_bfc(priv, ENC_EIR, EIR_TXIF);
}
/* The receive abort interrupt occurs when the reception of a frame has
* been aborted. A frame being received is aborted when the Head Pointer
* attempts to overrun the Tail Pointer, or when the packet counter has
* reached FFh. In either case, the receive buffer is full and cannot
* fit the incoming frame, so the packet has been dropped. This
* interrupt does not occur when packets are dropped due to the receive
* filters rejecting a packet. The interrupt should be cleared by
* software once it has been serviced.
*
* To enable the receive abort interrupt, set RXABTIE (EIE<1>).
* The corresponding interrupt flag is RXABTIF (EIR<1>).
*/
if ((eir & EIR_RXABTIF) != 0) /* Receive Abort */
{
NETDEV_RXERRORS(&priv->dev);
enc_rxabtif(priv);
enc_bfc(priv, ENC_EIR, EIR_RXABTIF); /* Clear the RXABTIF interrupt */
}
/* The received packet pending interrupt occurs when one or more frames
* have been received and are ready for software processing. This flag
* is set when the PKTCNT<7:0> (ESTAT<7:0>) bits are non-zero. This
* interrupt flag is read-only and will automatically clear when the
* PKTCNT bits are decremented to zero. For more details about
* receiving and processing incoming frames, refer to Section 9.0
* "Transmitting and Receiving Packets".
*
* To enable the received packet pending interrupt, set PKTIE (EIE<6>).
* The corresponding interrupt flag is PKTIF (EIR<6>).
*/
if ((eir & EIR_PKTIF) != 0 /* RX Packet Pending */
&& (enc_rdreg(priv, ENC_ESTAT) & ESTAT_PKTCNT_MASK) != 0)
{
enc_pktif(priv); /* Handle packet receipt */
/* No clearing necessary, after PKTCNT == 0 the bit is automatically
* cleared. This means we will loop until all packets are processed.
*/
}
#ifdef CONFIG_NETDEV_STATISTICS
/* The transmit abort interrupt occurs when the transmission of a frame
* has been aborted. An abort can occur for any of the following
* reasons:
*
* * Excessive collisions occurred as defined by the Retransmission
* Maximum, MAXRET<3:0> bits (MACLCON<3:0>), setting. If this occurs,
* the COLCNT bits (ETXSTAT<3:0>) will indicate the number of
* collisions that occurred.
*
* * A late collision occurred after 63 bytes were transmitted. If this
* occurs, LATECOL (ETXSTAT<10>) will be set.
*
* * The medium was busy and the packet was deferred. If this occurs,
* EXDEFER (ETXSTAT<8>) will be set.
*
* * The application aborted the transmission by clearing TXRTS
* (ECON1<1>).
*
* The interrupt should be cleared by software once it has been
* serviced. To enable the transmit abort interrupt, set TXABTIE
* (EIE<2>).
*/
if ((eir & EIR_TXABTIF) != 0) /* Transmit Abort */
{
NETDEV_TXERRORS(&priv->dev);
enc_bfc(priv, ENC_EIR, EIR_TXABTIF); /* Clear the TXABTIF interrupt */
}
#endif
}
/* Enable GPIO interrupts */
priv->lower->enable(priv->lower);
/* Enable Ethernet interrupts */
enc_bfs(priv, ENC_EIE, EIE_INTIE);
/* Release lock on the SPI bus and the network */
enc_unlock(priv);
net_unlock();
}
/****************************************************************************
* Name: enc_interrupt
*
* Description:
* Hardware interrupt handler
*
* Input Parameters:
* irq - Number of the IRQ that generated the interrupt
* context - Interrupt register state save info (architecture-specific)
*
* Returned Value:
* OK on success
*
* Assumptions:
*
****************************************************************************/
static int enc_interrupt(int irq, FAR void *context, FAR void *arg)
{
FAR struct enc_driver_s *priv;
DEBUGASSERT(arg != NULL);
priv = (FAR struct enc_driver_s *)arg;
/* In complex environments, we cannot do SPI transfers from the interrupt
* handler because semaphores are probably used to lock the SPI bus. In
* this case, we will defer processing to the worker thread. This is also
* much kinder in the use of system resources and is, therefore, probably
* a good thing to do in any event.
*/
DEBUGASSERT(work_available(&priv->irqwork));
/* Notice that further GPIO interrupts are disabled until the work is
* actually performed. This is to prevent overrun of the worker thread.
* Interrupts are re-enabled in enc_irqworker() when the work is completed.
*/
priv->lower->disable(priv->lower);
return work_queue(ENCWORK, &priv->irqwork, enc_irqworker,
(FAR void *)priv, 0);
}
/****************************************************************************
* Name: enc_toworker
*
* Description:
* Our TX watchdog timed out. This is the worker thread continuation of
* the watchdog timer interrupt. Reset the hardware and start again.
*
* Input Parameters:
* arg - The reference to the driver structure (case to void*)
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_toworker(FAR void *arg)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)arg;
int ret;
nerr("ERROR: Tx timeout\n");
DEBUGASSERT(priv);
/* Get exclusive access to the network. */
net_lock();
/* Increment statistics and dump debug info */
NETDEV_TXTIMEOUTS(&priv->dev);
/* Then reset the hardware: Take the interface down, then bring it
* back up
*/
ret = enc_ifdown(&priv->dev);
DEBUGASSERT(ret == OK);
ret = enc_ifup(&priv->dev);
DEBUGASSERT(ret == OK);
UNUSED(ret);
/* Then poll the network for new XMIT data */
devif_poll(&priv->dev, enc_txpoll);
/* Release the network */
net_unlock();
}
/****************************************************************************
* Name: enc_txtimeout
*
* Description:
* Our TX watchdog timed out. Called from the timer interrupt handler.
* The last TX never completed. Perform work on the worker thread.
*
* Input Parameters:
* argc - The number of available arguments
* arg - The first argument
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_txtimeout(int argc, uint32_t arg, ...)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)arg;
int ret;
/* In complex environments, we cannot do SPI transfers from the timeout
* handler because semaphores are probably used to lock the SPI bus. In
* this case, we will defer processing to the worker thread. This is also
* much kinder in the use of system resources and is, therefore, probably
* a good thing to do in any event.
*/
DEBUGASSERT(priv && work_available(&priv->towork));
/* Notice that Tx timeout watchdog is not active so further Tx timeouts
* can occur until we restart the Tx timeout watchdog.
*/
ret = work_queue(ENCWORK, &priv->towork, enc_toworker, (FAR void *)priv, 0);
UNUSED(ret);
DEBUGASSERT(ret == OK);
}
/****************************************************************************
* Name: enc_pollworker
*
* Description:
* Periodic timer handler continuation.
*
* Input Parameters:
* argc - The number of available arguments
* arg - The first argument
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_pollworker(FAR void *arg)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)arg;
DEBUGASSERT(priv);
/* Get exclusive access to both the network and the SPI bus. */
net_lock();
enc_lock(priv);
/* Verify that the hardware is ready to send another packet. The driver
* start a transmission process by setting ECON1.TXRTS. When the packet is
* finished transmitting or is aborted due to an error/cancellation, the
* ECON1.TXRTS bit will be cleared.
*/
if ((enc_rdreg(priv, ENC_ECON1) & ECON1_TXRTS) == 0)
{
/* Yes.. update TCP timing states and poll the network for new XMIT
* data. Hmmm.. looks like a bug here to me. Does this mean if there
* is a transmit in progress, we will missing TCP time state updates?
*/
devif_timer(&priv->dev, ENC_WDDELAY, enc_txpoll);
}
/* Release lock on the SPI bus and the network */
enc_unlock(priv);
net_unlock();
/* Setup the watchdog poll timer again */
wd_start(priv->txpoll, ENC_WDDELAY, enc_polltimer, 1, (wdparm_t)arg);
}
/****************************************************************************
* Name: enc_polltimer
*
* Description:
* Periodic timer handler. Called from the timer interrupt handler.
*
* Input Parameters:
* argc - The number of available arguments
* arg - The first argument
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_polltimer(int argc, uint32_t arg, ...)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)arg;
int ret;
/* In complex environments, we cannot do SPI transfers from the timeout
* handler because semaphores are probably used to lock the SPI bus. In
* this case, we will defer processing to the worker thread. This is also
* much kinder in the use of system resources and is, therefore, probably
* a good thing to do in any event.
*/
DEBUGASSERT(priv && work_available(&priv->pollwork));
/* Notice that poll watchdog is not active so further poll timeouts can
* occur until we restart the poll timeout watchdog.
*/
ret = work_queue(ENCWORK, &priv->pollwork, enc_pollworker,
(FAR void *)priv, 0);
DEBUGASSERT(ret == OK);
UNUSED(ret);
}
/****************************************************************************
* Name: enc_ifup
*
* Description:
* NuttX Callback: Bring up the Ethernet interface when an IP address is
* provided
*
* Input Parameters:
* dev - Reference to the NuttX driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static int enc_ifup(struct net_driver_s *dev)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)dev->d_private;
int ret;
ninfo("Bringing up: %d.%d.%d.%d\n",
dev->d_ipaddr & 0xff, (dev->d_ipaddr >> 8) & 0xff,
(dev->d_ipaddr >> 16) & 0xff, dev->d_ipaddr >> 24);
/* Lock the SPI bus so that we have exclusive access */
enc_lock(priv);
/* Initialize Ethernet interface, set the MAC address, and make sure that
* the ENC28J80 is not in power save mode.
*/
ret = enc_reset(priv);
if (ret == OK)
{
enc_setmacaddr(priv);
/* Enable interrupts at the ENCX24J600. Interrupts are still disabled
* at the interrupt controller.
*/
enc_bfc(priv, ENC_EIR, EIR_ALLINTS);
enc_bfs(priv, ENC_EIE, EIE_INTIE | EIE_LINKIE |
EIE_PKTIE | EIE_RXABTIE |
EIE_TXIE);
#ifdef CONFIG_NETDEV_STATISTICS
enc_bfs(priv, ENC_EIE, EIE_TXABTIE);
#endif
/* Enable the receiver */
enc_bfs(priv, ENC_ECON1, ECON1_RXEN);
/* Set and activate a timer process */
wd_start(priv->txpoll, ENC_WDDELAY, enc_polltimer, 1,
(wdparm_t)priv);
/* Mark the interface up and enable the Ethernet interrupt at the
* controller
*/
priv->ifstate = ENCSTATE_UP;
priv->lower->enable(priv->lower);
}
/* Un-lock the SPI bus */
enc_unlock(priv);
return ret;
}
/****************************************************************************
* Name: enc_ifdown
*
* Description:
* NuttX Callback: Stop the interface.
*
* Input Parameters:
* dev - Reference to the NuttX driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static int enc_ifdown(struct net_driver_s *dev)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)dev->d_private;
irqstate_t flags;
int ret;
ninfo("Taking down: %d.%d.%d.%d\n",
dev->d_ipaddr & 0xff, (dev->d_ipaddr >> 8) & 0xff,
(dev->d_ipaddr >> 16) & 0xff, dev->d_ipaddr >> 24);
/* Lock the SPI bus so that we have exclusive access */
enc_lock(priv);
/* Disable the Ethernet interrupt */
flags = enter_critical_section();
priv->lower->disable(priv->lower);
/* Cancel the TX poll timer and TX timeout timers */
wd_cancel(priv->txpoll);
wd_cancel(priv->txtimeout);
/* Reset the device and leave in the power save state */
ret = enc_reset(priv);
enc_pwrsave(priv);
priv->ifstate = ENCSTATE_DOWN;
leave_critical_section(flags);
/* Un-lock the SPI bus */
enc_unlock(priv);
return ret;
}
/****************************************************************************
* Name: enc_txavail
*
* Description:
* Driver callback invoked when new TX data is available. This is a
* stimulus perform an out-of-cycle poll and, thereby, reduce the TX
* latency.
*
* Input Parameters:
* dev - Reference to the NuttX driver state structure
*
* Returned Value:
* None
*
* Assumptions:
* Called in normal user mode
*
****************************************************************************/
static int enc_txavail(struct net_driver_s *dev)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)dev->d_private;
irqstate_t flags;
/* Lock the SPI bus so that we have exclusive access */
enc_lock(priv);
/* Ignore the notification if the interface is not yet up */
flags = enter_critical_section();
if (priv->ifstate == ENCSTATE_RUNNING)
{
/* Check if the hardware is ready to send another packet. The driver
* starts a transmission process by setting ECON1.TXRTS. When the
* packet is finished transmitting or is aborted due to an error/
* cancellation, the ECON1.TXRTS bit will be cleared.
*/
if ((enc_rdreg(priv, ENC_ECON1) & ECON1_TXRTS) == 0)
{
/* The interface is up and TX is idle; poll the network for new XMIT data */
devif_poll(&priv->dev, enc_txpoll);
}
}
/* Un-lock the SPI bus */
leave_critical_section(flags);
enc_unlock(priv);
return OK;
}
/****************************************************************************
* Name: enc_addmac
*
* Description:
* NuttX Callback: Add the specified MAC address to the hardware multicast
* address filtering
*
* Input Parameters:
* dev - Reference to the NuttX driver state structure
* mac - The MAC address to be added
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
#ifdef CONFIG_NET_MCASTGROUP
static int enc_addmac(struct net_driver_s *dev, FAR const uint8_t *mac)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)dev->d_private;
/* Lock the SPI bus so that we have exclusive access */
enc_lock(priv);
/* Add the MAC address to the hardware multicast routing table */
#warning "Multicast MAC support not implemented"
/* Un-lock the SPI bus */
enc_unlock(priv);
return OK;
}
#endif
/****************************************************************************
* Name: enc_rmmac
*
* Description:
* NuttX Callback: Remove the specified MAC address from the hardware
* multicast address filtering
*
* Input Parameters:
* dev - Reference to the NuttX driver state structure
* mac - The MAC address to be removed
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
#ifdef CONFIG_NET_MCASTGROUP
static int enc_rmmac(struct net_driver_s *dev, FAR const uint8_t *mac)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)dev->d_private;
/* Lock the SPI bus so that we have exclusive access */
enc_lock(priv);
/* Add the MAC address to the hardware multicast routing table */
#warning "Multicast MAC support not implemented"
/* Un-lock the SPI bus */
enc_unlock(priv);
return OK;
}
#endif
/****************************************************************************
* Name: enc_pwrsave
*
* Description:
* The ENCX24J600 may be placed in Power-Down mode through the command
* interface. In this mode, the device will no longer be able to transmit
* or receive any packets or perform DMA operations. However, most
* registers, and all buffer memories, retain their states and remain
* accessible by the host controller. The clock driver also remains
* operational, leaving the CLKOUT function unaffected. However, the
* MAC/MII and PHY registers all become inaccessible, and the PHY
* registers lose their current states.
*
* 1. Turn off the Modular Exponentiation and AES engines by clearing
* CRYPTEN (EIR<15>).
* 2. Turn off packet reception by clearing RXEN (ECON1<0>).
* 3. Wait for any in-progress receptions to complete by polling
* RXBUSY (ESTAT<13>) until it is clear.
* 4. Wait for any current transmission operation to complete by verifying
* that TXRTS (ECON1<1>) is clear.
* 5. Power-down the PHY by setting the PSLEEP bit (PHCON1<11>).
* 6. Power-down the Ethernet interface by clearing
* ETHEN and STRCH (ECON2<15,14>). Disabling the LED stretching behavior
* is necessary to ensure no LEDs get trapped in a perpetually
* illuminated state in the event they are being stretched on when ETHEN
* is cleared.
*
* Note:
* Instead of providing a powerup function, the job is done by enc_reset.
* enc_ifup calls it anyway.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_pwrsave(FAR struct enc_driver_s *priv)
{
uint16_t regval;
ninfo("Set PWRSV\n");
/* 1. Turn off AES */
enc_bfc(priv, ENC_EIR, EIR_CRYPTEN);
/* 2. Turn off packet reception */
enc_bfc(priv, ENC_ECON1, ECON1_RXEN);
/* 3. Wait for pending reception to complete */
enc_waitreg(priv, ENC_ESTAT, ESTAT_RXBUSY, 0);
/* 4. Wait for any current transmissions to complete */
enc_waitreg(priv, ENC_ECON1, ECON1_TXRTS, 0);
/* 5. Power down the PHY */
regval = enc_rdphy(priv, ENC_PHCON1);
regval |= PHCON1_PSLEEP;
enc_wrphy(priv, ENC_PHCON1, regval);
/* 6. Power down the Ethernet interface */
enc_bfc(priv, ENC_ECON2, ECON2_ETHEN | ECON2_STRCH);
}
/****************************************************************************
* Name: enc_ldmacaddr
*
* Description:
* Load the MAC address from the ENCX24j600 and write it to the device
* structure.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_ldmacaddr(FAR struct enc_driver_s *priv)
{
uint16_t regval;
uint8_t *mac = priv->dev.d_mac.ether.ether_addr_octet;
ninfo("Using ENCX24J600's built in MAC address\n");
regval = enc_rdreg(priv, ENC_MAADR1);
mac[0] = regval & 0xff;
mac[1] = regval >> 8;
regval = enc_rdreg(priv, ENC_MAADR2);
mac[2] = regval & 0xff;
mac[3] = regval >> 8;
regval = enc_rdreg(priv, ENC_MAADR3);
mac[4] = regval & 0xff;
mac[5] = regval >> 8;
}
/****************************************************************************
* Name: enc_setmacaddr
*
* Description:
* Set the MAC address to the configured value. This is done after ifup
* or after a TX timeout. Note that this means that the interface must
* be down before configuring the MAC addr.
* If the MAC address is 0 in all digits, the ENCX24J600's MAC is read out.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_setmacaddr(FAR struct enc_driver_s *priv)
{
uint8_t *mac = priv->dev.d_mac.ether.ether_addr_octet;
struct ether_addr zmac;
memset(&zmac, 0, sizeof(zmac));
if (memcmp(&priv->dev.d_mac.ether, &zmac, sizeof(zmac)) == 0)
{
/* No user defined MAC address. Read it from the device. */
enc_ldmacaddr(priv);
}
else
{
/* There is a user defined mac address. Write it to the ENCXJ600 */
ninfo("Using an user defined MAC address\n");
enc_wrreg(priv, ENC_MAADR1, (uint16_t)mac[1] << 8 | (uint16_t)mac[0]);
enc_wrreg(priv, ENC_MAADR2, (uint16_t)mac[3] << 8 | (uint16_t)mac[2]);
enc_wrreg(priv, ENC_MAADR3, (uint16_t)mac[5] << 8 | (uint16_t)mac[4]);
}
}
/****************************************************************************
* Name: enc_resetbuffers
*
* Description:
* Initializes the RX/TX queues and configures the enc's RX/TX buffers.
* Called on general reset and on rxabt interrupt.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_resetbuffers(FAR struct enc_driver_s *priv)
{
int i;
/* Initialize receive and transmit buffers */
priv->nextpkt = PKTMEM_RX_START;
enc_wrreg(priv, ENC_ERXST, PKTMEM_RX_START);
/* Program the Tail Pointer, ERXTAIL, to the last even address of the buffer */
enc_wrreg(priv, ENC_ERXTAIL, PKTMEM_RX_END - 2);
sq_init(&priv->txfreedescr);
sq_init(&priv->rxfreedescr);
sq_init(&priv->txqueue);
sq_init(&priv->rxqueue);
/* For transmission we preinitialize the descriptors to aligned NET_BUFFSIZE */
for (i = 0; i < ENC_NTXDESCR; i++)
{
priv->txdescralloc[i].addr = PKTMEM_START +
PKTMEM_ALIGNED_BUFSIZE * i;
sq_addlast((FAR sq_entry_t *)&priv->txdescralloc[i],
&priv->txfreedescr);
}
/* Receive descriptors addresses are set on reception */
for (i = 0; i < CONFIG_ENCX24J600_NRXDESCR; i++)
{
sq_addlast((FAR sq_entry_t *)&priv->rxdescralloc[i],
&priv->rxfreedescr);
}
}
/****************************************************************************
* Name: enc_reset
*
* Description:
* Stop, reset, re-initialize, and restart the ENCX24J600. This is done
* initially, on ifup, and after a TX timeout.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static int enc_reset(FAR struct enc_driver_s *priv)
{
int ret;
uint16_t regval;
ninfo("Reset\n");
do
{
enc_wrreg(priv, ENC_EUDAST, 0x1234);
}
while (enc_rdreg(priv, ENC_EUDAST) != 0x1234);
/* Wait for clock to become ready */
ret = enc_waitreg(priv, ENC_ESTAT, ESTAT_CLKRDY, ESTAT_CLKRDY);
if (ret != OK)
{
nerr("ERROR: encx24j600 clock failed to become ready\n");
return -ENODEV;
}
/* Reset the ENCX24J600 */
enc_setethrst(priv);
/* Check if EUDAST has been reset to 0 */
regval = enc_rdreg(priv, ENC_EUDAST);
if (regval != 0x0000)
{
nerr("ERROR: encx24j600 seems not to be reset properly\n");
return -ENODEV;
}
/* Wait at least 256 μs for the PHY registers and PHY status bits to become
* available.
*/
up_udelay(256);
/* Initialize RX/TX buffers */
enc_resetbuffers(priv);
#if 0
/* When restarting auto-negotiation, the ESTAT_PHYLINK gets set but the link
* seems not to be ready. Because auto-negotiation is enabled by default
* (but with different PHANA_* settings) I did not investigate that further.
*/
/* "Typically, when using auto-negotiation, users should write 0x05e1 to
* PHANA to advertise flow control capability."
*/
enc_wrphy(priv, ENC_PHANA, PHANA_ADPAUS0 | PHANA_AD10FD | PHANA_AD10 |
PHANA_AD100FD | PHANA_AD100 | PHANA_ADIEEE0);
/* Restart auto-negotiation */
enc_wrphy(priv, ENC_PHCON1, PHCON1_RENEG);
do
{
regval = enc_rdphy(priv, ENC_PHSTAT1);
}
while ((regval & PHSTAT1_ANDONE) != 0);
ninfo("Auto-negotiation completed\n");
#endif
enc_linkstatus(priv);
/* Set the maximum packet size which the controller will accept */
enc_wrreg(priv, ENC_MAMXFL, CONFIG_NET_ETH_PKTSIZE + 4);
ret = enc_waitreg(priv, ENC_ESTAT, ESTAT_PHYLNK, ESTAT_PHYLNK);
if (ret == OK)
{
enc_linkstatus(priv);
}
#if 0
if (ret != OK)
{
nerr("ERROR: encx24j600 failed to establish link\n");
return -ENODEV;
}
#endif
return OK;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: enc_initialize
*
* Description:
* Initialize the Ethernet driver. The ENCX24J600 device is assumed to be
* in the post-reset state upon entry to this function.
*
* Input Parameters:
* spi - A reference to the platform's SPI driver for the ENCX24J600
* lower - The MCU-specific interrupt used to control low-level MCU
* functions (i.e., ENCX24J600 GPIO interrupts).
* devno - If more than one ENCX24J600 is supported, then this is the
* zero based number that identifies the ENCX24J600;
*
* Returned Value:
* OK on success; Negated errno on failure.
*
* Assumptions:
*
****************************************************************************/
int enc_initialize(FAR struct spi_dev_s *spi,
FAR const struct enc_lower_s *lower,
unsigned int devno)
{
FAR struct enc_driver_s *priv;
DEBUGASSERT(devno < CONFIG_ENCX24J600_NINTERFACES);
priv = &g_encx24j600[devno];
/* Initialize the driver structure */
memset(g_encx24j600, 0,
CONFIG_ENCX24J600_NINTERFACES * sizeof(struct enc_driver_s));
priv->dev.d_buf = g_pktbuf; /* Single packet buffer */
priv->dev.d_ifup = enc_ifup; /* I/F up (new IP address) callback */
priv->dev.d_ifdown = enc_ifdown; /* I/F down callback */
priv->dev.d_txavail = enc_txavail; /* New TX data callback */
#ifdef CONFIG_NET_MCASTGROUP
priv->dev.d_addmac = enc_addmac; /* Add multicast MAC address */
priv->dev.d_rmmac = enc_rmmac; /* Remove multicast MAC address */
#endif
priv->dev.d_private = priv; /* Used to recover private state from dev */
/* Create a watchdog for timing polling for and timing of transmissions */
priv->txpoll = wd_create(); /* Create periodic poll timer */
priv->txtimeout = wd_create(); /* Create TX timeout timer */
priv->spi = spi; /* Save the SPI instance */
priv->lower = lower; /* Save the low-level MCU interface */
/* The interface should be in the down state. However, this function is
* called too early in initialization to perform the ENCX24J600 reset in
* enc_ifdown. We are depending upon the fact that the application level
* logic will call enc_ifdown later to reset the ENCX24J600.
*/
priv->ifstate = ENCSTATE_UNINIT;
/* Attach the interrupt to the driver (but don't enable it yet) */
if (lower->attach(lower, enc_interrupt, priv) < 0)
{
/* We could not attach the ISR to the interrupt */
return -EAGAIN;
}
/* Lock the SPI bus so that we have exclusive access */
enc_lock(priv);
/* Load the MAC address */
enc_ldmacaddr(priv);
/* Power down the device */
enc_pwrsave(priv);
/* Unlock the SPI bus */
enc_unlock(priv);
/* Register the device with the OS so that socket IOCTLs can be performed */
return netdev_register(&priv->dev, NET_LL_ETHERNET);
}
#endif /* CONFIG_NET && CONFIG_ENCX24J600_NET */