801b9d6e5f
Remove support for the Codesourcery, Atollic, DevKitArm, Raisonance, and CodeRed toolchains. Not only are these tools old and no longer used but they are all equivalent to standard ARM EABI toolchains. Retaining specific support has no effect (they are still supported, but now just as generic EABI toolchains).
451 lines
16 KiB
Plaintext
451 lines
16 KiB
Plaintext
README
|
|
======
|
|
|
|
This README discusses issues unique to NuttX configurations for the
|
|
STM32 Tiny development board.
|
|
|
|
This board is available from several vendors on the net, and may
|
|
be sold under different names. It is based on a STM32 F103C8T6 MCU, and
|
|
is (always ?) bundled with a nRF24L01 wireless communication module.
|
|
|
|
Contents
|
|
========
|
|
|
|
- LEDs
|
|
- PWM
|
|
- UARTs
|
|
- Timer Inputs/Outputs
|
|
- STM32 Tiny -specific Configuration Options
|
|
- Configurations
|
|
|
|
LEDs
|
|
====
|
|
|
|
The STM32Tiny board has only one software controllable LED.
|
|
This LED can be used by the board port when CONFIG_ARCH_LEDS option is
|
|
enabled.
|
|
|
|
If enabled the LED is simply turned on when the board boots
|
|
successfully, and is blinking on panic / assertion failed.
|
|
|
|
PWM
|
|
===
|
|
|
|
The STM32 Tiny has no real on-board PWM devices, but the board can be
|
|
configured to output a pulse train using TIM3 CH2 on the GPIO line B.5
|
|
(connected to the LED).
|
|
Please note that the CONFIG_STM32_TIM3_PARTIAL_REMAP option must be enabled
|
|
in this case.
|
|
|
|
UARTs
|
|
=====
|
|
|
|
UART/USART PINS
|
|
---------------
|
|
|
|
USART1
|
|
RX PA10
|
|
TX PA9
|
|
USART2
|
|
CK PA4
|
|
CTS PA0*
|
|
RTS PA1
|
|
RX PA3
|
|
TX PA2
|
|
USART3
|
|
CK PB12*
|
|
CTS PB13*
|
|
RTS PB14*
|
|
RX PB11
|
|
TX PB10
|
|
|
|
* these IO lines are intended to be used by the wireless module on the board.
|
|
|
|
|
|
Default USART/UART Configuration
|
|
--------------------------------
|
|
|
|
USART1 (RX & TX only) is available through the RS-232 port on the board. A MAX232 chip converts
|
|
voltage to RS-232 level. This serial port can be used to flash a firmware using the boot loader
|
|
integrated in the MCU.
|
|
|
|
|
|
Timer Inputs/Outputs
|
|
====================
|
|
|
|
TIM1
|
|
CH1 PA8
|
|
CH2 PA9*
|
|
CH3 PA10*
|
|
CH4 PA11*
|
|
TIM2
|
|
CH1 PA0*, PA15, PA5
|
|
CH2 PA1, PB3
|
|
CH3 PA2, PB10*
|
|
CH4 PA3, PB11
|
|
TIM3
|
|
CH1 PA6, PB4
|
|
CH2 PA7, PB5*
|
|
CH3 PB0
|
|
CH4 PB1*
|
|
TIM4
|
|
CH1 PB6*
|
|
CH2 PB7
|
|
CH3 PB8
|
|
CH4 PB9*
|
|
|
|
* Indicates pins that have other on-board functions and should be used only
|
|
with care (See board datasheet).
|
|
|
|
|
|
STM32 Tiny - specific Configuration Options
|
|
===============================================
|
|
|
|
CONFIG_ARCH - Identifies the arch/ subdirectory. This should
|
|
be set to:
|
|
|
|
CONFIG_ARCH=arm
|
|
|
|
CONFIG_ARCH_family - For use in C code:
|
|
|
|
CONFIG_ARCH_ARM=y
|
|
|
|
CONFIG_ARCH_architecture - For use in C code:
|
|
|
|
CONFIG_ARCH_CORTEXM3=y
|
|
|
|
CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory
|
|
|
|
CONFIG_ARCH_CHIP=stm32
|
|
|
|
CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
|
|
chip:
|
|
|
|
CONFIG_ARCH_CHIP_STM32F103C8=y
|
|
|
|
CONFIG_ARCH_BOARD_STM32_CUSTOM_CLOCKCONFIG - Enables special STM32 clock
|
|
configuration features.
|
|
|
|
CONFIG_ARCH_BOARD_STM32_CUSTOM_CLOCKCONFIG=n
|
|
|
|
CONFIG_ARCH_BOARD - Identifies the boards/ subdirectory and
|
|
hence, the board that supports the particular chip or SoC.
|
|
|
|
CONFIG_ARCH_BOARD=stm32_tiny
|
|
|
|
CONFIG_ARCH_BOARD_name - For use in C code
|
|
|
|
CONFIG_ARCH_BOARD_STM32_TINY=y
|
|
|
|
CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
|
|
of delay loops
|
|
|
|
CONFIG_ENDIAN_BIG - define if big endian (default is little
|
|
endian)
|
|
|
|
CONFIG_RAM_SIZE - Describes the installed DRAM (SRAM in this case):
|
|
|
|
CONFIG_RAM_SIZE=20480 (20Kb)
|
|
|
|
CONFIG_RAM_START - The start address of installed DRAM
|
|
|
|
CONFIG_RAM_START=0x20000000
|
|
|
|
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that
|
|
have LEDs
|
|
|
|
CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
|
|
stack. If defined, this symbol is the size of the interrupt
|
|
stack in bytes. If not defined, the user task stacks will be
|
|
used during interrupt handling.
|
|
|
|
CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions
|
|
|
|
Individual subsystems can be enabled:
|
|
|
|
AHB
|
|
---
|
|
CONFIG_STM32_CRC
|
|
CONFIG_STM32_BKPSRAM
|
|
|
|
APB1
|
|
----
|
|
CONFIG_STM32_TIM2
|
|
CONFIG_STM32_TIM3
|
|
CONFIG_STM32_TIM4
|
|
CONFIG_STM32_WWDG
|
|
CONFIG_STM32_IWDG
|
|
CONFIG_STM32_SPI2
|
|
CONFIG_STM32_USART2
|
|
CONFIG_STM32_USART3
|
|
CONFIG_STM32_I2C1
|
|
CONFIG_STM32_I2C2
|
|
CONFIG_STM32_CAN1
|
|
CONFIG_STM32_PWR -- Required for RTC
|
|
|
|
APB2
|
|
----
|
|
CONFIG_STM32_TIM1
|
|
CONFIG_STM32_USART1
|
|
CONFIG_STM32_ADC1
|
|
CONFIG_STM32_ADC2
|
|
CONFIG_STM32_SPI1
|
|
|
|
Timer devices may be used for different purposes. One special purpose is
|
|
to generate modulated outputs for such things as motor control. If CONFIG_STM32_TIMn
|
|
is defined (as above) then the following may also be defined to indicate that
|
|
the timer is intended to be used for pulsed output modulation or ADC conversion.
|
|
Note that ADC require two definitions: Not only do you have
|
|
to assign the timer (n) for used by the ADC, but then you also have to
|
|
configure which ADC (m) it is assigned to.
|
|
|
|
CONFIG_STM32_TIMn_PWM Reserve timer n for use by PWM, n=1,..,14
|
|
CONFIG_STM32_TIMn_ADC Reserve timer n for use by ADC, n=1,..,14
|
|
CONFIG_STM32_TIMn_ADCm Reserve timer n to trigger ADCm, n=1,..,14, m=1,..,3
|
|
|
|
For each timer that is enabled for PWM usage, we need the following additional
|
|
configuration settings:
|
|
|
|
CONFIG_STM32_TIMx_CHANNEL - Specifies the timer output channel {1,..,4}
|
|
|
|
NOTE: The STM32 timers are each capable of generating different signals on
|
|
each of the four channels with different duty cycles. That capability is
|
|
not supported by this driver: Only one output channel per timer.
|
|
|
|
JTAG Enable settings (by default only SW-DP is enabled):
|
|
|
|
CONFIG_STM32_JTAG_FULL_ENABLE - Enables full SWJ (JTAG-DP + SW-DP)
|
|
CONFIG_STM32_JTAG_NOJNTRST_ENABLE - Enables full SWJ (JTAG-DP + SW-DP)
|
|
but without JNTRST.
|
|
CONFIG_STM32_JTAG_SW_ENABLE - Set JTAG-DP disabled and SW-DP enabled
|
|
|
|
STM32Tiny specific device driver settings
|
|
|
|
CONFIG_U[S]ARTn_SERIAL_CONSOLE - selects the USARTn (n=1,2,3)
|
|
for the console and ttys0 (default is the USART1).
|
|
CONFIG_U[S]ARTn_RXBUFSIZE - Characters are buffered as received.
|
|
This specific the size of the receive buffer
|
|
CONFIG_U[S]ARTn_TXBUFSIZE - Characters are buffered before
|
|
being sent. This specific the size of the transmit buffer
|
|
CONFIG_U[S]ARTn_BAUD - The configure BAUD of the UART. Must be
|
|
CONFIG_U[S]ARTn_BITS - The number of bits. Must be either 7 or 8.
|
|
CONFIG_U[S]ARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
|
|
CONFIG_U[S]ARTn_2STOP - Two stop bits
|
|
|
|
STM32Tiny CAN Configuration
|
|
|
|
CONFIG_CAN - Enables CAN support (one or both of CONFIG_STM32_CAN1 or
|
|
CONFIG_STM32_CAN2 must also be defined)
|
|
CONFIG_CAN_EXTID - Enables support for the 29-bit extended ID. Default
|
|
Standard 11-bit IDs.
|
|
CONFIG_CAN_FIFOSIZE - The size of the circular buffer of CAN messages.
|
|
Default: 8
|
|
CONFIG_CAN_NPENDINGRTR - The size of the list of pending RTR requests.
|
|
Default: 4
|
|
CONFIG_CAN_LOOPBACK - A CAN driver may or may not support a loopback
|
|
mode for testing. The STM32 CAN driver does support loopback mode.
|
|
CONFIG_STM32_CAN1_BAUD - CAN1 BAUD rate. Required if CONFIG_STM32_CAN1
|
|
is defined.
|
|
CONFIG_STM32_CAN2_BAUD - CAN1 BAUD rate. Required if CONFIG_STM32_CAN2
|
|
is defined.
|
|
CONFIG_STM32_CAN_TSEG1 - The number of CAN time quanta in segment 1.
|
|
Default: 6
|
|
CONFIG_STM32_CAN_TSEG2 - the number of CAN time quanta in segment 2.
|
|
Default: 7
|
|
CONFIG_STM32_CAN_REGDEBUG - If CONFIG_DEBUG_FEATURES is set, this will generate an
|
|
dump of all CAN registers.
|
|
|
|
STM32Tiny SPI Configuration
|
|
|
|
CONFIG_STM32_SPI_INTERRUPTS - Select to enable interrupt driven SPI
|
|
support. Non-interrupt-driven, poll-waiting is recommended if the
|
|
interrupt rate would be to high in the interrupt driven case.
|
|
CONFIG_STM32_SPI_DMA - Use DMA to improve SPI transfer performance.
|
|
Cannot be used with CONFIG_STM32_SPI_INTERRUPT.
|
|
|
|
Configurations
|
|
==============
|
|
|
|
Each STM32Tiny configuration is maintained in a sub-directory and
|
|
can be selected as follow:
|
|
|
|
tools/configure.sh STM32Tiny:<subdir>
|
|
|
|
Where <subdir> is one of the following:
|
|
|
|
nsh:
|
|
---
|
|
Configures the NuttShell (nsh) located at apps/examples/nsh. This
|
|
configuration enables a console on UART1. Support for
|
|
builtin applications is enabled, but in the base configuration no
|
|
builtin applications are selected (see NOTES below).
|
|
|
|
NOTES:
|
|
|
|
1. This configuration uses the mconf-based configuration tool. To
|
|
change this configuration using that tool, you should:
|
|
|
|
a. Build and install the kconfig-mconf tool. See nuttx/README.txt
|
|
see additional README.txt files in the NuttX tools repository.
|
|
|
|
b. Execute 'make menuconfig' in nuttx/ in order to start the
|
|
reconfiguration process.
|
|
|
|
2. By default, this configuration uses the ARM EABI toolchain
|
|
for Windows and builds under Cygwin (or probably MSYS). That
|
|
can easily be reconfigured, of course.
|
|
|
|
CONFIG_HOST_WINDOWS=y : Builds under Windows
|
|
CONFIG_WINDOWS_CYGWIN=y : Using Cygwin
|
|
CONFIG_ARMV7M_TOOLCHAIN_GNU_EABIW=y : GNU EABI toolchain for Windows
|
|
|
|
3. This example supports the PWM test (apps/examples/pwm) but this must
|
|
be manually enabled by selecting:
|
|
|
|
CONFIG_PWM=y : Enable the generic PWM infrastructure
|
|
CONFIG_STM32_TIM3=y : Enable TIM3
|
|
CONFIG_STM32_TIM3_PWM=y : Use TIM3 to generate PWM output
|
|
CONFIG_STM32_TIM3_PARTIAL_REMAP=y : Required to have the port B5 as timer PWM output (channel 2)
|
|
CONFIG_STM32_TIM3_CHANNEL=2
|
|
|
|
See also apps/examples/README.txt
|
|
|
|
Note that the only supported board configuration uses the board LED as PWM output.
|
|
|
|
Special PWM-only debug options:
|
|
|
|
CONFIG_DEBUG_PWM_INFO
|
|
|
|
7. USB Support (CDC/ACM device)
|
|
|
|
CONFIG_STM32_OTGFS=y : STM32 OTG FS support
|
|
CONFIG_USBDEV=y : USB device support must be enabled
|
|
CONFIG_CDCACM=y : The CDC/ACM driver must be built
|
|
CONFIG_NSH_BUILTIN_APPS=y : NSH built-in application support must be enabled
|
|
CONFIG_NSH_ARCHINIT=y : To perform USB initialization
|
|
|
|
8. Using the USB console.
|
|
|
|
The STM32Tiny NSH configuration can be set up to use a USB CDC/ACM
|
|
(or PL2303) USB console. The normal way that you would configure the
|
|
the USB console would be to change the .config file like this:
|
|
|
|
CONFIG_STM32_OTGFS=y : STM32 OTG FS support
|
|
CONFIG_USART2_SERIAL_CONSOLE=n : Disable the USART2 console
|
|
CONFIG_DEV_CONSOLE=n : Inhibit use of /dev/console by other logic
|
|
CONFIG_USBDEV=y : USB device support must be enabled
|
|
CONFIG_CDCACM=y : The CDC/ACM driver must be built
|
|
CONFIG_CDCACM_CONSOLE=y : Enable the CDC/ACM USB console.
|
|
|
|
NOTE: When you first start the USB console, you have hit ENTER a few
|
|
times before NSH starts. The logic does this to prevent sending USB data
|
|
before there is anything on the host side listening for USB serial input.
|
|
|
|
9. Here is an alternative USB console configuration. The following
|
|
configuration will also create a NSH USB console but this version
|
|
will use /dev/console. Instead, it will use the normal /dev/ttyACM0
|
|
USB serial device for the console:
|
|
|
|
CONFIG_STM32_OTGFS=y : STM32 OTG FS support
|
|
CONFIG_USART2_SERIAL_CONSOLE=y : Keep the USART2 console
|
|
CONFIG_DEV_CONSOLE=y : /dev/console exists (but NSH won't use it)
|
|
CONFIG_USBDEV=y : USB device support must be enabled
|
|
CONFIG_CDCACM=y : The CDC/ACM driver must be built
|
|
CONFIG_CDCACM_CONSOLE=n : Don't use the CDC/ACM USB console.
|
|
CONFIG_NSH_USBCONSOLE=y : Instead use some other USB device for the console
|
|
|
|
The particular USB device that is used is:
|
|
|
|
CONFIG_NSH_USBCONDEV="/dev/ttyACM0"
|
|
|
|
The advantage of this configuration is only that it is easier to
|
|
bet working. This alternative does has some side effects:
|
|
|
|
- When any other device other than /dev/console is used for a user
|
|
interface, linefeeds (\n) will not be expanded to carriage return /
|
|
linefeeds (\r\n). You will need to set your terminal program to account
|
|
for this.
|
|
|
|
- /dev/console still exists and still refers to the serial port. So
|
|
you can still use certain kinds of debug output (see include/debug.h, all
|
|
of the debug output from interrupt handlers will be lost.
|
|
|
|
- But don't enable USB debug output! Since USB is console is used for
|
|
USB debug output and you are using a USB console, there will be
|
|
infinite loops and deadlocks: Debug output generates USB debug
|
|
output which generatates USB debug output, etc. If you want USB
|
|
debug output, you should consider enabling USB trace
|
|
(CONFIG_USBDEV_TRACE) and perhaps the USB monitor (CONFIG_USBMONITOR).
|
|
|
|
See the usbnsh configuration below for more information on configuring
|
|
USB trace output and the USB monitor.
|
|
|
|
usbnsh:
|
|
-------
|
|
|
|
This is another NSH example. If differs from other 'nsh' configurations
|
|
in that this configurations uses a USB serial device for console I/O.
|
|
|
|
NOTES:
|
|
|
|
1. This configuration uses the mconf-based configuration tool. To
|
|
change this configuration using that tool, you should:
|
|
|
|
a. Build and install the kconfig-mconf tool. See nuttx/README.txt
|
|
see additional README.txt files in the NuttX tools repository.
|
|
|
|
b. Execute 'make menuconfig' in nuttx/ in order to start the
|
|
reconfiguration process.
|
|
|
|
2. By default, this configuration uses the ARM EABI toolchain
|
|
for Windows and builds under Cygwin (or probably MSYS). That
|
|
can easily be reconfigured, of course.
|
|
|
|
CONFIG_HOST_WINDOWS=y : Builds under Windows
|
|
CONFIG_WINDOWS_CYGWIN=y : Using Cygwin
|
|
CONFIG_ARMV7M_TOOLCHAIN_GNU_EABIW=y : GNU EABI toolchain for Windows
|
|
|
|
3. This configuration does have UART2 output enabled and set up as
|
|
the system logging device:
|
|
|
|
CONFIG_SYSLOG_CHAR=y : Use a character device for system logging
|
|
CONFIG_SYSLOG_DEVPATH="/dev/ttyS0" : UART2 will be /dev/ttyS0
|
|
|
|
However, there is nothing to generate SYSLOG output in the default
|
|
configuration so nothing should appear on UART2 unless you enable
|
|
some debug output or enable the USB monitor.
|
|
|
|
4. Enabling USB monitor SYSLOG output. If tracing is enabled, the USB
|
|
device will save encoded trace output in in-memory buffer; if the
|
|
USB monitor is enabled, that trace buffer will be periodically
|
|
emptied and dumped to the system logging device (UART2 in this
|
|
configuration):
|
|
|
|
CONFIG_USBDEV_TRACE=y : Enable USB trace feature
|
|
CONFIG_USBDEV_TRACE_NRECORDS=128 : Buffer 128 records in memory
|
|
CONFIG_NSH_USBDEV_TRACE=n : No builtin tracing from NSH
|
|
CONFIG_NSH_ARCHINIT=y : Automatically start the USB monitor
|
|
CONFIG_USBMONITOR=y : Enable the USB monitor daemon
|
|
CONFIG_USBMONITOR_STACKSIZE=2048 : USB monitor daemon stack size
|
|
CONFIG_USBMONITOR_PRIORITY=50 : USB monitor daemon priority
|
|
CONFIG_USBMONITOR_INTERVAL=2 : Dump trace data every 2 seconds
|
|
|
|
CONFIG_USBMONITOR_TRACEINIT=y : Enable TRACE output
|
|
CONFIG_USBMONITOR_TRACECLASS=y
|
|
CONFIG_USBMONITOR_TRACETRANSFERS=y
|
|
CONFIG_USBMONITOR_TRACECONTROLLER=y
|
|
CONFIG_USBMONITOR_TRACEINTERRUPTS=y
|
|
|
|
5. By default, this project assumes that you are *NOT* using the DFU
|
|
bootloader.
|
|
|
|
Using the Prolifics PL2303 Emulation
|
|
------------------------------------
|
|
You could also use the non-standard PL2303 serial device instead of
|
|
the standard CDC/ACM serial device by changing:
|
|
|
|
CONFIG_CDCACM=y : Disable the CDC/ACM serial device class
|
|
CONFIG_CDCACM_CONSOLE=y : The CDC/ACM serial device is NOT the console
|
|
CONFIG_PL2303=y : The Prolifics PL2303 emulation is enabled
|
|
CONFIG_PL2303_CONSOLE=y : The PL2303 serial device is the console
|