nuttx/fs/fat/fs_fat32util.c
Jukka Laitinen 105f305b1b fs/fat/fat32util.c: Fix calculation of current sector with invalid cluster
If the current cluster is invalid, don't use the error code for calculating
the sector number. Instead just return the error code.

Signed-off-by: Jukka Laitinen <jukkax@ssrc.tii.ae>
2021-05-19 03:06:34 -05:00

2183 lines
59 KiB
C

/****************************************************************************
* fs/fat/fs_fat32util.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <assert.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/kmalloc.h>
#include <nuttx/fs/fs.h>
#include <nuttx/fs/fat.h>
#include "inode/inode.h"
#include "fs_fat32.h"
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: fat_checkfsinfo
*
* Description:
* Read the FAT32 FSINFO sector
*
****************************************************************************/
static int fat_checkfsinfo(struct fat_mountpt_s *fs)
{
/* Make sure that the fsinfo sector is in the cache */
if (fat_fscacheread(fs, fs->fs_fsinfo) == OK)
{
/* Verify that this is, indeed, an FSINFO sector */
if (FSI_GETLEADSIG(fs->fs_buffer) == 0x41615252 &&
FSI_GETSTRUCTSIG(fs->fs_buffer) == 0x61417272 &&
FSI_GETTRAILSIG(fs->fs_buffer) == BOOT_SIGNATURE32)
{
fs->fs_fsifreecount = FSI_GETFREECOUNT(fs->fs_buffer);
fs->fs_fsinextfree = FSI_GETNXTFREE(fs->fs_buffer);
return OK;
}
}
return -ENODEV;
}
/****************************************************************************
* Name: fat_checkbootrecord
*
* Description:
* Verify that that currently buffer sector is a valid FAT boot record.
* This may refer to either the older (pre-partition) MBR sector that lies
* at sector one or to the more common FBR that lies at the beginning of
* the partition.
*
* NOTE: The more common FBR naming is used in the file even when parsing
* an MBR. This is possible because the field offsets and meaning are
* identical.
*
****************************************************************************/
static int fat_checkbootrecord(struct fat_mountpt_s *fs)
{
uint32_t ndatasectors;
uint32_t ntotalfatsects;
uint16_t rootdirsectors = 0;
bool notfat32 = false;
/* Verify the MBR signature at offset 510 in the sector (true even
* if the sector size is greater than 512. All FAT file systems have
* this signature. On a FAT32 volume, the RootEntCount , FatSz16, and
* FatSz32 values should always be zero. The FAT sector size should
* match the reported hardware sector size.
*/
if (FBR_GETSIGNATURE(fs->fs_buffer) != BOOT_SIGNATURE16 ||
FBR_GETBYTESPERSEC(fs->fs_buffer) != fs->fs_hwsectorsize)
{
fwarn("WARNING: Signature: %04x FS sectorsize: %d "
"HW sectorsize: %jd\n",
FBR_GETSIGNATURE(fs->fs_buffer),
FBR_GETBYTESPERSEC(fs->fs_buffer),
(intmax_t)fs->fs_hwsectorsize);
return -EINVAL;
}
/* Verify the FAT32 file system type. The determination of the file
* system type is based on the number of clusters on the volume: FAT12
* volume has <= FAT_MAXCLUST12 (4084) clusters, a FAT16 volume has <=
* FAT_MAXCLUST16 (Microsoft says < 65,525) clusters, and any larger
* is FAT32.
*
* Get the number of 32-bit directory entries in root directory (zero
* for FAT32).
*/
fs->fs_rootentcnt = FBR_GETROOTENTCNT(fs->fs_buffer);
if (fs->fs_rootentcnt != 0)
{
notfat32 = true; /* Must be zero for FAT32 */
rootdirsectors = (32 * fs->fs_rootentcnt + fs->fs_hwsectorsize - 1) /
fs->fs_hwsectorsize;
}
/* Determine the number of sectors in a FAT. */
fs->fs_nfatsects = FBR_GETFATSZ16(fs->fs_buffer); /* Should be zero */
if (fs->fs_nfatsects)
{
notfat32 = true; /* Must be zero for FAT32 */
}
else
{
fs->fs_nfatsects = FBR_GETFATSZ32(fs->fs_buffer);
}
if (!fs->fs_nfatsects || fs->fs_nfatsects >= fs->fs_hwnsectors)
{
fwarn("WARNING: fs_nfatsects %" PRId32 " fs_hwnsectors: %" PRId32 "\n",
fs->fs_nfatsects, fs->fs_hwnsectors);
return -EINVAL;
}
/* Get the total number of sectors on the volume. */
fs->fs_fattotsec = FBR_GETTOTSEC16(fs->fs_buffer); /* Should be zero */
if (fs->fs_fattotsec)
{
notfat32 = true; /* Must be zero for FAT32 */
}
else
{
fs->fs_fattotsec = FBR_GETTOTSEC32(fs->fs_buffer);
}
if (!fs->fs_fattotsec || fs->fs_fattotsec > fs->fs_hwnsectors)
{
fwarn("WARNING: fs_fattotsec %" PRId32 " fs_hwnsectors: %jd\n",
fs->fs_fattotsec, (intmax_t)fs->fs_hwnsectors);
return -EINVAL;
}
/* Get the total number of reserved sectors */
fs->fs_fatresvdseccount = FBR_GETRESVDSECCOUNT(fs->fs_buffer);
if (fs->fs_fatresvdseccount > fs->fs_hwnsectors)
{
fwarn("WARNING: fs_fatresvdseccount %d fs_hwnsectors: %jd\n",
fs->fs_fatresvdseccount, (intmax_t)fs->fs_hwnsectors);
return -EINVAL;
}
/* Get the number of FATs. This is probably two but could have other
* values.
*/
fs->fs_fatnumfats = FBR_GETNUMFATS(fs->fs_buffer);
ntotalfatsects = fs->fs_fatnumfats * fs->fs_nfatsects;
/* Get the total number of data sectors */
ndatasectors = fs->fs_fattotsec - fs->fs_fatresvdseccount -
ntotalfatsects - rootdirsectors;
if (ndatasectors > fs->fs_hwnsectors)
{
fwarn("WARNING: ndatasectors %" PRId32 " fs_hwnsectors: %jd\n",
ndatasectors, (intmax_t)fs->fs_hwnsectors);
return -EINVAL;
}
/* Get the sectors per cluster */
fs->fs_fatsecperclus = FBR_GETSECPERCLUS(fs->fs_buffer);
/* Calculate the number of clusters */
fs->fs_nclusters = ndatasectors / fs->fs_fatsecperclus;
/* Finally, the test: */
if (fs->fs_nclusters <= FAT_MAXCLUST12)
{
fs->fs_fsinfo = 0;
fs->fs_type = FSTYPE_FAT12;
}
else if (fs->fs_nclusters <= FAT_MAXCLUST16)
{
fs->fs_fsinfo = 0;
fs->fs_type = FSTYPE_FAT16;
}
else if (!notfat32)
{
fs->fs_fsinfo = fs->fs_fatbase + FBR_GETFSINFO(fs->fs_buffer);
fs->fs_type = FSTYPE_FAT32;
}
else
{
fwarn("WARNING: notfat32: %d fs_nclusters: %" PRId32 "\n",
notfat32, fs->fs_nclusters);
return -EINVAL;
}
/* We have what appears to be a valid FAT filesystem! Save a few more
* things from the boot record that we will need later.
*/
fs->fs_fatbase += fs->fs_fatresvdseccount;
if (fs->fs_type == FSTYPE_FAT32)
{
fs->fs_rootbase = FBR_GETROOTCLUS(fs->fs_buffer);
}
else
{
fs->fs_rootbase = fs->fs_fatbase + ntotalfatsects;
}
fs->fs_database = fs->fs_fatbase + ntotalfatsects + fs->fs_rootentcnt /
DIRSEC_NDIRS(fs);
fs->fs_fsifreecount = 0xffffffff;
return OK;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: fat_getuint16
****************************************************************************/
uint16_t fat_getuint16(uint8_t *ptr)
{
/* NOTE that (1) this operation is independent of endian-ness and that (2)
* byte-by-byte transfer is necessary in any case because the address may
* be unaligned.
*/
return ((uint16_t)ptr[1] << 8) | ptr[0];
}
/****************************************************************************
* Name: fat_getuint32
****************************************************************************/
uint32_t fat_getuint32(uint8_t *ptr)
{
/* NOTE that (1) this operation is independent of endian-ness and that (2)
* byte-by-byte transfer is necessary in any case because the address may
* be unaligned.
*/
return ((uint32_t)fat_getuint16(&ptr[2]) << 16) | fat_getuint16(&ptr[0]);
}
/****************************************************************************
* Name: fat_putuint16
****************************************************************************/
void fat_putuint16(FAR uint8_t *ptr, uint16_t value16)
{
FAR uint8_t *val = (FAR uint8_t *)&value16;
#ifdef CONFIG_ENDIAN_BIG
/* If the target is big-endian then the bytes always have to be swapped so
* that the representation is little endian in the file system.
*/
ptr[0] = val[1];
ptr[1] = val[0];
#else
/* Byte-by-byte transfer is still necessary because the address may be
* un-aligned.
*/
ptr[0] = val[0];
ptr[1] = val[1];
#endif
}
/****************************************************************************
* Name: fat_putuint32
****************************************************************************/
void fat_putuint32(FAR uint8_t *ptr, uint32_t value32)
{
FAR uint16_t *val = (FAR uint16_t *)&value32;
#ifdef CONFIG_ENDIAN_BIG
/* If the target is big-endian then the bytes always have to be swapped so
* that the representation is little endian in the file system.
*/
fat_putuint16(&ptr[0], val[1]);
fat_putuint16(&ptr[2], val[0]);
#else
/* Byte-by-byte transfer is still necessary because the address may be
* un-aligned.
*/
fat_putuint16(&ptr[0], val[0]);
fat_putuint16(&ptr[2], val[1]);
#endif
}
/****************************************************************************
* Name: fat_semtake
****************************************************************************/
int fat_semtake(struct fat_mountpt_s *fs)
{
return nxsem_wait_uninterruptible(&fs->fs_sem);
}
/****************************************************************************
* Name: fat_semgive
****************************************************************************/
void fat_semgive(struct fat_mountpt_s *fs)
{
nxsem_post(&fs->fs_sem);
}
/****************************************************************************
* Name: fat_systime2fattime
*
* Description:
* Get the system time convert to a time and and date suitable for
* writing into the FAT FS.
*
* TIME in LS 16-bits:
* Bits 0:4 = 2 second count (0-29 representing 0-58 seconds)
* Bits 5-10 = minutes (0-59)
* Bits 11-15 = hours (0-23)
* DATE in MS 16-bits
* Bits 0:4 = Day of month (1-31)
* Bits 5:8 = Month of year (1-12)
* Bits 9:15 = Year from 1980 (0-127 representing 1980-2107)
*
****************************************************************************/
uint32_t fat_systime2fattime(void)
{
/* Unless you have a hardware RTC or some other to get accurate time, then
* there is no reason to support FAT time.
*/
#ifdef CONFIG_FS_FATTIME
struct timespec ts;
struct tm tm;
int ret;
/* Get the current time in seconds and nanoseconds */
ret = clock_gettime(CLOCK_REALTIME, &ts);
if (ret == OK)
{
/* Break done the seconds in date and time units */
if (gmtime_r((FAR const time_t *)&ts.tv_sec, &tm) != NULL)
{
/* FAT can only represent dates since 1980. struct tm can
* represent dates since 1900.
*/
if (tm.tm_year >= 80)
{
uint16_t fattime;
uint16_t fatdate;
fattime = (tm.tm_sec >> 1) & 0x001f; /* Bits 0-4: 2 second count (0-29) */
fattime |= (tm.tm_min << 5) & 0x07e0; /* Bits 5-10: minutes (0-59) */
fattime |= (tm.tm_hour << 11) & 0xf800; /* Bits 11-15: hours (0-23) */
fatdate = tm.tm_mday & 0x001f; /* Bits 0-4: Day of month (1-31) */
fatdate |= ((tm.tm_mon + 1) << 5) & 0x01e0; /* Bits 5-8: Month of year (1-12) */
fatdate |= ((tm.tm_year - 80) << 9) & 0xfe00; /* Bits 9-15: Year from 1980 */
return (uint32_t)fatdate << 16 | (uint32_t)fattime;
}
}
}
#endif
return 0;
}
/****************************************************************************
* Name: fat_fattime2systime
*
* Description:
* Convert FAT data and time to a system time_t
*
* 16-bit FAT time:
* Bits 0:4 = 2 second count (0-29 representing 0-58 seconds)
* Bits 5-10 = minutes (0-59)
* Bits 11-15 = hours (0-23)
* 16-bit FAT date:
* Bits 0:4 = Day of month (1-31)
* Bits 5:8 = Month of year (1-12)
* Bits 9:15 = Year from 1980 (0-127 representing 1980-2107)
*
****************************************************************************/
time_t fat_fattime2systime(uint16_t fattime, uint16_t fatdate)
{
/* Unless you have a hardware RTC or some other to get accurate time, then
* there is no reason to support FAT time.
*/
#ifdef CONFIG_FS_FATTIME
struct tm tm;
unsigned int tmp;
/* Break out the date and time */
tm.tm_sec = (fattime & 0x001f) << 1; /* Bits 0-4: 2 second count (0-29) */
tm.tm_min = (fattime & 0x07e0) >> 5; /* Bits 5-10: minutes (0-59) */
tm.tm_hour = (fattime & 0xf800) >> 11; /* Bits 11-15: hours (0-23) */
tm.tm_mday = (fatdate & 0x001f); /* Bits 0-4: Day of month (1-31) */
tmp = ((fatdate & 0x01e0) >> 5); /* Bits 5-8: Month of year (1-12) */
tm.tm_mon = tmp > 0 ? tmp - 1 : 0;
tm.tm_year = ((fatdate & 0xfe00) >> 9) + 80; /* Bits 9-15: Year from 1980 */
/* Then convert the broken out time into seconds since the epoch */
return mktime(&tm);
#else
return 0;
#endif
}
/****************************************************************************
* Name: fat_mount
*
* Description:
* This function is called only when the mountpoint is first established.
* It initializes the mountpoint structure and verifies that a valid FAT32
* filesystem is provided by the block driver.
*
* The caller should hold the mountpoint semaphore
*
****************************************************************************/
int fat_mount(struct fat_mountpt_s *fs, bool writeable)
{
FAR struct inode *inode;
struct geometry geo;
int ret;
/* Assume that the mount is successful */
fs->fs_mounted = true;
/* Check if there is media available */
inode = fs->fs_blkdriver;
if (!inode || !inode->u.i_bops || !inode->u.i_bops->geometry ||
inode->u.i_bops->geometry(inode, &geo) != OK || !geo.geo_available)
{
ret = -ENODEV;
goto errout;
}
/* Make sure that that the media is write-able (if write access is
* needed).
*/
if (writeable && !geo.geo_writeenabled)
{
ret = -EACCES;
goto errout;
}
/* Save the hardware geometry */
fs->fs_hwsectorsize = geo.geo_sectorsize;
fs->fs_hwnsectors = geo.geo_nsectors;
/* Allocate a buffer to hold one hardware sector */
fs->fs_buffer = (FAR uint8_t *)fat_io_alloc(fs->fs_hwsectorsize);
if (!fs->fs_buffer)
{
ret = -ENOMEM;
goto errout;
}
/* Search FAT boot record on the drive. First check the MBR at sector
* zero. This could be either the boot record or a partition that refers
* to the boot record.
*
* First read sector zero. This will be the first access to the drive and
* a likely failure point.
*/
fs->fs_fatbase = 0;
ret = fat_hwread(fs, fs->fs_buffer, 0, 1);
if (ret < 0)
{
goto errout_with_buffer;
}
/* Older style MBR (pre-partition table) includes boot information for the
* partition-less drive. Check for that case first.
*/
ret = fat_checkbootrecord(fs);
if (ret != OK)
{
/* The contents of sector 0 is not a boot record. It could be have
* DOS partitions, however. Get the offset into the partition table.
* This table is at offset MBR_TABLE and is indexed by 16x the
* partition number.
*/
int i;
for (i = 0; i < 4; i++)
{
/* Check if the partition exists and, if so, get the bootsector for
* that partition and see if we can find the boot record there.
*/
uint8_t part = PART_GETTYPE(i, fs->fs_buffer);
finfo("Partition %d, offset %d, type %d\n",
i, PART_ENTRY(i), part);
if (part == 0)
{
finfo("No partition %d\n", i);
continue;
}
/* There appears to be a partition, get the sector number of the
* partition (LBA)
*/
fs->fs_fatbase = PART_GETSTARTSECTOR(i, fs->fs_buffer);
/* Read the new candidate boot sector */
ret = fat_hwread(fs, fs->fs_buffer, fs->fs_fatbase, 1);
if (ret < 0)
{
/* Failed to read the sector */
ferr("ERROR: Failed to read sector %ld: %d\n",
(long)fs->fs_fatbase, ret);
continue;
}
/* Check if this is a boot record */
ret = fat_checkbootrecord(fs);
if (ret == OK)
{
/* Break out of the loop if a valid boot record is found */
finfo("FBR found in partition %d\n", i);
break;
}
/* Re-read sector 0 so that we can check the next partition */
finfo("Partition %d is not an FBR\n", i);
ret = fat_hwread(fs, fs->fs_buffer, 0, 1);
if (ret < 0)
{
ferr("ERROR: Failed to re-read sector 0: %d\n", ret);
goto errout_with_buffer;
}
}
if (i > 3)
{
ferr("ERROR: No valid boot record\n");
ret = -EINVAL;
goto errout_with_buffer;
}
}
/* We have what appears to be a valid FAT filesystem! Now read the
* FSINFO sector (FAT32 only)
*/
if (fs->fs_type == FSTYPE_FAT32)
{
ret = fat_checkfsinfo(fs);
if (ret != OK)
{
goto errout_with_buffer;
}
}
/* We did it! */
finfo("FAT%d:\n", fs->fs_type == 0 ? 12 : fs->fs_type == 1 ? 16 : 32);
finfo("\tHW sector size: %jd\n", (intmax_t)fs->fs_hwsectorsize);
finfo("\t sectors: %jd\n", (intmax_t)fs->fs_hwnsectors);
finfo("\tFAT reserved: %d\n", fs->fs_fatresvdseccount);
finfo("\t sectors: %" PRId32 "\n", fs->fs_fattotsec);
finfo("\t start sector: %jd\n", (intmax_t)fs->fs_fatbase);
finfo("\t root sector: %jd\n", (intmax_t)fs->fs_rootbase);
finfo("\t root entries: %d\n", fs->fs_rootentcnt);
finfo("\t data sector: %jd\n", (intmax_t)fs->fs_database);
finfo("\t FSINFO sector: %jd\n", (intmax_t)fs->fs_fsinfo);
finfo("\t Num FATs: %d\n", fs->fs_fatnumfats);
finfo("\t FAT sectors: %" PRId32 "\n", fs->fs_nfatsects);
finfo("\t sectors/cluster: %d\n", fs->fs_fatsecperclus);
finfo("\t max clusters: %" PRId32 "\n", fs->fs_nclusters);
finfo("\tFSI free count %" PRId32 "\n", fs->fs_fsifreecount);
finfo("\t next free %" PRId32 "\n", fs->fs_fsinextfree);
return OK;
errout_with_buffer:
fat_io_free(fs->fs_buffer, fs->fs_hwsectorsize);
fs->fs_buffer = 0;
errout:
fs->fs_mounted = false;
return ret;
}
/****************************************************************************
* Name: fat_checkmount
*
* Description:
* Check if the mountpoint is still valid.
*
* The caller should hold the mountpoint semaphore
*
****************************************************************************/
int fat_checkmount(struct fat_mountpt_s *fs)
{
/* If the fs_mounted flag is false, then we have already handled the loss
* of the mount.
*/
if (fs && fs->fs_mounted)
{
/* We still think the mount is healthy. Check an see if this is
* still the case
*/
if (fs->fs_blkdriver)
{
struct inode *inode = fs->fs_blkdriver;
if (inode && inode->u.i_bops && inode->u.i_bops->geometry)
{
struct geometry geo;
int errcode = inode->u.i_bops->geometry(inode, &geo);
if (errcode == OK && geo.geo_available &&
!geo.geo_mediachanged)
{
return OK;
}
}
}
/* If we get here, the mount is NOT healthy */
fs->fs_mounted = false;
}
return -ENODEV;
}
/****************************************************************************
* Name: fat_hwread
*
* Description:
* Read the specified sector into the sector buffer
*
****************************************************************************/
int fat_hwread(struct fat_mountpt_s *fs, uint8_t *buffer, off_t sector,
unsigned int nsectors)
{
int ret = -ENODEV;
if (fs && fs->fs_blkdriver)
{
struct inode *inode = fs->fs_blkdriver;
if (inode && inode->u.i_bops && inode->u.i_bops->read)
{
ssize_t nsectorsread = inode->u.i_bops->read(inode, buffer,
sector, nsectors);
if (nsectorsread == nsectors)
{
ret = OK;
}
else if (nsectorsread < 0)
{
ret = nsectorsread;
}
}
}
return ret;
}
/****************************************************************************
* Name: fat_hwwrite
*
* Description:
* Write the sector buffer to the specified sector
*
****************************************************************************/
int fat_hwwrite(struct fat_mountpt_s *fs, uint8_t *buffer, off_t sector,
unsigned int nsectors)
{
int ret = -ENODEV;
if (fs && fs->fs_blkdriver)
{
struct inode *inode = fs->fs_blkdriver;
if (inode && inode->u.i_bops && inode->u.i_bops->write)
{
ssize_t nsectorswritten =
inode->u.i_bops->write(inode, buffer, sector, nsectors);
if (nsectorswritten == nsectors)
{
ret = OK;
}
else if (nsectorswritten < 0)
{
ret = nsectorswritten;
}
}
}
return ret;
}
/****************************************************************************
* Name: fat_cluster2sector
*
* Description:
* Convert a cluster number to a start sector number
*
****************************************************************************/
off_t fat_cluster2sector(FAR struct fat_mountpt_s *fs, uint32_t cluster)
{
cluster -= 2;
if (cluster >= fs->fs_nclusters - 2)
{
return -EINVAL;
}
return cluster * fs->fs_fatsecperclus + fs->fs_database;
}
/****************************************************************************
* Name: fat_getcluster
*
* Description:
* Get the next cluster start from the FAT.
*
* Returned Value:
* <0: error, 0:cluster unassigned, >=0: start sector of cluster
*
****************************************************************************/
off_t fat_getcluster(struct fat_mountpt_s *fs, uint32_t clusterno)
{
/* Verify that the cluster number is within range */
if (clusterno >= 2 && clusterno < fs->fs_nclusters)
{
/* Okay.. Read the next cluster from the FAT. The way we will do
* this depends on the type of FAT filesystem we are dealing with.
*/
switch (fs->fs_type)
{
case FSTYPE_FAT12 :
{
off_t fatsector;
unsigned int fatoffset;
unsigned int cluster;
unsigned int fatindex;
/* FAT12 is more complex because it has 12-bits (1.5 bytes)
* per FAT entry. Get the offset to the first byte:
*/
fatoffset = (clusterno * 3) / 2;
fatsector = fs->fs_fatbase + SEC_NSECTORS(fs, fatoffset);
/* Read the sector at this offset */
if (fat_fscacheread(fs, fatsector) < 0)
{
/* Read error */
break;
}
/* Get the first, LS byte of the cluster from the FAT */
fatindex = fatoffset & SEC_NDXMASK(fs);
cluster = fs->fs_buffer[fatindex];
/* With FAT12, the second byte of the cluster number may lie in
* a different sector than the first byte.
*/
fatindex++;
if (fatindex >= fs->fs_hwsectorsize)
{
fatsector++;
fatindex = 0;
if (fat_fscacheread(fs, fatsector) < 0)
{
/* Read error */
break;
}
}
/* Get the second, MS byte of the cluster for 16-bits. The
* does not depend on the endian-ness of the target, but only
* on the fact that the byte stream is little-endian.
*/
cluster |= (unsigned int)fs->fs_buffer[fatindex] << 8;
/* Now, pick out the correct 12 bit cluster start sector
* value.
*/
if ((clusterno & 1) != 0)
{
/* Odd.. take the MS 12-bits */
cluster >>= 4;
}
else
{
/* Even.. take the LS 12-bits */
cluster &= 0x0fff;
}
return cluster;
}
case FSTYPE_FAT16 :
{
unsigned int fatoffset = 2 * clusterno;
off_t fatsector = fs->fs_fatbase +
SEC_NSECTORS(fs, fatoffset);
unsigned int fatindex = fatoffset & SEC_NDXMASK(fs);
if (fat_fscacheread(fs, fatsector) < 0)
{
/* Read error */
break;
}
return FAT_GETFAT16(fs->fs_buffer, fatindex);
}
case FSTYPE_FAT32 :
{
unsigned int fatoffset = 4 * clusterno;
off_t fatsector = fs->fs_fatbase +
SEC_NSECTORS(fs, fatoffset);
unsigned int fatindex = fatoffset & SEC_NDXMASK(fs);
if (fat_fscacheread(fs, fatsector) < 0)
{
/* Read error */
break;
}
return FAT_GETFAT32(fs->fs_buffer, fatindex) & 0x0fffffff;
}
default:
break;
}
}
/* There is no cluster information, or an error occurred */
return (off_t)-EINVAL;
}
/****************************************************************************
* Name: fat_putcluster
*
* Description:
* Write a new cluster into the FAT
*
****************************************************************************/
int fat_putcluster(struct fat_mountpt_s *fs, uint32_t clusterno,
off_t nextcluster)
{
/* Verify that the cluster number is within range. Zero erases the
* cluster.
*/
if (clusterno == 0 || (clusterno >= 2 && clusterno < fs->fs_nclusters))
{
/* Okay.. Write the next cluster into the FAT. The way we will do
* this depends on the type of FAT filesystem we are dealing with.
*/
switch (fs->fs_type)
{
case FSTYPE_FAT12 :
{
off_t fatsector;
unsigned int fatoffset;
unsigned int fatindex;
uint8_t value;
/* FAT12 is more complex because it has 12-bits (1.5 bytes)
* per FAT entry. Get the offset to the first byte:
*/
fatoffset = (clusterno * 3) / 2;
fatsector = fs->fs_fatbase + SEC_NSECTORS(fs, fatoffset);
/* Make sure that the sector at this offset is in the cache */
if (fat_fscacheread(fs, fatsector) < 0)
{
/* Read error */
break;
}
/* Get the LS byte first handling the 12-bit alignment within
* the 16-bits
*/
fatindex = fatoffset & SEC_NDXMASK(fs);
if ((clusterno & 1) != 0)
{
/* Save the LS four bits of the next cluster */
value = (fs->fs_buffer[fatindex] & 0x0f) |
nextcluster << 4;
}
else
{
/* Save the LS eight bits of the next cluster */
value = (uint8_t)nextcluster;
}
fs->fs_buffer[fatindex] = value;
/* With FAT12, the second byte of the cluster number may lie in
* a different sector than the first byte.
*/
fatindex++;
if (fatindex >= fs->fs_hwsectorsize)
{
/* Read the next sector */
fatsector++;
fatindex = 0;
/* Set the dirty flag to make sure the sector that we
* just modified is written out.
*/
fs->fs_dirty = true;
if (fat_fscacheread(fs, fatsector) < 0)
{
/* Read error */
break;
}
}
/* Output the MS byte first handling the 12-bit alignment
* within the 16-bits
*/
if ((clusterno & 1) != 0)
{
/* Save the MS eight bits of the next cluster */
value = (uint8_t)(nextcluster >> 4);
}
else
{
/* Save the MS four bits of the next cluster */
value = (fs->fs_buffer[fatindex] & 0xf0) |
((nextcluster >> 8) & 0x0f);
}
fs->fs_buffer[fatindex] = value;
}
break;
case FSTYPE_FAT16 :
{
unsigned int fatoffset = 2 * clusterno;
off_t fatsector = fs->fs_fatbase +
SEC_NSECTORS(fs, fatoffset);
unsigned int fatindex = fatoffset & SEC_NDXMASK(fs);
if (fat_fscacheread(fs, fatsector) < 0)
{
/* Read error */
break;
}
FAT_PUTFAT16(fs->fs_buffer, fatindex, nextcluster & 0xffff);
}
break;
case FSTYPE_FAT32 :
{
unsigned int fatoffset = 4 * clusterno;
off_t fatsector = fs->fs_fatbase +
SEC_NSECTORS(fs, fatoffset);
unsigned int fatindex = fatoffset & SEC_NDXMASK(fs);
uint32_t val;
if (fat_fscacheread(fs, fatsector) < 0)
{
/* Read error */
break;
}
/* Keep the top 4 bits */
val = FAT_GETFAT32(fs->fs_buffer, fatindex) & 0xf0000000;
FAT_PUTFAT32(fs->fs_buffer, fatindex,
val | (nextcluster & 0x0fffffff));
}
break;
default:
return -EINVAL;
}
/* Mark the modified sector as "dirty" and return success */
fs->fs_dirty = true;
return OK;
}
return -EINVAL;
}
/****************************************************************************
* Name: fat_removechain
*
* Description:
* Remove an entire chain of clusters, starting with 'cluster'
*
****************************************************************************/
int fat_removechain(struct fat_mountpt_s *fs, uint32_t cluster)
{
int32_t nextcluster;
int ret;
/* Loop while there are clusters in the chain */
while (cluster >= 2 && cluster < fs->fs_nclusters)
{
/* Get the next cluster after the current one */
nextcluster = fat_getcluster(fs, cluster);
if (nextcluster < 0)
{
/* Error! */
return nextcluster;
}
/* Then nullify current cluster -- removing it from the chain */
ret = fat_putcluster(fs, cluster, 0);
if (ret < 0)
{
return ret;
}
/* Update FSINFINFO data */
if (fs->fs_fsifreecount != 0xffffffff)
{
fs->fs_fsifreecount++;
fs->fs_fsidirty = 1;
}
/* Then set up to remove the next cluster */
cluster = nextcluster;
}
return OK;
}
/****************************************************************************
* Name: fat_extendchain
*
* Description:
* Add a new cluster to the chain following cluster (if cluster is non-
* NULL). if cluster is zero, then a new chain is created.
*
* Returned Value:
* <0:error, 0: no free cluster, >=2: new cluster number
*
****************************************************************************/
int32_t fat_extendchain(struct fat_mountpt_s *fs, uint32_t cluster)
{
off_t startsector;
uint32_t newcluster;
uint32_t startcluster;
int ret;
/* The special value 0 is used when the new chain should start */
if (cluster == 0)
{
/* The FSINFO NextFree entry should be a good starting point
* in the search for a new cluster
*/
startcluster = fs->fs_fsinextfree;
if (startcluster == 0 || startcluster >= fs->fs_nclusters)
{
/* But it is bad.. we have to start at the beginning */
startcluster = 1;
}
}
else
{
/* We are extending an existing chain. Verify that this
* is a valid cluster by examining its start sector.
*/
startsector = fat_getcluster(fs, cluster);
if (startsector < 0)
{
/* An error occurred, return the error value */
return startsector;
}
else if (startsector < 2)
{
/* Oops.. this cluster does not exist. */
return 0;
}
else if (startsector < fs->fs_nclusters)
{
/* It is already followed by next cluster */
return startsector;
}
/* Okay.. it checks out */
startcluster = cluster;
}
/* Loop until (1) we discover that there are not free clusters
* (return 0), an errors occurs (return -errno), or (3) we find
* the next cluster (return the new cluster number).
*/
newcluster = startcluster;
for (; ; )
{
/* Examine the next cluster in the FAT */
newcluster++;
if (newcluster >= fs->fs_nclusters)
{
/* If we hit the end of the available clusters, then
* wrap back to the beginning because we might have
* started at a non-optimal place. But don't continue
* past the start cluster.
*/
newcluster = 2;
if (newcluster > startcluster)
{
/* We are back past the starting cluster, then there
* is no free cluster.
*/
return 0;
}
}
/* We have a candidate cluster. Check if the cluster number is
* mapped to a group of sectors.
*/
startsector = fat_getcluster(fs, newcluster);
if (startsector == 0)
{
/* Found have found a free cluster break out */
break;
}
else if (startsector < 0)
{
/* Some error occurred, return the error number */
return startsector;
}
/* We wrap all the back to the starting cluster? If so, then
* there are no free clusters.
*/
if (newcluster == startcluster)
{
return 0;
}
}
/* We get here only if we break out with an available cluster
* number in 'newcluster' Now mark that cluster as in-use.
*/
ret = fat_putcluster(fs, newcluster, 0x0fffffff);
if (ret < 0)
{
/* An error occurred */
return ret;
}
/* And link if to the start cluster (if any) */
if (cluster)
{
/* There is a start cluster -- link it */
ret = fat_putcluster(fs, cluster, newcluster);
if (ret < 0)
{
return ret;
}
}
/* And update the FINSINFO for the next time we have to search */
fs->fs_fsinextfree = newcluster;
if (fs->fs_fsifreecount != 0xffffffff)
{
fs->fs_fsifreecount--;
fs->fs_fsidirty = 1;
}
/* Return then number of the new cluster that was added to the chain */
return newcluster;
}
/****************************************************************************
* Name: fat_nextdirentry
*
* Description:
* Read the next directory entry from the sector in cache, reading the
* next sector(s) in the cluster as necessary. This function must
* return -ENOSPC if it fails because there are no further entries
* available in the directory.
*
****************************************************************************/
int fat_nextdirentry(struct fat_mountpt_s *fs, struct fs_fatdir_s *dir)
{
unsigned int cluster;
unsigned int ndx;
/* Increment the index to the next 32-byte directory entry */
ndx = dir->fd_index + 1;
/* Check if all of the directory entries in this sectory have
* been examined.
*/
if ((ndx & (DIRSEC_NDIRS(fs)-1)) == 0)
{
/* Yes, then we will have to read the next sector */
dir->fd_currsector++;
/* For FAT12/16, the root directory is a group of sectors relative
* to the first sector of the fat volume.
*/
if (!dir->fd_currcluster)
{
/* For FAT12/16, the boot record tells us number of 32-bit
* directories that are contained in the root directory. This
* should correspond to an even number of sectors.
*/
if (ndx >= fs->fs_rootentcnt)
{
/* When we index past this count, we have examined all of the
* entries in the root directory.
*/
return -ENOSPC;
}
}
else
{
/* Not a FAT12/16 root directory, check if we have examined the
* entire cluster comprising the directory.
*
* The current sector within the cluster is the entry number
* divided byte the number of entries per sector
*/
int sector = ndx / DIRSEC_NDIRS(fs);
/* We are finished with the cluster when the last sector of the
* cluster has been examined.
*/
if ((sector & (fs->fs_fatsecperclus - 1)) == 0)
{
/* Get next cluster */
cluster = fat_getcluster(fs, dir->fd_currcluster);
/* Check if a valid cluster was obtained. */
if (cluster < 2 || cluster >= fs->fs_nclusters)
{
/* No, we have probably reached the end of the cluster
* list.
*/
return -ENOSPC;
}
/* Initialize for new cluster */
dir->fd_currcluster = cluster;
dir->fd_currsector = fat_cluster2sector(fs, cluster);
ndx = 0;
}
}
}
/* Save the new index into dir->fd_currsector */
dir->fd_index = ndx;
return OK;
}
/****************************************************************************
* Name: fat_dirtruncate
*
* Description:
* Truncate an existing file to zero length.
*
* Assumptions:
* The caller holds mountpoint semaphore, fs_buffer holds the directory
* entry, the directory entry sector (fd_sector) is currently in the
* sector cache.
*
****************************************************************************/
int fat_dirtruncate(struct fat_mountpt_s *fs, FAR uint8_t *direntry)
{
unsigned int startcluster;
uint32_t writetime;
off_t savesector;
int ret;
/* Get start cluster of the file to truncate */
startcluster = ((uint32_t)DIR_GETFSTCLUSTHI(direntry) << 16) |
DIR_GETFSTCLUSTLO(direntry);
/* Clear the cluster start value in the directory and set the file size
* to zero. This makes the file look empty but also have to dispose of
* all of the clusters in the chain.
*/
DIR_PUTFSTCLUSTHI(direntry, 0);
DIR_PUTFSTCLUSTLO(direntry, 0);
DIR_PUTFILESIZE(direntry, 0);
/* Set the ARCHIVE attribute and update the write time */
DIR_PUTATTRIBUTES(direntry, FATATTR_ARCHIVE);
writetime = fat_systime2fattime();
DIR_PUTWRTTIME(direntry, writetime & 0xffff);
DIR_PUTWRTDATE(direntry, writetime >> 16);
/* This sector needs to be written back to disk eventually */
fs->fs_dirty = true;
/* Now remove the entire cluster chain comprising the file */
savesector = fs->fs_currentsector;
ret = fat_removechain(fs, startcluster);
if (ret < 0)
{
return ret;
}
/* Setup FSINFO to reuse the old start cluster next */
fs->fs_fsinextfree = startcluster - 1;
/* Make sure that the directory is still in the cache */
return fat_fscacheread(fs, savesector);
}
/****************************************************************************
* Name: fat_dirshrink
*
* Description:
* Shrink the size existing file to a non-zero length
*
* Assumptions:
* The caller holds mountpoint semaphore, fs_buffer holds the directory
* entry.
*
****************************************************************************/
int fat_dirshrink(struct fat_mountpt_s *fs, FAR uint8_t *direntry,
off_t length)
{
off_t clustersize;
off_t remaining;
uint32_t writetime;
int32_t lastcluster;
int32_t cluster;
int ret;
/* Get start cluster of the file to truncate */
lastcluster = ((uint32_t)DIR_GETFSTCLUSTHI(direntry) << 16) |
DIR_GETFSTCLUSTLO(direntry);
/* Set the file size to the new length. */
DIR_PUTFILESIZE(direntry, length);
/* Set the ARCHIVE attribute and update the write time */
DIR_PUTATTRIBUTES(direntry, FATATTR_ARCHIVE);
writetime = fat_systime2fattime();
DIR_PUTWRTTIME(direntry, writetime & 0xffff);
DIR_PUTWRTDATE(direntry, writetime >> 16);
/* This sector needs to be written back to disk eventually */
fs->fs_dirty = true;
/* Now find the cluster change to be removed. Start with the cluster
* after the current one (which we know contains data).
*/
cluster = fat_getcluster(fs, lastcluster);
if (cluster < 0)
{
return cluster;
}
clustersize = fs->fs_fatsecperclus * fs->fs_hwsectorsize;
remaining = length;
while (cluster >= 2 && cluster < fs->fs_nclusters)
{
/* Will there be data in the next cluster after the shrinkage? */
if (remaining <= clustersize)
{
/* No.. then nullify next cluster -- removing it from the
* chain.
*/
ret = fat_putcluster(fs, lastcluster, 0);
if (ret < 0)
{
return ret;
}
/* Then free the remainder of the chain */
ret = fat_removechain(fs, cluster);
if (ret < 0)
{
return ret;
}
/* Setup FSINFO to reuse the removed cluster next */
fs->fs_fsinextfree = cluster - 1;
break;
}
/* Then set up to remove the next cluster */
lastcluster = cluster;
cluster = fat_getcluster(fs, cluster);
if (cluster < 0)
{
return cluster;
}
remaining -= clustersize;
}
return OK;
}
/****************************************************************************
* Name: fat_dirextend
*
* Description:
* Zero-extend the length of a regular file to 'length'.
*
****************************************************************************/
int fat_dirextend(FAR struct fat_mountpt_s *fs, FAR struct fat_file_s *ff,
off_t length)
{
int32_t cluster;
off_t remaining;
off_t pos;
unsigned int zerosize;
int sectndx;
int ret;
/* We are extending the file. This is essentially the same as a write
* except that (1) we write zeros and (2) we don't update the file
* position.
*/
pos = ff->ff_size;
/* Get the first sector to write to. */
if (!ff->ff_currentsector)
{
/* Has the starting cluster been defined? */
if (ff->ff_startcluster == 0)
{
/* No.. we have to create a new cluster chain */
ff->ff_startcluster = fat_createchain(fs);
ff->ff_currentcluster = ff->ff_startcluster;
ff->ff_sectorsincluster = fs->fs_fatsecperclus;
}
/* The current sector can then be determined from the current cluster
* and the file offset.
*/
ret = fat_currentsector(fs, ff, pos);
if (ret < 0)
{
return ret;
}
}
/* Loop until either (1) the file has been fully extended with zeroed data
* or (2) an error occurs. We assume we start with the current sector in
* cache (ff_currentsector)
*/
sectndx = pos & SEC_NDXMASK(fs);
remaining = length - pos;
while (remaining > 0)
{
/* Check if the current write stream has incremented to the next
* cluster boundary
*/
if (ff->ff_sectorsincluster < 1)
{
/* Extend the current cluster by one (unless lseek was used to
* move the file position back from the end of the file)
*/
cluster = fat_extendchain(fs, ff->ff_currentcluster);
/* Verify the cluster number */
if (cluster < 0)
{
return (int)cluster;
}
else if (cluster < 2 || cluster >= fs->fs_nclusters)
{
return -ENOSPC;
}
/* Setup to zero the first sector from the new cluster */
ff->ff_currentcluster = cluster;
ff->ff_sectorsincluster = fs->fs_fatsecperclus;
ff->ff_currentsector = fat_cluster2sector(fs, cluster);
}
/* Decide whether we are performing a read-modify-write
* operation, in which case we have to read the existing sector
* into the buffer first.
*
* There are two cases where we can avoid this read:
*
* - If we are performing a whole-sector clear that was rejected
* by fat_hwwrite(), i.e. sectndx == 0 and remaining >= sector size.
*
* - If the clear is aligned to the beginning of the sector and
* extends beyond the end of the file, i.e. sectndx == 0 and
* file pos + remaining >= file size.
*/
if (sectndx == 0 && (remaining >= fs->fs_hwsectorsize ||
(pos + remaining) >= ff->ff_size))
{
/* Flush unwritten data in the sector cache. */
ret = fat_ffcacheflush(fs, ff);
if (ret < 0)
{
return ret;
}
/* Now mark the clean cache buffer as the current sector. */
ff->ff_cachesector = ff->ff_currentsector;
}
else
{
/* Read the current sector into memory (perhaps first flushing the
* old, dirty sector to disk).
*/
ret = fat_ffcacheread(fs, ff, ff->ff_currentsector);
if (ret < 0)
{
return ret;
}
}
/* Copy the requested part of the sector from the user buffer */
zerosize = fs->fs_hwsectorsize - sectndx;
if (zerosize > remaining)
{
/* We will not zero to the end of the sector. */
zerosize = remaining;
}
else
{
/* We will zero to the end of the buffer (or beyond). Bump up
* the current sector number (actually the next sector number).
*/
ff->ff_sectorsincluster--;
ff->ff_currentsector++;
}
/* Zero the data into the cached sector and make sure that the cached
* sector is marked "dirty" so that it will be written back.
*/
memset(&ff->ff_buffer[sectndx], 0, zerosize);
ff->ff_bflags |= (FFBUFF_DIRTY | FFBUFF_VALID | FFBUFF_MODIFIED);
/* Set up for the next sector */
pos += zerosize;
remaining -= zerosize;
sectndx = pos & SEC_NDXMASK(fs);
}
/* The truncation has completed without error. Update the file size */
ff->ff_size = length;
return OK;
}
/****************************************************************************
* Name: fat_fscacheflush
*
* Description:
* Flush any dirty sector if fs_buffer as necessary
*
****************************************************************************/
int fat_fscacheflush(struct fat_mountpt_s *fs)
{
int ret;
/* Check if the fs_buffer is dirty. In this case, we will write back the
* contents of fs_buffer.
*/
if (fs->fs_dirty)
{
/* Write the dirty sector */
ret = fat_hwwrite(fs, fs->fs_buffer, fs->fs_currentsector, 1);
if (ret < 0)
{
return ret;
}
/* Does the sector lie in the FAT region? */
if (fs->fs_currentsector >= fs->fs_fatbase &&
fs->fs_currentsector < fs->fs_fatbase + fs->fs_nfatsects)
{
int i;
/* Yes, then make the change in the FAT copy as well */
for (i = fs->fs_fatnumfats; i >= 2; i--)
{
fs->fs_currentsector += fs->fs_nfatsects;
ret = fat_hwwrite(fs, fs->fs_buffer, fs->fs_currentsector, 1);
if (ret < 0)
{
return ret;
}
}
}
/* No longer dirty */
fs->fs_dirty = false;
}
return OK;
}
/****************************************************************************
* Name: fat_fscacheread
*
* Description:
* Read the specified sector into the sector cache, flushing any existing
* dirty sectors as necessary.
*
****************************************************************************/
int fat_fscacheread(struct fat_mountpt_s *fs, off_t sector)
{
int ret;
/* fs->fs_currentsector holds the current sector that is buffered in
* fs->fs_buffer. If the requested sector is the same as this sector, then
* we do nothing. Otherwise, we will have to read the new sector.
*/
if (fs->fs_currentsector != sector)
{
/* We will need to read the new sector. First, flush the cached
* sector if it is dirty.
*/
ret = fat_fscacheflush(fs);
if (ret < 0)
{
return ret;
}
/* Then read the specified sector into the cache */
ret = fat_hwread(fs, fs->fs_buffer, sector, 1);
if (ret < 0)
{
return ret;
}
/* Update the cached sector number */
fs->fs_currentsector = sector;
}
return OK;
}
/****************************************************************************
* Name: fat_ffcacheflush
*
* Description:
* Flush any dirty sectors as necessary
*
****************************************************************************/
int fat_ffcacheflush(struct fat_mountpt_s *fs, struct fat_file_s *ff)
{
int ret;
/* Check if the ff_buffer is dirty. In this case, we will write back the
* contents of ff_buffer.
*/
if (ff->ff_cachesector &&
(ff->ff_bflags & (FFBUFF_DIRTY | FFBUFF_VALID)) ==
(FFBUFF_DIRTY | FFBUFF_VALID))
{
/* Write the dirty sector */
ret = fat_hwwrite(fs, ff->ff_buffer, ff->ff_cachesector, 1);
if (ret < 0)
{
return ret;
}
/* No longer dirty, but still valid */
ff->ff_bflags &= ~FFBUFF_DIRTY;
}
return OK;
}
/****************************************************************************
* Name: fat_ffcacheread
*
* Description:
* Read the specified sector into the sector cache, flushing any existing
* dirty sectors as necessary.
*
****************************************************************************/
int fat_ffcacheread(struct fat_mountpt_s *fs, struct fat_file_s *ff,
off_t sector)
{
int ret;
/* ff->ff_cachesector holds the current sector that is buffered in
* ff->ff_buffer. If the requested sector is the same as this sector, then
* we do nothing. Otherwise, we will have to read the new sector.
*/
if (ff->ff_cachesector != sector || (ff->ff_bflags & FFBUFF_VALID) == 0)
{
/* We will need to read the new sector. First, flush the cached
* sector if it is dirty.
*/
ret = fat_ffcacheflush(fs, ff);
if (ret < 0)
{
return ret;
}
/* Then read the specified sector into the cache */
ret = fat_hwread(fs, ff->ff_buffer, sector, 1);
if (ret < 0)
{
return ret;
}
/* Update the cached sector number */
ff->ff_cachesector = sector;
ff->ff_bflags |= FFBUFF_VALID;
}
return OK;
}
/****************************************************************************
* Name: fat_ffcacheread
*
* Description:
* Invalidate the current file buffer contents
*
****************************************************************************/
int fat_ffcacheinvalidate(struct fat_mountpt_s *fs, struct fat_file_s *ff)
{
int ret;
/* Is there anything valid in the buffer now? */
if ((ff->ff_bflags & FFBUFF_VALID) != 0)
{
/* We will invalidate the buffered sector */
ret = fat_ffcacheflush(fs, ff);
if (ret < 0)
{
return ret;
}
/* Then discard the current cache contents */
ff->ff_bflags &= ~FFBUFF_VALID;
ff->ff_cachesector = 0;
}
return OK;
}
/****************************************************************************
* Name: fat_updatefsinfo
*
* Description:
* Flush everything buffered for the mountpoint and update the FSINFO
* sector, if appropriate
*
****************************************************************************/
int fat_updatefsinfo(struct fat_mountpt_s *fs)
{
int ret;
/* Flush the fs_buffer if it is dirty */
ret = fat_fscacheflush(fs);
if (ret == OK)
{
/* The FSINFO sector only has to be update for the case of a FAT32 file
* system. Check if the file system type.. If this is a FAT32 file
* system then the fs_fsidirty flag will indicate if the FSINFO sector
* needs to be re-written.
*/
if (fs->fs_type == FSTYPE_FAT32 && fs->fs_fsidirty)
{
/* Create an image of the FSINFO sector in the fs_buffer */
memset(fs->fs_buffer, 0, fs->fs_hwsectorsize);
FSI_PUTLEADSIG(fs->fs_buffer, 0x41615252);
FSI_PUTSTRUCTSIG(fs->fs_buffer, 0x61417272);
FSI_PUTFREECOUNT(fs->fs_buffer, fs->fs_fsifreecount);
FSI_PUTNXTFREE(fs->fs_buffer, fs->fs_fsinextfree);
FSI_PUTTRAILSIG(fs->fs_buffer, BOOT_SIGNATURE32);
/* Then flush this to disk */
fs->fs_currentsector = fs->fs_fsinfo;
fs->fs_dirty = true;
ret = fat_fscacheflush(fs);
/* No longer dirty */
fs->fs_fsidirty = false;
}
}
return ret;
}
/****************************************************************************
* Name: fat_nfreeclusters
*
* Description:
* Get the number of free clusters
*
****************************************************************************/
int fat_nfreeclusters(struct fat_mountpt_s *fs, off_t *pfreeclusters)
{
uint32_t nfreeclusters;
/* If number of the first free cluster is valid, then just return that
* value.
*/
if (fs->fs_fsifreecount <= fs->fs_nclusters - 2)
{
*pfreeclusters = fs->fs_fsifreecount;
return OK;
}
/* Otherwise, we will have to count the number of free clusters */
nfreeclusters = 0;
if (fs->fs_type == FSTYPE_FAT12)
{
off_t sector;
/* Examine every cluster in the fat */
for (sector = 2; sector < fs->fs_nclusters; sector++)
{
/* If the cluster is unassigned, then increment the count of free
* clusters.
*/
if ((uint16_t)fat_getcluster(fs, sector) == 0)
{
nfreeclusters++;
}
}
}
else
{
unsigned int cluster;
off_t fatsector;
unsigned int offset;
int ret;
fatsector = fs->fs_fatbase;
offset = fs->fs_hwsectorsize;
/* Examine each cluster in the fat */
for (cluster = fs->fs_nclusters; cluster > 0; cluster--)
{
/* If we are starting a new sector, then read the new sector in
* fs_buffer.
*/
if (offset >= fs->fs_hwsectorsize)
{
ret = fat_fscacheread(fs, fatsector++);
if (ret < 0)
{
return ret;
}
/* Reset the offset to the next FAT entry.
* Increment the sector number to read next time around.
*/
offset = 0;
fatsector++;
}
/* FAT16 and FAT32 differ only on the size of each cluster start
* sector number in the FAT.
*/
if (fs->fs_type == FSTYPE_FAT16)
{
if (FAT_GETFAT16(fs->fs_buffer, offset) == 0)
{
nfreeclusters++;
}
offset += 2;
}
else
{
if (FAT_GETFAT32(fs->fs_buffer, offset) == 0)
{
nfreeclusters++;
}
offset += 4;
}
}
}
fs->fs_fsifreecount = nfreeclusters;
if (fs->fs_type == FSTYPE_FAT32)
{
fs->fs_fsidirty = true;
}
*pfreeclusters = nfreeclusters;
return OK;
}
/****************************************************************************
* Name: fat_nfreeclusters
*
* Description:
* Given the file position, set the correct current sector to access.
*
****************************************************************************/
int fat_currentsector(struct fat_mountpt_s *fs, struct fat_file_s *ff,
off_t position)
{
int sectoroffset;
off_t cluster_start_sector;
if (position <= ff->ff_size)
{
/* sectoroffset is the sector number offset into the current cluster */
sectoroffset = SEC_NSECTORS(fs, position) & CLUS_NDXMASK(fs);
/* The current sector is the first sector of the cluster plus
* the sector offset
*/
cluster_start_sector = fat_cluster2sector(fs, ff->ff_currentcluster);
if (cluster_start_sector < 0)
{
return cluster_start_sector;
}
ff->ff_currentsector = cluster_start_sector + sectoroffset;
/* The remainder is the number of sectors left in the cluster to be
* read/written
*/
ff->ff_sectorsincluster = fs->fs_fatsecperclus - sectoroffset;
finfo("position=%jd currentsector=%jd sectorsincluster=%d\n",
(intmax_t)position, (intmax_t)ff->ff_currentsector,
ff->ff_sectorsincluster);
return OK;
}
/* The position does not lie within the file */
return -ENOSPC;
}