1462ed1ad8
git-svn-id: svn://svn.code.sf.net/p/nuttx/code/trunk@5418 42af7a65-404d-4744-a932-0658087f49c3 |
||
---|---|---|
.. | ||
include | ||
nsh | ||
ostest | ||
pashello | ||
src | ||
Kconfig | ||
README.txt |
xtrs README ^^^^^^^^^^^^^ Current status ^^^^^^^^^^^^^^ The xtrs port is not operational yet; some work still needs to be done. Contents ^^^^^^^^ o Getting a TRS80 emulator and DOS disks o Loading an executable into xtrs o Configuring NuttX o Reconfiguring NuttX o Reconfiguring for Linux, OSX, or Cygwin o SDCC o Building the SDCC toolchain Getting a TRS80 emulator and DOS disks ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This port uses a vintage computer based on the Z80, the TRS80. There's a main page describing the different models of TRS80. See: http://www.trs-80.com An emulator for this computer is available to run TRS80 programs on a linux platform (http://www.tim-mann.org/xtrs.html). Other emulators are available for other platforms. See http://www.trs-80.com, click on the link Emulators. TRSDOS, LDOS and other softwares are available at: http://discover-net.net/~dmkeil/trs80/software/trs-dos.htm Or you can get TRSDOS 1.3 and 6.1 from this site; it's included with the emulator. http://discover-net.net/~dmkeil/trs80/model4.htm The SDCC toolchain is available from http://sdcc.sourceforge.net/. All testing has been performed using version 2.7.0 of the SDCC toolchain. Loading an executable into xtrs ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ At http://www.trs-80.com click on the link: Getting a Software Onto an Emulator. Configuring NuttX ^^^^^^^^^^^^^^^^^ ostest This configuration performs a simple, minimal OS test using examples/ostest. This can be configurated as follows: cd tools ./configure.sh xtrs/ostest cd - . ./setenv.sh nsh This configuration file builds NSH (examples/nsh). This configuration is not functional due to issues with use of the simulated serial driver (see the TODO list). This configuration can be selected by: cd tools ./configure.sh xtrs/nsh cd - . ./setenv.sh pashello Configures to use examples/pashello for execution from FLASH See examples/README.txt for information about pashello. This configuration is not usable because the resulting binary is too large for the z80 address space. This configuration can be selected by: cd tools ./configure.sh xtrs/pashello cd - . ./setenv.sh Reconfiguring NuttX ^^^^^^^^^^^^^^^^^^^ These configurations all use the kconfig-frontends, mconf-based configuration tool. To change this configuration using that tool, you should: a. Build and install the mconf tool. See nuttx/README.txt and misc/tools/README.txt b. Execute 'make menuconfig' in nuttx/ in order to start the reconfiguration process. Reconfiguring for Linux, OSX, or Cygwin ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ All of the z80 configurations in this this directory are set up to build in a Windows CMD.exe shell. This configuration requires the MinGW host compiler and severl GNUWin32 tools (see discussion in the top-level NuttX/README.txt file). These configurations can be converted to run under Linux (or Cygwin or OSX), by modifying the configuration file as follows: -CONFIG_HOST_WINDOWS=y -CONFIG_WINDOWS_NATIVE=y +CONFIG_HOST_LINUX=y -CONFIG_Z80_TOOLCHAIN_SDCCW=y +CONFIG_Z80_TOOLCHAIN_SDCCL=y You may need to first manually change the CONFIG_APPS_DIR="..\apps" definition in the .config file because the backslash may upset some Unix-based tools. You cannot use the default setenv.bat in these Unix-like enviroments because that is a Windows batch file. Use configs/z80sim/script/setenv.sh instead. SDCC ^^^^ These z80 configurations all use the SDCC toolchain (http://sdcc.sourceforge.net/). Source and pre-built SDCC binaries can be downloaded from the SDCC SourceForge site: http://sourceforge.net/projects/sdcc/files/ . Pre-built binaries are available for Linux, MAC OSX, and for Win32. Various SDCC options can be selected with: CONFIG_Z80_TOOLCHAIN_SDCCL=y : SDCC for Linux, MAC OSX or Cygwin (see below) CONFIG_Z80_TOOLCHAIN_SDCCW=y : SDCC for Win32 SDCC versions 3.2.0 or higher are recommended. Building the SDCC toolchain ^^^^^^^^^^^^^^^^^^^^^^^^^^^ You may also want to build your own SDCC toolchain. You might want to do this, for example, if you are running under Cygwin and want a Cygwin compatible SDCC toolchain. The SDCC toolchain is built with the standard configure/make/make install sequence. However, some special actions are required to generate libraries compatible with this build. First start with the usual steps download unpack cd sdcc ./configure But before making, we need to apply a patch to the SDCC 2.6.0 source so that the z80 assembler can handle long symbol names Apply sdcc-2.6.0-asz80-symlen.patch cd sdcc/device/lib Then make the SDCC binaries cd sdcc make and install SDCC: sudo make install