nuttx/drivers/net/enc28j60.c
Xiang Xiao acca9fcc3b sched/wdog: Remove MAX_WDOGPARMS and related stuff
since the variable arguments are error prone and seldom used.

Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
2020-08-14 08:19:50 -06:00

2684 lines
80 KiB
C
Raw Blame History

/****************************************************************************
* drivers/net/enc28j60.c
*
* Copyright (C) 2010-2012, 2014-2018 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* References:
* - ENC28J60 Data Sheet, Stand-Alone Ethernet Controller with SPI Interface,
* DS39662C, 2008 Microchip Technology Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#if defined(CONFIG_NET) && defined(CONFIG_ENC28J60)
#include <stdint.h>
#include <stdbool.h>
#include <stdint.h>
#include <time.h>
#include <string.h>
#include <debug.h>
#include <errno.h>
#include <arpa/inet.h>
#include <nuttx/irq.h>
#include <nuttx/arch.h>
#include <nuttx/wdog.h>
#include <nuttx/spi/spi.h>
#include <nuttx/wqueue.h>
#include <nuttx/clock.h>
#include <nuttx/net/enc28j60.h>
#include <nuttx/net/net.h>
#include <nuttx/net/arp.h>
#include <nuttx/net/netdev.h>
#ifdef CONFIG_NET_PKT
# include <nuttx/net/pkt.h>
#endif
#include "enc28j60.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
/* ENC28J60 Configuration Settings:
*
* CONFIG_ENC28J60 - Enabled ENC28J60 support
* CONFIG_ENC28J60_SPIMODE - Controls the SPI mode
* CONFIG_ENC28J60_FREQUENCY - Define to use a different bus frequency
* CONFIG_ENC28J60_NINTERFACES - Specifies the number of physical ENC28J60
* devices that will be supported.
* CONFIG_ENC28J60_HALFDUPPLEX - Default is full duplex
*/
/* The ENC28J60 spec says that it supports SPI mode 0,0 only: "The
* implementation used on this device supports SPI mode 0,0 only. In
* addition, the SPI port requires that SCK be at Idle in a low state;
* selectable clock polarity is not supported." However, sometimes you
* need to tinker with these things.
*/
#ifndef CONFIG_ENC28J60_SPIMODE
# define CONFIG_ENC28J60_SPIMODE SPIDEV_MODE0
#endif
/* CONFIG_ENC28J60_NINTERFACES determines the number of physical interfaces
* that will be supported.
*/
#ifndef CONFIG_ENC28J60_NINTERFACES
# define CONFIG_ENC28J60_NINTERFACES 1
#endif
/* CONFIG_NET_ETH_PKTSIZE must always be defined */
#if !defined(CONFIG_NET_ETH_PKTSIZE) && (CONFIG_NET_ETH_PKTSIZE <= MAX_FRAMELEN)
# error "CONFIG_NET_ETH_PKTSIZE is not valid for the ENC28J60"
#endif
/* We need to have the work queue to handle SPI interrupts */
#if !defined(CONFIG_SCHED_WORKQUEUE)
# error "Worker thread support is required (CONFIG_SCHED_WORKQUEUE)"
#endif
/* The low priority work queue is preferred. If it is not enabled, LPWORK
* will be the same as HPWORK.
*
* NOTE: However, the network should NEVER run on the high priority work
* queue! That queue is intended only to service short back end interrupt
* processing that never suspends. Suspending the high priority work queue
* may bring the system to its knees!
*/
#define ENCWORK LPWORK
/* CONFIG_ENC28J60_DUMPPACKET will dump the contents of each packet. */
#ifdef CONFIG_ENC28J60_DUMPPACKET
# define enc_dumppacket(m,a,n) lib_dumpbuffer(m,a,n)
#else
# define enc_dumppacket(m,a,n)
#endif
/* Low-level register debug */
#if !defined(CONFIG_DEBUG_FEATURES) || !defined(CONFIG_DEBUG_NET)
# undef CONFIG_ENC28J60_REGDEBUG
#endif
/* Timing *******************************************************************/
/* TX poll deley = 1 seconds. CLK_TCK is the number of ticks per second */
#define ENC_WDDELAY (1*CLK_TCK)
/* TX timeout = 1 minute */
#define ENC_TXTIMEOUT (60*CLK_TCK)
/* Poll timeout */
#define ENC_POLLTIMEOUT MSEC2TICK(50)
/* Packet Memory ************************************************************/
/* Packet memory layout */
#define ALIGNED_BUFSIZE ((CONFIG_NET_ETH_PKTSIZE + 255) & ~255)
/* Work around Errata #5 (spurious reset of ERXWRPT to 0) by placing the RX
* FIFO at the beginning of packet memory.
*/
#define ERRATA5 1
#if ERRATA5
# define PKTMEM_RX_START 0x0000 /* RX buffer must be at addr 0 for errata 5 */
# define PKTMEM_RX_END (PKTMEM_END-ALIGNED_BUFSIZE) /* RX buffer length is total SRAM minus TX buffer */
# define PKTMEM_TX_START (PKTMEM_RX_END+1) /* Start TX buffer after */
# define PKTMEM_TX_ENDP1 (PKTMEM_TX_START+ALIGNED_BUFSIZE) /* Allow TX buffer for one frame */
#else
# define PKTMEM_TX_START 0x0000 /* Start TX buffer at 0 */
# define PKTMEM_TX_ENDP1 ALIGNED_BUFSIZE /* Allow TX buffer for one frame */
# define PKTMEM_RX_START PKTMEM_TX_ENDP1 /* Followed by RX buffer */
# define PKTMEM_RX_END PKTMEM_END /* RX buffer goes to the end of SRAM */
#endif
/* Misc. Helper Macros ******************************************************/
#define enc_rdgreg(priv,ctrlreg) \
enc_rdgreg2(priv, ENC_RCR | GETADDR(ctrlreg))
#define enc_wrgreg(priv,ctrlreg,wrdata) \
enc_wrgreg2(priv, ENC_WCR | GETADDR(ctrlreg), wrdata)
#define enc_bfcgreg(priv,ctrlreg,clrbits) \
enc_wrgreg2(priv, ENC_BFC | GETADDR(ctrlreg), clrbits)
#define enc_bfsgreg(priv,ctrlreg,setbits) \
enc_wrgreg2(priv, ENC_BFS | GETADDR(ctrlreg), setbits)
/* This is a helper pointer for accessing the contents of Ethernet header */
#define BUF ((struct eth_hdr_s *)priv->dev.d_buf)
/* Debug ********************************************************************/
#ifdef CONFIG_ENC28J60_REGDEBUG
# define enc_wrdump(a,v) \
syslog(LOG_DEBUG, "ENC28J60: %02x<-%02x\n", a, v);
# define enc_rddump(a,v) \
syslog(LOG_DEBUG, "ENC28J60: %02x->%02x\n", a, v);
# define enc_cmddump(c) \
syslog(LOG_DEBUG, "ENC28J60: CMD: %02x\n", c);
# define enc_bmdump(c,b,s) \
syslog(LOG_DEBUG, "ENC28J60: CMD: %02x buffer: %p length: %d\n", c, b, s);
#else
# define enc_wrdump(a,v)
# define enc_rddump(a,v)
# define enc_cmddump(c)
# define enc_bmdump(c,b,s)
#endif
/****************************************************************************
* Private Types
****************************************************************************/
/* The state of the interface */
enum enc_state_e
{
ENCSTATE_UNINIT = 0, /* The interface is in an uninitialized state */
ENCSTATE_DOWN, /* The interface is down */
ENCSTATE_UP /* The interface is up */
};
/* The enc_driver_s encapsulates all state information for a single hardware
* interface
*/
struct enc_driver_s
{
/* Device control */
uint8_t ifstate; /* Interface state: See ENCSTATE_* */
uint8_t bank; /* Currently selected bank */
uint16_t nextpkt; /* Next packet address */
FAR const struct enc_lower_s *lower; /* Low-level MCU-specific support */
/* Timing */
struct wdog_s txpoll; /* TX poll timer */
struct wdog_s txtimeout; /* TX timeout timer */
/* If we don't own the SPI bus, then we cannot do SPI accesses from the
* interrupt handler.
*/
struct work_s irqwork; /* Interrupt continuation work queue support */
struct work_s towork; /* Tx timeout work queue support */
struct work_s pollwork; /* Poll timeout work queue support */
/* This is the contained SPI driver intstance */
FAR struct spi_dev_s *spi;
/* This holds the information visible to the NuttX network */
struct net_driver_s dev; /* Interface understood by the network */
};
/****************************************************************************
* Private Data
****************************************************************************/
/* A single packet buffer is used */
static uint8_t g_pktbuf[MAX_NETDEV_PKTSIZE + CONFIG_NET_GUARDSIZE];
/* Driver status structure */
static struct enc_driver_s g_enc28j60[CONFIG_ENC28J60_NINTERFACES];
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Low-level SPI helpers */
static inline void enc_configspi(FAR struct spi_dev_s *spi);
static void enc_lock(FAR struct enc_driver_s *priv);
static inline void enc_unlock(FAR struct enc_driver_s *priv);
/* SPI control register access */
static uint8_t enc_rdgreg2(FAR struct enc_driver_s *priv, uint8_t cmd);
static void enc_wrgreg2(FAR struct enc_driver_s *priv, uint8_t cmd,
uint8_t wrdata);
static inline void enc_src(FAR struct enc_driver_s *priv);
static void enc_setbank(FAR struct enc_driver_s *priv, uint8_t bank);
static uint8_t enc_rdbreg(FAR struct enc_driver_s *priv, uint8_t ctrlreg);
static void enc_wrbreg(FAR struct enc_driver_s *priv, uint8_t ctrlreg,
uint8_t wrdata);
static int enc_waitbreg(FAR struct enc_driver_s *priv, uint8_t ctrlreg,
uint8_t bits, uint8_t value);
#if 0 /* Sometimes useful */
static void enc_rxdump(FAR struct enc_driver_s *priv);
static void enc_txdump(FAR struct enc_driver_s *priv);
#endif
/* SPI buffer transfers */
static void enc_rdbuffer(FAR struct enc_driver_s *priv, FAR uint8_t *buffer,
size_t buflen);
static inline void enc_wrbuffer(FAR struct enc_driver_s *priv,
FAR const uint8_t *buffer, size_t buflen);
/* PHY register access */
static uint16_t enc_rdphy(FAR struct enc_driver_s *priv, uint8_t phyaddr);
static void enc_wrphy(FAR struct enc_driver_s *priv, uint8_t phyaddr,
uint16_t phydata);
/* Common TX logic */
static int enc_transmit(FAR struct enc_driver_s *priv);
static int enc_txpoll(struct net_driver_s *dev);
/* Interrupt handling */
static void enc_linkstatus(FAR struct enc_driver_s *priv);
static void enc_txif(FAR struct enc_driver_s *priv);
static void enc_txerif(FAR struct enc_driver_s *priv);
static void enc_txerif(FAR struct enc_driver_s *priv);
static void enc_rxerif(FAR struct enc_driver_s *priv);
static void enc_rxdispatch(FAR struct enc_driver_s *priv);
static void enc_pktif(FAR struct enc_driver_s *priv);
static void enc_irqworker(FAR void *arg);
static int enc_interrupt(int irq, FAR void *context, FAR void *arg);
/* Watchdog timer expirations */
static void enc_toworker(FAR void *arg);
static void enc_txtimeout(wdparm_t arg);
static void enc_pollworker(FAR void *arg);
static void enc_polltimer(wdparm_t arg);
/* NuttX callback functions */
static int enc_ifup(struct net_driver_s *dev);
static int enc_ifdown(struct net_driver_s *dev);
static int enc_txavail(struct net_driver_s *dev);
#ifdef CONFIG_NET_MCASTGROUP
static int enc_addmac(struct net_driver_s *dev, FAR const uint8_t *mac);
static int enc_rmmac(struct net_driver_s *dev, FAR const uint8_t *mac);
#endif
/* Initialization */
static void enc_pwrsave(FAR struct enc_driver_s *priv);
static void enc_pwrfull(FAR struct enc_driver_s *priv);
static void enc_setmacaddr(FAR struct enc_driver_s *priv);
static int enc_reset(FAR struct enc_driver_s *priv);
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: enc_configspi
*
* Description:
* Configure the SPI for use with the ENC28J60
*
* Input Parameters:
* spi - Reference to the SPI driver structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static inline void enc_configspi(FAR struct spi_dev_s *spi)
{
/* Configure SPI for the ENC28J60. */
SPI_SETMODE(spi, CONFIG_ENC28J60_SPIMODE);
SPI_SETBITS(spi, 8);
SPI_HWFEATURES(spi, 0);
SPI_SETFREQUENCY(spi, CONFIG_ENC28J60_FREQUENCY);
}
/****************************************************************************
* Name: enc_lock
*
* Description:
* Select the SPI, locking and re-configuring if necessary
*
* Input Parameters:
* spi - Reference to the SPI driver structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_lock(FAR struct enc_driver_s *priv)
{
/* Lock the SPI bus in case there are multiple devices competing for the
* SPI bus.
*/
SPI_LOCK(priv->spi, true);
/* Now make sure that the SPI bus is configured for the ENC28J60 (it
* might have gotten configured for a different device while unlocked)
*/
SPI_SETMODE(priv->spi, CONFIG_ENC28J60_SPIMODE);
SPI_SETBITS(priv->spi, 8);
SPI_HWFEATURES(priv->spi, 0);
SPI_SETFREQUENCY(priv->spi, CONFIG_ENC28J60_FREQUENCY);
}
/****************************************************************************
* Name: enc_unlock
*
* Description:
* De-select the SPI
*
* Input Parameters:
* spi - Reference to the SPI driver structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static inline void enc_unlock(FAR struct enc_driver_s *priv)
{
/* Relinquish the lock on the bus. */
SPI_LOCK(priv->spi, false);
}
/****************************************************************************
* Name: enc_rdgreg2
*
* Description:
* Read a global register (EIE, EIR, ESTAT, ECON2, or ECON1). The cmd
* include the CMD 'OR'd with the global address register.
*
* Input Parameters:
* priv - Reference to the driver state structure
* cmd - The full command to received (cmd | address)
*
* Returned Value:
* The value read from the register
*
* Assumptions:
*
****************************************************************************/
static uint8_t enc_rdgreg2(FAR struct enc_driver_s *priv, uint8_t cmd)
{
uint8_t rddata;
DEBUGASSERT(priv && priv->spi);
/* Select ENC28J60 chip */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), true);
/* Send the read command and collect the data. The sequence requires
* 16-clocks: 8 to clock out the cmd + 8 to clock in the data.
*/
SPI_SEND(priv->spi, cmd); /* Clock out the command */
rddata = SPI_SEND(priv->spi, 0); /* Clock in the data */
/* De-select ENC28J60 chip */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), false);
enc_rddump(cmd, rddata);
return rddata;
}
/****************************************************************************
* Name: enc_wrgreg2
*
* Description:
* Write to a global register (EIE, EIR, ESTAT, ECON2, or ECON1). The cmd
* include the CMD 'OR'd with the global address register.
*
* Input Parameters:
* priv - Reference to the driver state structure
* cmd - The full command to received (cmd | address)
* wrdata - The data to send
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_wrgreg2(FAR struct enc_driver_s *priv, uint8_t cmd,
uint8_t wrdata)
{
DEBUGASSERT(priv && priv->spi);
/* Select ENC28J60 chip */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), true);
/* Send the write command and data. The sequence requires 16-clocks:
* 8 to clock out the cmd + 8 to clock out the data.
*/
SPI_SEND(priv->spi, cmd); /* Clock out the command */
SPI_SEND(priv->spi, wrdata); /* Clock out the data */
/* De-select ENC28J60 chip. */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), false);
enc_wrdump(cmd, wrdata);
}
/****************************************************************************
* Name: enc_src
*
* Description:
* Send the single byte system reset command (SRC).
*
* "The System Reset Command (SRC) allows the host controller to issue a
* System Soft Reset command. Unlike other SPI commands, the SRC is
* only a single byte command and does not operate on any register. The
* command is started by pulling the CS pin low. The SRC opcode is the
* sent, followed by a 5-bit Soft Reset command constant of 1Fh. The
* SRC operation is terminated by raising the CS pin."
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static inline void enc_src(FAR struct enc_driver_s *priv)
{
DEBUGASSERT(priv && priv->spi);
/* Select ENC28J60 chip */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), true);
/* Send the system reset command. */
SPI_SEND(priv->spi, ENC_SRC);
/* Check CLKRDY bit to see when the reset is complete. There is an errata
* that says the CLKRDY may be invalid. We'll wait a couple of msec to
* workaround this condition.
*
* Also, "After a System Reset, all PHY registers should not be read or
* written to until at least 50 <20>s have passed since the Reset has ended.
* All registers will revert to their Reset default values. The dual
* port buffer memory will maintain state throughout the System Reset."
*/
up_mdelay(2);
#if 0
while ((enc_rdgreg(priv, ENC_ESTAT) & ESTAT_CLKRDY) != 0);
#endif
/* De-select ENC28J60 chip. */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), false);
enc_cmddump(ENC_SRC);
}
/****************************************************************************
* Name: enc_setbank
*
* Description:
* Set the bank for these next control register access.
*
* Assumption:
* The caller has exclusive access to the SPI bus
*
* Input Parameters:
* priv - Reference to the driver state structure
* bank - The bank to select (0-3)
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_setbank(FAR struct enc_driver_s *priv, uint8_t bank)
{
/* Check if the bank setting has changed */
if (bank != priv->bank)
{
/* Select bank 0 (just so that all of the bits are cleared) */
enc_bfcgreg(priv, ENC_ECON1, ECON1_BSEL_MASK);
/* Then OR in bits to get the correct bank */
if (bank != 0)
{
enc_bfsgreg(priv, ENC_ECON1, (bank << ECON1_BSEL_SHIFT));
}
/* Then remember the bank setting */
priv->bank = bank;
}
}
/****************************************************************************
* Name: enc_rdbreg
*
* Description:
* Read from a banked control register using the RCR command.
*
* Input Parameters:
* priv - Reference to the driver state structure
* ctrlreg - Bit encoded address of banked register to read
*
* Returned Value:
* The byte read from the banked register
*
* Assumptions:
*
****************************************************************************/
static uint8_t enc_rdbreg(FAR struct enc_driver_s *priv, uint8_t ctrlreg)
{
uint8_t rddata;
DEBUGASSERT(priv && priv->spi);
/* Set the bank */
enc_setbank(priv, GETBANK(ctrlreg));
/* Re-select ENC28J60 chip */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), true);
/* Send the RCR command and collect the data. How we collect the data
* depends on if this is a PHY/CAN or not. The normal sequence requires
* 16-clocks: 8 to clock out the cmd and 8 to clock in the data.
*/
SPI_SEND(priv->spi, ENC_RCR | GETADDR(ctrlreg)); /* Clock out the command */
if (ISPHYMAC(ctrlreg))
{
/* The PHY/MAC sequence requires 24-clocks: 8 to clock out the cmd,
* 8 dummy bits, and 8 to clock in the PHY/MAC data.
*/
SPI_SEND(priv->spi, 0); /* Clock in the dummy byte */
}
rddata = SPI_SEND(priv->spi, 0); /* Clock in the data */
/* De-select ENC28J60 chip */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), false);
enc_rddump(ENC_RCR | GETADDR(ctrlreg), rddata);
return rddata;
}
/****************************************************************************
* Name: enc_wrbreg
*
* Description:
* Write to a banked control register using the WCR command. Unlike
* reading, this same SPI sequence works for normal, MAC, and PHY
* registers.
*
* Input Parameters:
* priv - Reference to the driver state structure
* ctrlreg - Bit encoded address of banked register to write
* wrdata - The data to send
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_wrbreg(FAR struct enc_driver_s *priv, uint8_t ctrlreg,
uint8_t wrdata)
{
DEBUGASSERT(priv && priv->spi);
/* Set the bank */
enc_setbank(priv, GETBANK(ctrlreg));
/* Re-select ENC28J60 chip */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), true);
/* Send the WCR command and data. The sequence requires 16-clocks:
* 8 to clock out the cmd + 8 to clock out the data.
*/
SPI_SEND(priv->spi, ENC_WCR | GETADDR(ctrlreg)); /* Clock out the command */
SPI_SEND(priv->spi, wrdata); /* Clock out the data */
/* De-select ENC28J60 chip. */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), false);
enc_wrdump(ENC_WCR | GETADDR(ctrlreg), wrdata);
}
/****************************************************************************
* Name: enc_waitbreg
*
* Description:
* Wait until banked register bit(s) take a specific value (or a timeout
* occurs).
*
* Input Parameters:
* priv - Reference to the driver state structure
* ctrlreg - Bit encoded address of banked register to check
* bits - The bits to check (a mask)
* value - The value of the bits to return (value under mask)
*
* Returned Value:
* OK on success, negated errno on failure
*
* Assumptions:
*
****************************************************************************/
static int enc_waitbreg(FAR struct enc_driver_s *priv, uint8_t ctrlreg,
uint8_t bits, uint8_t value)
{
clock_t start = clock_systime_ticks();
clock_t elapsed;
uint8_t rddata;
/* Loop until the exit condition is met */
do
{
/* Read the byte from the requested banked register */
rddata = enc_rdbreg(priv, ctrlreg);
elapsed = clock_systime_ticks() - start;
}
while ((rddata & bits) != value && elapsed < ENC_POLLTIMEOUT);
return (rddata & bits) == value ? OK : -ETIMEDOUT;
}
/****************************************************************************
* Name: enc_txdump enc_rxdump
*
* Description:
* Dump registers associated with receiving or sending packets.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
#if 0 /* Sometimes useful */
static void enc_rxdump(FAR struct enc_driver_s *priv)
{
syslog(LOG_DEBUG, "Rx Registers:\n");
syslog(LOG_DEBUG, " EIE: %02x EIR: %02x\n",
enc_rdgreg(priv, ENC_EIE), enc_rdgreg(priv, ENC_EIR));
syslog(LOG_DEBUG, " ESTAT: %02x ECON1: %02x ECON2: %02x\n",
enc_rdgreg(priv, ENC_ESTAT), enc_rdgreg(priv, ENC_ECON1),
enc_rdgreg(priv, ENC_ECON2));
syslog(LOG_DEBUG, " ERXST: %02x %02x\n",
enc_rdbreg(priv, ENC_ERXSTH), enc_rdbreg(priv, ENC_ERXSTL));
syslog(LOG_DEBUG, " ERXND: %02x %02x\n",
enc_rdbreg(priv, ENC_ERXNDH), enc_rdbreg(priv, ENC_ERXNDL));
syslog(LOG_DEBUG, " ERXRDPT: %02x %02x\n",
enc_rdbreg(priv, ENC_ERXRDPTH), enc_rdbreg(priv, ENC_ERXRDPTL));
syslog(LOG_DEBUG, " ERXFCON: %02x EPKTCNT: %02x\n",
enc_rdbreg(priv, ENC_ERXFCON), enc_rdbreg(priv, ENC_EPKTCNT));
syslog(LOG_DEBUG, " MACON1: %02x MACON3: %02x\n",
enc_rdbreg(priv, ENC_MACON1), enc_rdbreg(priv, ENC_MACON3));
syslog(LOG_DEBUG, " MAMXFL: %02x %02x\n",
enc_rdbreg(priv, ENC_MAMXFLH), enc_rdbreg(priv, ENC_MAMXFLL));
syslog(LOG_DEBUG, " MAADR: %02x:%02x:%02x:%02x:%02x:%02x\n",
enc_rdbreg(priv, ENC_MAADR1), enc_rdbreg(priv, ENC_MAADR2),
enc_rdbreg(priv, ENC_MAADR3), enc_rdbreg(priv, ENC_MAADR4),
enc_rdbreg(priv, ENC_MAADR5), enc_rdbreg(priv, ENC_MAADR6));
}
#endif
#if 0 /* Sometimes useful */
static void enc_txdump(FAR struct enc_driver_s *priv)
{
syslog(LOG_DEBUG, "Tx Registers:\n");
syslog(LOG_DEBUG, " EIE: %02x EIR: %02x\n",
enc_rdgreg(priv, ENC_EIE), enc_rdgreg(priv, ENC_EIR));
syslog(LOG_DEBUG, " ESTAT: %02x ECON1: %02x\n",
enc_rdgreg(priv, ENC_ESTAT), enc_rdgreg(priv, ENC_ECON1));
syslog(LOG_DEBUG, " ETXST: %02x %02x\n",
enc_rdbreg(priv, ENC_ETXSTH), enc_rdbreg(priv, ENC_ETXSTL));
syslog(LOG_DEBUG, " ETXND: %02x %02x\n",
enc_rdbreg(priv, ENC_ETXNDH), enc_rdbreg(priv, ENC_ETXNDL));
syslog(LOG_DEBUG, " MACON1: %02x MACON3: %02x MACON4: %02x\n",
enc_rdbreg(priv, ENC_MACON1), enc_rdbreg(priv, ENC_MACON3),
enc_rdbreg(priv, ENC_MACON4));
syslog(LOG_DEBUG, " MACON1: %02x MACON3: %02x MACON4: %02x\n",
enc_rdbreg(priv, ENC_MACON1), enc_rdbreg(priv, ENC_MACON3),
enc_rdbreg(priv, ENC_MACON4));
syslog(LOG_DEBUG, " MABBIPG: %02x MAIPG %02x %02x\n",
enc_rdbreg(priv, ENC_MABBIPG), enc_rdbreg(priv, ENC_MAIPGH),
enc_rdbreg(priv, ENC_MAIPGL));
syslog(LOG_DEBUG, " MACLCON1: %02x MACLCON2: %02x\n",
enc_rdbreg(priv, ENC_MACLCON1), enc_rdbreg(priv, ENC_MACLCON2));
syslog(LOG_DEBUG, " MAMXFL: %02x %02x\n",
enc_rdbreg(priv, ENC_MAMXFLH), enc_rdbreg(priv, ENC_MAMXFLL));
}
#endif
/****************************************************************************
* Name: enc_rdbuffer
*
* Description:
* Read a buffer of data.
*
* Input Parameters:
* priv - Reference to the driver state structure
* buffer - A pointer to the buffer to read into
* buflen - The number of bytes to read
*
* Returned Value:
* None
*
* Assumptions:
* Read pointer is set to the correct address
*
****************************************************************************/
static void enc_rdbuffer(FAR struct enc_driver_s *priv, FAR uint8_t *buffer,
size_t buflen)
{
DEBUGASSERT(priv && priv->spi);
/* Select ENC28J60 chip */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), true);
/* Send the read buffer memory command (ignoring the response) */
SPI_SEND(priv->spi, ENC_RBM);
/* Then read the buffer data */
SPI_RECVBLOCK(priv->spi, buffer, buflen);
/* De-select ENC28J60 chip. */
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), false);
enc_bmdump(ENC_WBM, buffer, buflen);
}
/****************************************************************************
* Name: enc_wrbuffer
*
* Description:
* Write a buffer of data.
*
* Input Parameters:
* priv - Reference to the driver state structure
* buffer - A pointer to the buffer to write from
* buflen - The number of bytes to write
*
* Returned Value:
* None
*
* Assumptions:
* Read pointer is set to the correct address
*
****************************************************************************/
static inline void enc_wrbuffer(FAR struct enc_driver_s *priv,
FAR const uint8_t *buffer, size_t buflen)
{
DEBUGASSERT(priv && priv->spi);
/* Select ENC28J60 chip
*
* "The WBM command is started by lowering the CS pin. ..."
*/
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), true);
/* Send the write buffer memory command (ignoring the response)
*
* "...The [3-bit]WBM opcode should then be sent to the ENC28J60,
* followed by the 5-bit constant, 1Ah."
*/
SPI_SEND(priv->spi, ENC_WBM);
/* "...the ENC28J60 requires a single per packet control byte to
* precede the packet for transmission."
*
* POVERRIDE: Per Packet Override bit (Not set):
* 1 = The values of PCRCEN, PPADEN and PHUGEEN will override the
* configuration defined by MACON3.
* 0 = The values in MACON3 will be used to determine how the packet
* will be transmitted
* PCRCEN: Per Packet CRC Enable bit (Set, but won't be used because
* POVERRIDE is zero).
* PPADEN: Per Packet Padding Enable bit (Set, but won't be used because
* POVERRIDE is zero).
* PHUGEEN: Per Packet Huge Frame Enable bit (Set, but won't be used
* because POVERRIDE is zero).
*/
SPI_SEND(priv->spi,
(PKTCTRL_PCRCEN | PKTCTRL_PPADEN | PKTCTRL_PHUGEEN));
/* Then send the buffer
*
* "... After the WBM command and constant are sent, the data to
* be stored in the memory pointed to by EWRPT should be shifted
* out MSb first to the ENC28J60. After 8 data bits are received,
* the Write Pointer will automatically increment if AUTOINC is
* set. The host controller can continue to provide clocks on the
* SCK pin and send data on the SI pin, without raising CS, to
* keep writing to the memory. In this manner, with AUTOINC
* enabled, it is possible to continuously write sequential bytes
* to the buffer memory without any extra SPI command
* overhead.
*/
SPI_SNDBLOCK(priv->spi, buffer, buflen);
/* De-select ENC28J60 chip
*
* "The WBM command is terminated by bringing up the CS pin. ..."
*/
SPI_SELECT(priv->spi, SPIDEV_ETHERNET(0), false);
enc_bmdump(ENC_WBM, buffer, buflen + 1);
}
/****************************************************************************
* Name: enc_rdphy
*
* Description:
* Read 16-bits of PHY data.
*
* Input Parameters:
* priv - Reference to the driver state structure
* phyaddr - The PHY register address
*
* Returned Value:
* 16-bit value read from the PHY
*
* Assumptions:
*
****************************************************************************/
static uint16_t enc_rdphy(FAR struct enc_driver_s *priv, uint8_t phyaddr)
{
uint16_t data = 0;
/* "To read from a PHY register:
*
* 1. Write the address of the PHY register to read from into MIREGADR
* register.
*/
enc_wrbreg(priv, ENC_MIREGADR, phyaddr);
/* 2. Set the MICMD.MIIRD bit. The read operation begins and the
* MISTAT.BUSY bit is set.
*/
enc_wrbreg(priv, ENC_MICMD, MICMD_MIIRD);
/* 3. Wait 10.24 <20>s. Poll the MISTAT.BUSY bit to be certain that the
* operation is complete. While busy, the host controller should not
* start any MIISCAN operations or write to the MIWRH register.
*
* When the MAC has obtained the register contents, the BUSY bit will
* clear itself.
*/
up_udelay(12);
if (enc_waitbreg(priv, ENC_MISTAT, MISTAT_BUSY, 0x00) == OK)
{
/* 4. Clear the MICMD.MIIRD bit. */
enc_wrbreg(priv, ENC_MICMD, 0x00);
/* 5. Read the desired data from the MIRDL and MIRDH registers. The
* order that these bytes are accessed is unimportant."
*/
data = (uint16_t)enc_rdbreg(priv, ENC_MIRDL);
data |= (uint16_t)enc_rdbreg(priv, ENC_MIRDH) << 8;
}
return data;
}
/****************************************************************************
* Name: enc_wrphy
*
* Description:
* write 16-bits of PHY data.
*
* Input Parameters:
* priv - Reference to the driver state structure
* phyaddr - The PHY register address
* phydata - 16-bit data to write to the PHY
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_wrphy(FAR struct enc_driver_s *priv, uint8_t phyaddr,
uint16_t phydata)
{
/* "To write to a PHY register:
*
* 1. Write the address of the PHY register to write to into the
* MIREGADR register.
*/
enc_wrbreg(priv, ENC_MIREGADR, phyaddr);
/* 2. Write the lower 8 bits of data to write into the MIWRL register. */
enc_wrbreg(priv, ENC_MIWRL, phydata);
/* 3. Write the upper 8 bits of data to write into MIWRH register.
* Writing to this register automatically begins MIIM transaction,
* so it must be written to after MIWRL. The MISTAT.BUSY bit becomes
* set.
*/
enc_wrbreg(priv, ENC_MIWRH, phydata >> 8);
/* The PHY register will be written after the MIIM operation completes,
* which takes 10.24 <20>s. When the write operation has completed, BUSY
* bit will clear itself.
*
* The host controller should not start any MIISCAN or MIIRD operations
* while busy."
*/
up_udelay(12);
enc_waitbreg(priv, ENC_MISTAT, MISTAT_BUSY, 0x00);
}
/****************************************************************************
* Name: enc_transmit
*
* Description:
* Start hardware transmission. Called either from:
*
* - pkif interrupt when an application responds to the receipt of data
* by trying to send something, or
* - From watchdog based polling.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* OK on success; a negated errno on failure
*
* Assumptions:
*
****************************************************************************/
static int enc_transmit(FAR struct enc_driver_s *priv)
{
uint16_t txend;
/* Increment statistics */
ninfo("Sending packet, pktlen: %d\n", priv->dev.d_len);
NETDEV_TXPACKETS(&priv->dev);
/* Verify that the hardware is ready to send another packet. The driver
* starts a transmission process by setting ECON1.TXRTS. When the packet is
* finished transmitting or is aborted due to an error/cancellation, the
* ECON1.TXRTS bit will be cleared.
*
* NOTE: If we got here, then we have committed to sending a packet.
* higher level logic must have assured that (1) there is no transmission
* in progress, and that (2) TX-related interrupts are disabled.
*/
DEBUGASSERT((enc_rdgreg(priv, ENC_ECON1) & ECON1_TXRTS) == 0);
/* Send the packet: address=priv->dev.d_buf, length=priv->dev.d_len */
enc_dumppacket("Transmit Packet", priv->dev.d_buf, priv->dev.d_len);
/* Set transmit buffer start (is this necessary?). */
enc_wrbreg(priv, ENC_ETXSTL, PKTMEM_TX_START & 0xff);
enc_wrbreg(priv, ENC_ETXSTH, PKTMEM_TX_START >> 8);
/* Reset the write pointer to start of transmit buffer */
enc_wrbreg(priv, ENC_EWRPTL, PKTMEM_TX_START & 0xff);
enc_wrbreg(priv, ENC_EWRPTH, PKTMEM_TX_START >> 8);
/* Set the TX End pointer based on the size of the packet to send. Note
* that the offset accounts for the control byte at the beginning the
* buffer plus the size of the packet data.
*/
txend = PKTMEM_TX_START + priv->dev.d_len;
enc_wrbreg(priv, ENC_ETXNDL, txend & 0xff);
enc_wrbreg(priv, ENC_ETXNDH, txend >> 8);
/* Send the WBM command and copy the packet itself into the transmit
* buffer at the position of the EWRPT register.
*/
enc_wrbuffer(priv, priv->dev.d_buf, priv->dev.d_len);
/* Set TXRTS to send the packet in the transmit buffer */
enc_bfsgreg(priv, ENC_ECON1, ECON1_TXRTS);
/* Setup the TX timeout watchdog (perhaps restarting the timer). Note:
* Is there a race condition. Could the TXIF interrupt occur before
* the timer is started?
*/
wd_start(&priv->txtimeout, ENC_TXTIMEOUT,
enc_txtimeout, (wdparm_t)priv);
return OK;
}
/****************************************************************************
* Name: enc_txpoll
*
* Description:
* The transmitter is available, check if the network has any outgoing
* packets ready to send. This is a callback from devif_poll().
* devif_poll() may be called:
*
* 1. When the preceding TX packet send is complete,
* 2. When the preceding TX packet send timesout and the interface is
* reset
* 3. During normal TX polling
*
* Input Parameters:
* dev - Reference to the NuttX driver state structure
*
* Returned Value:
* OK on success; a negated errno on failure
*
* Assumptions:
* Interrupts are enabled but the caller holds the network lock.
*
****************************************************************************/
static int enc_txpoll(struct net_driver_s *dev)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)dev->d_private;
/* If the polling resulted in data that should be sent out on the network,
* the field d_len is set to a value > 0.
*/
ninfo("Poll result: d_len=%d\n", priv->dev.d_len);
if (priv->dev.d_len > 0)
{
/* Look up the destination MAC address and add it to the Ethernet
* header.
*/
#ifdef CONFIG_NET_IPv4
#ifdef CONFIG_NET_IPv6
if (IFF_IS_IPv4(priv->dev.d_flags))
#endif
{
arp_out(&priv->dev);
}
#endif /* CONFIG_NET_IPv4 */
#ifdef CONFIG_NET_IPv6
#ifdef CONFIG_NET_IPv4
else
#endif
{
neighbor_out(&priv->dev);
}
#endif /* CONFIG_NET_IPv6 */
if (!devif_loopback(&priv->dev))
{
/* Send the packet */
enc_transmit(priv);
/* Stop the poll now because we can queue only one packet */
return -EBUSY;
}
}
/* If zero is returned, the polling will continue until all connections
* have been examined.
*/
return OK;
}
/****************************************************************************
* Name: enc_linkstatus
*
* Description:
* The current link status can be obtained from the PHSTAT1.LLSTAT or
* PHSTAT2.LSTAT.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_linkstatus(FAR struct enc_driver_s *priv)
{
#if 0
uint16_t regval = enc_rdphy(priv, ENC_PHSTAT2);
priv->duplex = ((regval & PHSTAT2_DPXSTAT) != 0);
priv->carrier = ((regval & PHSTAT2_LSTAT) != 0);
#endif
}
/****************************************************************************
* Name: enc_txif
*
* Description:
* An TXIF interrupt was received indicating that the last TX packet(s) is
* done
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
* Interrupts are enabled but the caller holds the network lock.
*
****************************************************************************/
static void enc_txif(FAR struct enc_driver_s *priv)
{
/* Update statistics */
NETDEV_TXDONE(&priv->dev);
/* Clear the request to send bit */
enc_bfcgreg(priv, ENC_ECON1, ECON1_TXRTS);
/* If no further xmits are pending, then cancel the TX timeout */
wd_cancel(&priv->txtimeout);
/* Then poll the network for new XMIT data */
devif_poll(&priv->dev, enc_txpoll);
}
/****************************************************************************
* Name: enc_txerif
*
* Description:
* An TXERIF interrupt was received indicating that TX abort has occurred.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_txerif(FAR struct enc_driver_s *priv)
{
/* Update statistics */
NETDEV_TXERRORS(&priv->dev);
/* Reset TX */
enc_bfsgreg(priv, ENC_ECON1, ECON1_TXRST);
enc_bfcgreg(priv, ENC_ECON1, ECON1_TXRST | ECON1_TXRTS);
/* Here we really should re-transmit (I fact, if we want half duplex to
* work right, then it is necessary to do this!):
*
* 1. Read the TSV:
* - Read ETXNDL to get the end pointer
* - Read 7 bytes from that pointer + 1 using ENC_RMB.
* 2. Determine if we need to retransmit. Check the LATE COLLISION bit, if
* set, then we need to transmit.
* 3. Retranmit by resetting ECON1_TXRTS.
*/
#ifdef CONFIG_ENC28J60_HALFDUPLEX
# error "Missing logic for half duplex"
#endif
}
/****************************************************************************
* Name: enc_rxerif
*
* Description:
* An RXERIF interrupt was received indicating that the last TX packet(s)
* is done
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_rxerif(FAR struct enc_driver_s *priv)
{
/* REVISIT: Update statistics */
}
/****************************************************************************
* Name: enc_rxdispatch
*
* Description:
* Give the newly received packet to the network.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
* Interrupts are enabled but the caller holds the network lock.
*
****************************************************************************/
static void enc_rxdispatch(FAR struct enc_driver_s *priv)
{
#ifdef CONFIG_NET_PKT
/* When packet sockets are enabled, feed the frame into the tap */
pkt_input(&priv->dev);
#endif
/* We only accept IP packets of the configured type and ARP packets */
#ifdef CONFIG_NET_IPv4
if (BUF->type == HTONS(ETHTYPE_IP))
{
ninfo("IPv4 frame\n");
NETDEV_RXIPV4(&priv->dev);
/* Handle ARP on input then give the IPv4 packet to the network
* layer
*/
arp_ipin(&priv->dev);
ipv4_input(&priv->dev);
/* If the above function invocation resulted in data that should be
* sent out on the network, d_len field will set to a value > 0.
*/
if (priv->dev.d_len > 0)
{
/* Update the Ethernet header with the correct MAC address */
#ifdef CONFIG_NET_IPv6
if (IFF_IS_IPv4(priv->dev.d_flags))
#endif
{
arp_out(&priv->dev);
}
#ifdef CONFIG_NET_IPv6
else
{
neighbor_out(&priv->dev);
}
#endif
/* And send the packet */
enc_transmit(priv);
}
}
else
#endif
#ifdef CONFIG_NET_IPv6
if (BUF->type == HTONS(ETHTYPE_IP6))
{
ninfo("IPv6 frame\n");
NETDEV_RXIPV6(&priv->dev);
/* Give the IPv6 packet to the network layer */
ipv6_input(&priv->dev);
/* If the above function invocation resulted in data that should be
* sent out on the network, d_len field will set to a value > 0.
*/
if (priv->dev.d_len > 0)
{
/* Update the Ethernet header with the correct MAC address */
#ifdef CONFIG_NET_IPv4
if (IFF_IS_IPv4(priv->dev.d_flags))
{
arp_out(&priv->dev);
}
else
#endif
#ifdef CONFIG_NET_IPv6
{
neighbor_out(&priv->dev);
}
#endif
/* And send the packet */
enc_transmit(priv);
}
}
else
#endif
#ifdef CONFIG_NET_ARP
if (BUF->type == htons(ETHTYPE_ARP))
{
ninfo("ARP packet received (%02x)\n", BUF->type);
NETDEV_RXARP(&priv->dev);
arp_arpin(&priv->dev);
/* If the above function invocation resulted in data that should be
* sent out on the network, d_len field will set to a value > 0.
*/
if (priv->dev.d_len > 0)
{
enc_transmit(priv);
}
}
else
#endif
{
nwarn("WARNING: Unsupported packet type dropped (%02x)\n",
htons(BUF->type));
NETDEV_RXDROPPED(&priv->dev);
}
}
/****************************************************************************
* Name: enc_pktif
*
* Description:
* An interrupt was received indicating the availability of a new RX packet
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
* Interrupts are enabled but the caller holds the network lock.
*
****************************************************************************/
static void enc_pktif(FAR struct enc_driver_s *priv)
{
uint8_t rsv[6];
uint16_t pktlen;
uint16_t rxstat;
/* Update statistics */
NETDEV_RXPACKETS(&priv->dev);
/* Set the read pointer to the start of the received packet (ERDPT) */
DEBUGASSERT(priv->nextpkt <= PKTMEM_RX_END);
enc_wrbreg(priv, ENC_ERDPTL, (priv->nextpkt));
enc_wrbreg(priv, ENC_ERDPTH, (priv->nextpkt) >> 8);
/* Read the next packet pointer and the 4 byte read status vector (RSV)
* at the beginning of the received packet. (ERDPT should auto-increment
* and wrap to the beginning of the read buffer as necessary)
*/
enc_rdbuffer(priv, rsv, 6);
/* Decode the new next packet pointer, and the RSV. The
* RSV is encoded as:
*
* Bits 0-15: Indicates length of the received frame. This includes the
* destination address, source address, type/length, data,
* padding and CRC fields. This field is stored in little-
* endian format.
* Bits 16-31: Bit encoded RX status.
*/
priv->nextpkt = (uint16_t)rsv[1] << 8 | (uint16_t)rsv[0];
pktlen = (uint16_t)rsv[3] << 8 | (uint16_t)rsv[2];
rxstat = (uint16_t)rsv[5] << 8 | (uint16_t)rsv[4];
ninfo("Receiving packet, nextpkt: %04x pktlen: %d rxstat: %04x\n",
priv->nextpkt, pktlen, rxstat);
/* Check if the packet was received OK */
if ((rxstat & RXSTAT_OK) == 0)
{
nerr("ERROR: RXSTAT: %04x\n", rxstat);
NETDEV_RXERRORS(&priv->dev);
}
/* Check for a usable packet length (4 added for the CRC) */
else if (pktlen > (CONFIG_NET_ETH_PKTSIZE + 4) ||
pktlen <= (ETH_HDRLEN + 4))
{
nerr("ERROR: Bad packet size dropped (%d)\n", pktlen);
NETDEV_RXERRORS(&priv->dev);
}
/* Otherwise, read and process the packet */
else
{
/* Save the packet length (without the 4 byte CRC) in priv->dev.d_len */
priv->dev.d_len = pktlen - 4;
/* Copy the data data from the receive buffer to priv->dev.d_buf.
* ERDPT should be correctly positioned from the last call to
* end_rdbuffer (above).
*/
enc_rdbuffer(priv, priv->dev.d_buf, priv->dev.d_len);
enc_dumppacket("Received Packet", priv->dev.d_buf, priv->dev.d_len);
/* Dispatch the packet to the network */
enc_rxdispatch(priv);
}
/* Move the RX read pointer to the start of the next received packet.
* This frees the memory we just read.
*/
enc_wrbreg(priv, ENC_ERXRDPTL, (priv->nextpkt));
enc_wrbreg(priv, ENC_ERXRDPTH, (priv->nextpkt) >> 8);
/* Decrement the packet counter indicate we are done with this packet */
enc_bfsgreg(priv, ENC_ECON2, ECON2_PKTDEC);
}
/****************************************************************************
* Name: enc_irqworker
*
* Description:
* Perform interrupt handling logic outside of the interrupt handler (on
* the work queue thread).
*
* Input Parameters:
* arg - The reference to the driver structure (case to void*)
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_irqworker(FAR void *arg)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)arg;
uint8_t eir;
DEBUGASSERT(priv);
/* Get exclusive access to both the network and the SPI bus. */
net_lock();
enc_lock(priv);
/* Disable further interrupts by clearing the global interrupt enable bit.
* "After an interrupt occurs, the host controller should clear the global
* enable bit for the interrupt pin before servicing the interrupt.
* Clearing the enable bit will cause the interrupt pin to return to the
* non-asserted state (high). Doing so will prevent the host controller
* from missing a falling edge should another interrupt occur while the
* immediate interrupt is being serviced."
*/
enc_bfcgreg(priv, ENC_EIE, EIE_INTIE);
/* Loop until all interrupts have been processed (EIR==0). Note that
* there is no infinite loop check... if there are always pending
* interrupts, we are just broken.
*/
while ((eir = enc_rdgreg(priv, ENC_EIR) & EIR_ALLINTS) != 0)
{
/* Handle interrupts according to interrupt register register bit
* settings.
*/
ninfo("EIR: %02x\n", eir);
/* DMAIF: The DMA interrupt indicates that the DMA module has completed
* its memory copy or checksum calculation. Additionally, this
* interrupt will be caused if the host controller cancels a DMA
* operation by manually clearing the DMAST bit. Once set, DMAIF can
* only be cleared by the host controller or by a Reset condition.
*/
if ((eir & EIR_DMAIF) != 0) /* DMA interrupt */
{
/* Not used by this driver. Just clear the interrupt request. */
enc_bfcgreg(priv, ENC_EIR, EIR_DMAIF);
}
/* LINKIF: The LINKIF indicates that the link status has changed.
* The actual current link status can be obtained from the
* PHSTAT1.LLSTAT or PHSTAT2.LSTAT. Unlike other interrupt sources, the
* link status change interrupt is created in the integrated PHY
* module.
*
* To receive it, the host controller must set the PHIE.PLNKIE and
* PGEIE bits. After setting the two PHY interrupt enable bits, the
* LINKIF bit will then shadow the contents of the PHIR.PGIF bit.
*
* Once LINKIF is set, it can only be cleared by the host controller or
* by a Reset. The LINKIF bit is read-only. Performing an MII read on
* the PHIR register will clear the LINKIF, PGIF and PLNKIF bits
* automatically and allow for future link status change interrupts.
*/
if ((eir & EIR_LINKIF) != 0) /* Link change interrupt */
{
enc_linkstatus(priv); /* Get current link status */
enc_rdphy(priv, ENC_PHIR); /* Clear the LINKIF interrupt */
}
/* TXIF: The Transmit Interrupt Flag (TXIF) is used to indicate that
* the requested packet transmission has ended. Upon transmission
* completion, abort or transmission cancellation by the host
* controller, the EIR.TXIF flag will be set to 1.
*
* Once TXIF is set, it can only be cleared by the host controller
* or by a Reset condition. Once processed, the host controller should
* use the BFC command to clear the EIR.TXIF bit.
*/
if ((eir & EIR_TXIF) != 0) /* Transmit interrupt */
{
enc_txif(priv); /* Handle TX completion */
enc_bfcgreg(priv, ENC_EIR, EIR_TXIF); /* Clear the TXIF interrupt */
}
/* TXERIF: The Transmit Error Interrupt Flag (TXERIF) is used to
* indicate that a transmit abort has occurred. An abort can occur
* because of any of the following:
*
* 1. Excessive collisions occurred as defined by the Retransmission
* Maximum (RETMAX) bits in the MACLCON1 register.
* 2. A late collision occurred as defined by the Collision Window
* (COLWIN) bits in the MACLCON2 register.
* 3. A collision after transmitting 64 bytes occurred (ESTAT.LATECOL
* set).
* 4. The transmission was unable to gain an opportunity to transmit
* the packet because the medium was constantly occupied for too
* long. The deferral limit (2.4287 ms) was reached and the
* MACON4.DEFER bit was clear.
* 5. An attempt to transmit a packet larger than the maximum frame
* length defined by the MAMXFL registers was made without setting
* the MACON3.HFRMEN bit or per packet POVERRIDE and PHUGEEN bits.
*
* Upon any of these conditions, the EIR.TXERIF flag is set to 1. Once
* set, it can only be cleared by the host controller or by a Reset
* condition.
*
* After a transmit abort, the TXRTS bit will be cleared, the
* ESTAT.TXABRT bit will be set and the transmit status vector will be
* written at ETXND + 1. The MAC will not automatically attempt to
* retransmit the packet. The host controller may wish to read the
* transmit status vector and LATECOL bit to determine the cause of
* the abort. After determining the problem and solution, the host
* controller should clear the LATECOL (if set) and TXABRT bits so
* that future aborts can be detected accurately.
*
* In Full-Duplex mode, condition 5 is the only one that should cause
* this interrupt. Collisions and other problems related to sharing
* the network are not possible on full-duplex networks. The conditions
* which cause the transmit error interrupt meet the requirements of
* the transmit interrupt. As a result, when this interrupt occurs,
* TXIF will also be simultaneously set.
*/
if ((eir & EIR_TXERIF) != 0) /* Transmit Error Interrupts */
{
enc_txerif(priv); /* Handle the TX error */
enc_bfcgreg(priv, ENC_EIR, EIR_TXERIF); /* Clear the TXERIF interrupt */
}
/* PKTIF The Receive Packet Pending Interrupt Flag (PKTIF) is used to
* indicate the presence of one or more data packets in the receive
* buffer and to provide a notification means for the arrival of new
* packets. When the receive buffer has at least one packet in it,
* EIR.PKTIF will be set. In other words, this interrupt flag will be
* set anytime the Ethernet Packet Count register (EPKTCNT) is
* non-zero.
*
* The PKTIF bit can only be cleared by the host controller or by a
* Reset condition. In order to clear PKTIF, the EPKTCNT register must
* be decremented to 0. If the last data packet in the receive buffer
* is processed, EPKTCNT will become zero and the PKTIF bit will
* automatically be cleared.
*/
#if 0
/* Ignore PKTIF because is unreliable. Use EPKTCNT instead */
if ((eir & EIR_PKTIF) != 0)
#endif
{
uint8_t pktcnt = enc_rdbreg(priv, ENC_EPKTCNT);
if (pktcnt > 0)
{
ninfo("EPKTCNT: %02x\n", pktcnt);
/* Handle packet receipt */
enc_pktif(priv);
}
}
/* RXERIF: The Receive Error Interrupt Flag (RXERIF) is used to
* indicate a receive buffer overflow condition. Alternately, this
* interrupt may indicate that too many packets are in the receive
* buffer and more cannot be stored without overflowing the EPKTCNT
* register. When a packet is being received and the receive buffer
* runs completely out of space, or EPKTCNT is 255 and cannot be
* incremented, the packet being received will be aborted (permanently
* lost) and the EIR.RXERIF bit will be set to 1.
*
* Once set, RXERIF can only be cleared by the host controller or by a
* Reset condition. Normally, upon the receive error condition, the
* host controller would process any packets pending from the receive
* buffer and then make additional room for future packets by
* advancing the ERXRDPT registers (low byte first) and decrementing
* the EPKTCNT register.
*
* Once processed, the host controller should use the BFC command to
* clear the EIR.RXERIF bit.
*/
if ((eir & EIR_RXERIF) != 0) /* Receive Error Interrupts */
{
enc_rxerif(priv); /* Handle the RX error */
enc_bfcgreg(priv, ENC_EIR, EIR_RXERIF); /* Clear the RXERIF interrupt */
}
}
/* Enable GPIO interrupts */
priv->lower->enable(priv->lower);
/* Enable Ethernet interrupts */
enc_bfsgreg(priv, ENC_EIE, EIE_INTIE);
/* Release lock on the SPI bus and the network */
enc_unlock(priv);
net_unlock();
}
/****************************************************************************
* Name: enc_interrupt
*
* Description:
* Hardware interrupt handler
*
* Input Parameters:
* irq - Number of the IRQ that generated the interrupt
* context - Interrupt register state save info (architecture-specific)
*
* Returned Value:
* OK on success
*
* Assumptions:
*
****************************************************************************/
static int enc_interrupt(int irq, FAR void *context, FAR void *arg)
{
FAR struct enc_driver_s *priv;
DEBUGASSERT(arg != NULL);
priv = (FAR struct enc_driver_s *)arg;
/* In complex environments, we cannot do SPI transfers from the interrupt
* handler because semaphores are probably used to lock the SPI bus. In
* this case, we will defer processing to the worker thread. This is also
* much kinder in the use of system resources and is, therefore, probably
* a good thing to do in any event.
*/
DEBUGASSERT(work_available(&priv->irqwork));
/* Notice that further GPIO interrupts are disabled until the work is
* actually performed. This is to prevent overrun of the worker thread.
* Interrupts are re-enabled in enc_irqworker() when the work is completed.
*/
priv->lower->disable(priv->lower);
return work_queue(ENCWORK, &priv->irqwork, enc_irqworker,
(FAR void *)priv, 0);
}
/****************************************************************************
* Name: enc_toworker
*
* Description:
* Our TX watchdog timed out. This is the worker thread continuation of
* the watchdog timer interrupt. Reset the hardware and start again.
*
* Input Parameters:
* arg - The reference to the driver structure (case to void*)
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_toworker(FAR void *arg)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)arg;
int ret;
nerr("ERROR: Tx timeout\n");
DEBUGASSERT(priv);
/* Get exclusive access to the network */
net_lock();
/* Increment statistics and dump debug info */
NETDEV_TXTIMEOUTS(&priv->dev);
/* Then reset the hardware: Take the interface down, then bring it
* back up
*/
ret = enc_ifdown(&priv->dev);
DEBUGASSERT(ret == OK);
ret = enc_ifup(&priv->dev);
DEBUGASSERT(ret == OK);
UNUSED(ret);
/* Then poll the network for new XMIT data */
devif_poll(&priv->dev, enc_txpoll);
/* Release lock on the network */
net_unlock();
}
/****************************************************************************
* Name: enc_txtimeout
*
* Description:
* Our TX watchdog timed out. Called from the timer interrupt handler.
* The last TX never completed. Perform work on the worker thread.
*
* Input Parameters:
* arg - The argument
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_txtimeout(wdparm_t arg)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)arg;
int ret;
/* In complex environments, we cannot do SPI transfers from the timeout
* handler because semaphores are probably used to lock the SPI bus. In
* this case, we will defer processing to the worker thread. This is also
* much kinder in the use of system resources and is, therefore, probably
* a good thing to do in any event.
*/
DEBUGASSERT(priv && work_available(&priv->towork));
/* Notice that Tx timeout watchdog is not active so further Tx timeouts
* can occur until we restart the Tx timeout watchdog.
*/
ret = work_queue(ENCWORK, &priv->towork, enc_toworker, priv, 0);
DEBUGASSERT(ret == OK);
UNUSED(ret);
}
/****************************************************************************
* Name: enc_pollworker
*
* Description:
* Periodic timer handler continuation.
*
* Input Parameters:
* arg - The argument
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_pollworker(FAR void *arg)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)arg;
DEBUGASSERT(priv);
/* Get exclusive access to both the network and the SPI bus. */
net_lock();
enc_lock(priv);
/* Verify that the hardware is ready to send another packet. The driver
* start a transmission process by setting ECON1.TXRTS. When the packet is
* finished transmitting or is aborted due to an error/cancellation, the
* ECON1.TXRTS bit will be cleared.
*/
if ((enc_rdgreg(priv, ENC_ECON1) & ECON1_TXRTS) == 0)
{
/* Yes.. update TCP timing states and poll the network for new XMIT
* data. Hmmm.. looks like a bug here to me. Does this mean if there
* is a transmit in progress, we will missing TCP time state updates?
*/
devif_timer(&priv->dev, ENC_WDDELAY, enc_txpoll);
}
/* Release lock on the SPI bus and the network */
enc_unlock(priv);
net_unlock();
/* Setup the watchdog poll timer again */
wd_start(&priv->txpoll, ENC_WDDELAY,
enc_polltimer, (wdparm_t)arg);
}
/****************************************************************************
* Name: enc_polltimer
*
* Description:
* Periodic timer handler. Called from the timer interrupt handler.
*
* Input Parameters:
* arg - The argument
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_polltimer(wdparm_t arg)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)arg;
int ret;
/* In complex environments, we cannot do SPI transfers from the timeout
* handler because semaphores are probably used to lock the SPI bus. In
* this case, we will defer processing to the worker thread. This is also
* much kinder in the use of system resources and is, therefore, probably
* a good thing to do in any event.
*/
DEBUGASSERT(priv && work_available(&priv->pollwork));
/* Notice that poll watchdog is not active so further poll timeouts can
* occur until we restart the poll timeout watchdog.
*/
ret = work_queue(ENCWORK, &priv->pollwork, enc_pollworker,
(FAR void *)priv, 0);
DEBUGASSERT(ret == OK);
UNUSED(ret);
}
/****************************************************************************
* Name: enc_ifup
*
* Description:
* NuttX Callback: Bring up the Ethernet interface when an IP address is
* provided
*
* Input Parameters:
* dev - Reference to the NuttX driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static int enc_ifup(struct net_driver_s *dev)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)dev->d_private;
int ret;
ninfo("Bringing up: %d.%d.%d.%d\n",
dev->d_ipaddr & 0xff, (dev->d_ipaddr >> 8) & 0xff,
(dev->d_ipaddr >> 16) & 0xff, dev->d_ipaddr >> 24);
/* Lock the SPI bus so that we have exclusive access */
enc_lock(priv);
/* Initialize Ethernet interface, set the MAC address, and make sure that
* the ENC28J80 is not in power save mode.
*/
ret = enc_reset(priv);
if (ret == OK)
{
enc_setmacaddr(priv);
enc_pwrfull(priv);
/* Enable interrupts at the ENC28J60. Interrupts are still disabled
* at the interrupt controller.
*/
enc_wrphy(priv, ENC_PHIE, PHIE_PGEIE | PHIE_PLNKIE);
enc_bfcgreg(priv, ENC_EIR, EIR_ALLINTS);
enc_wrgreg(priv, ENC_EIE, EIE_INTIE | EIE_PKTIE | EIE_LINKIE |
EIE_TXIE | EIE_TXERIE | EIE_RXERIE);
/* Enable the receiver */
enc_bfsgreg(priv, ENC_ECON1, ECON1_RXEN);
/* Set and activate a timer process */
wd_start(&priv->txpoll, ENC_WDDELAY,
enc_polltimer, (wdparm_t)priv);
/* Mark the interface up and enable the Ethernet interrupt at the
* controller
*/
priv->ifstate = ENCSTATE_UP;
priv->lower->enable(priv->lower);
}
/* Un-lock the SPI bus */
enc_unlock(priv);
return ret;
}
/****************************************************************************
* Name: enc_ifdown
*
* Description:
* NuttX Callback: Stop the interface.
*
* Input Parameters:
* dev - Reference to the NuttX driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static int enc_ifdown(struct net_driver_s *dev)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)dev->d_private;
irqstate_t flags;
int ret;
ninfo("Taking down: %d.%d.%d.%d\n",
dev->d_ipaddr & 0xff, (dev->d_ipaddr >> 8) & 0xff,
(dev->d_ipaddr >> 16) & 0xff, dev->d_ipaddr >> 24);
/* Lock the SPI bus so that we have exclusive access */
enc_lock(priv);
/* Disable the Ethernet interrupt */
flags = enter_critical_section();
priv->lower->disable(priv->lower);
/* Cancel the TX poll timer and TX timeout timers */
wd_cancel(&priv->txpoll);
wd_cancel(&priv->txtimeout);
/* Reset the device and leave in the power save state */
ret = enc_reset(priv);
enc_pwrsave(priv);
priv->ifstate = ENCSTATE_DOWN;
leave_critical_section(flags);
/* Un-lock the SPI bus */
enc_unlock(priv);
return ret;
}
/****************************************************************************
* Name: enc_txavail
*
* Description:
* Driver callback invoked when new TX data is available. This is a
* stimulus perform an out-of-cycle poll and, thereby, reduce the TX
* latency.
*
* Input Parameters:
* dev - Reference to the NuttX driver state structure
*
* Returned Value:
* None
*
* Assumptions:
* Called in normal user mode
*
****************************************************************************/
static int enc_txavail(struct net_driver_s *dev)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)dev->d_private;
irqstate_t flags;
/* Lock the SPI bus so that we have exclusive access */
enc_lock(priv);
/* Ignore the notification if the interface is not yet up */
flags = enter_critical_section();
if (priv->ifstate == ENCSTATE_UP)
{
/* Check if the hardware is ready to send another packet. The driver
* starts a transmission process by setting ECON1.TXRTS. When the
* packet is finished transmitting or is aborted due to an error/
* cancellation, the ECON1.TXRTS bit will be cleared.
*/
if ((enc_rdgreg(priv, ENC_ECON1) & ECON1_TXRTS) == 0)
{
/* The interface is up and TX is idle;
* poll the network for new XMIT data
*/
devif_poll(&priv->dev, enc_txpoll);
}
}
/* Un-lock the SPI bus */
leave_critical_section(flags);
enc_unlock(priv);
return OK;
}
/****************************************************************************
* Name: enc_addmac
*
* Description:
* NuttX Callback: Add the specified MAC address to the hardware multicast
* address filtering
*
* Input Parameters:
* dev - Reference to the NuttX driver state structure
* mac - The MAC address to be added
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
#ifdef CONFIG_NET_MCASTGROUP
static int enc_addmac(struct net_driver_s *dev, FAR const uint8_t *mac)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)dev->d_private;
/* Lock the SPI bus so that we have exclusive access */
enc_lock(priv);
/* Add the MAC address to the hardware multicast routing table */
#warning "Multicast MAC support not implemented"
/* Un-lock the SPI bus */
enc_unlock(priv);
return OK;
}
#endif
/****************************************************************************
* Name: enc_rmmac
*
* Description:
* NuttX Callback: Remove the specified MAC address from the hardware
* multicast address filtering
*
* Input Parameters:
* dev - Reference to the NuttX driver state structure
* mac - The MAC address to be removed
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
#ifdef CONFIG_NET_MCASTGROUP
static int enc_rmmac(struct net_driver_s *dev, FAR const uint8_t *mac)
{
FAR struct enc_driver_s *priv = (FAR struct enc_driver_s *)dev->d_private;
/* Lock the SPI bus so that we have exclusive access */
enc_lock(priv);
/* Add the MAC address to the hardware multicast routing table */
#warning "Multicast MAC support not implemented"
/* Un-lock the SPI bus */
enc_unlock(priv);
return OK;
}
#endif
/****************************************************************************
* Name: enc_pwrsave
*
* Description:
* The ENC28J60 may be commanded to power-down via the SPI interface.
* When powered down, it will no longer be able to transmit and receive
* any packets. To maximize power savings:
*
* 1. Turn off packet reception by clearing ECON1.RXEN.
* 2. Wait for any in-progress packets to finish being received by
* polling ESTAT.RXBUSY. This bit should be clear before proceeding.
* 3. Wait for any current transmissions to end by confirming ECON1.TXRTS
* is clear.
* 4. Set ECON2.VRPS (if not already set).
* 5. Enter Sleep by setting ECON2.PWRSV. All MAC, MII and PHY registers
* become inaccessible as a result. Setting PWRSV also clears
* ESTAT.CLKRDY automatically.
*
* In Sleep mode, all registers and buffer memory will maintain their
* states. The ETH registers and buffer memory will still be accessible
* by the host controller. Additionally, the clock driver will continue
* to operate. The CLKOUT function will be unaffected.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_pwrsave(FAR struct enc_driver_s *priv)
{
ninfo("Set PWRSV\n");
/* 1. Turn off packet reception by clearing ECON1.RXEN. */
enc_bfcgreg(priv, ENC_ECON1, ECON1_RXEN);
/* 2. Wait for any in-progress packets to finish being received by
* polling ESTAT.RXBUSY. This bit should be clear before proceeding.
*/
if (enc_waitbreg(priv, ENC_ESTAT, ESTAT_RXBUSY, 0) == OK)
{
/* 3. Wait for any current transmissions to end by confirming
* ECON1.TXRTS is clear.
*/
enc_waitbreg(priv, ENC_ECON1, ECON1_TXRTS, 0);
/* 4. Set ECON2.VRPS (if not already set).
* (Set in enc_reset()
*
* 5. Enter Sleep by setting ECON2.PWRSV.
*/
enc_bfsgreg(priv, ENC_ECON2, ECON2_PWRSV);
}
}
/****************************************************************************
* Name: enc_pwrfull
*
* Description:
* When normal operation is desired, the host controller must perform
* a slightly modified procedure:
*
* 1. Wake-up by clearing ECON2.PWRSV.
* 2. Wait at least 300 <20>s for the PHY to stabilize. To accomplish the
* delay, the host controller may poll ESTAT.CLKRDY and wait for it
* to become set.
* 3. Restore receive capability by setting ECON1.RXEN.
*
* After leaving Sleep mode, there is a delay of many milliseconds
* before a new link is established (assuming an appropriate link
* partner is present). The host controller may wish to wait until
* the link is established before attempting to transmit any packets.
* The link status can be determined by polling the PHSTAT2.LSTAT bit.
* Alternatively, the link change interrupt may be used if it is
* enabled.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_pwrfull(FAR struct enc_driver_s *priv)
{
ninfo("Clear PWRSV\n");
/* 1. Wake-up by clearing ECON2.PWRSV. */
enc_bfcgreg(priv, ENC_ECON2, ECON2_PWRSV);
/* 2. Wait at least 300 <20>s for the PHY to stabilize. To accomplish the
* delay, the host controller may poll ESTAT.CLKRDY and wait for it to
* become set.
*/
enc_waitbreg(priv, ENC_ESTAT, ESTAT_CLKRDY, ESTAT_CLKRDY);
/* 3. Restore receive capability by setting ECON1.RXEN.
*
* The caller will do this when it is read to receive packets
*/
}
/****************************************************************************
* Name: enc_setmacaddr
*
* Description:
* Set the MAC address to the configured value. This is done after ifup
* or after a TX timeout. Note that this means that the interface must
* be down before configuring the MAC addr.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void enc_setmacaddr(FAR struct enc_driver_s *priv)
{
/* Program the hardware with it's MAC address (for filtering).
* MAADR1 MAC Address Byte 1 (MAADR<47:40>), OUI Byte 1
* MAADR2 MAC Address Byte 2 (MAADR<39:32>), OUI Byte 2
* MAADR3 MAC Address Byte 3 (MAADR<31:24>), OUI Byte 3
* MAADR4 MAC Address Byte 4 (MAADR<23:16>)
* MAADR5 MAC Address Byte 5 (MAADR<15:8>)
* MAADR6 MAC Address Byte 6 (MAADR<7:0>)
*/
enc_wrbreg(priv, ENC_MAADR1, priv->dev.d_mac.ether.ether_addr_octet[0]);
enc_wrbreg(priv, ENC_MAADR2, priv->dev.d_mac.ether.ether_addr_octet[1]);
enc_wrbreg(priv, ENC_MAADR3, priv->dev.d_mac.ether.ether_addr_octet[2]);
enc_wrbreg(priv, ENC_MAADR4, priv->dev.d_mac.ether.ether_addr_octet[3]);
enc_wrbreg(priv, ENC_MAADR5, priv->dev.d_mac.ether.ether_addr_octet[4]);
enc_wrbreg(priv, ENC_MAADR6, priv->dev.d_mac.ether.ether_addr_octet[5]);
}
/****************************************************************************
* Name: enc_reset
*
* Description:
* Stop, reset, re-initialize, and restart the ENC28J60. This is done
* initially, on ifup, and after a TX timeout.
*
* Input Parameters:
* priv - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static int enc_reset(FAR struct enc_driver_s *priv)
{
uint8_t regval;
nwarn("WARNING: Reset\n");
/* Configure SPI for the ENC28J60 */
enc_configspi(priv->spi);
/* Reset the ENC28J60 */
enc_src(priv);
/* Initialize ECON1: Clear ECON1 */
enc_wrgreg(priv, ENC_ECON1, 0x00);
/* Initialize ECON2: Enable address auto increment and voltage
* regulator powersave.
*/
enc_wrgreg(priv, ENC_ECON2, ECON2_AUTOINC | ECON2_VRPS);
/* Initialize receive buffer.
* First, set the receive buffer start address.
*/
priv->nextpkt = PKTMEM_RX_START;
enc_wrbreg(priv, ENC_ERXSTL, PKTMEM_RX_START & 0xff);
enc_wrbreg(priv, ENC_ERXSTH, PKTMEM_RX_START >> 8);
/* Set the receive data pointer */
enc_wrbreg(priv, ENC_ERXRDPTL, PKTMEM_RX_START & 0xff);
enc_wrbreg(priv, ENC_ERXRDPTH, PKTMEM_RX_START >> 8);
/* Set the receive buffer end. */
enc_wrbreg(priv, ENC_ERXNDL, PKTMEM_RX_END & 0xff);
enc_wrbreg(priv, ENC_ERXNDH, PKTMEM_RX_END >> 8);
/* Set transmit buffer start. */
enc_wrbreg(priv, ENC_ETXSTL, PKTMEM_TX_START & 0xff);
enc_wrbreg(priv, ENC_ETXSTH, PKTMEM_TX_START >> 8);
/* Check if we are actually communicating with the ENC28J60. If its
* 0x00 or 0xff, then we are probably not communicating correctly
* via SPI.
*/
regval = enc_rdbreg(priv, ENC_EREVID);
if (regval == 0x00 || regval == 0xff)
{
nerr("ERROR: Bad Rev ID: %02x\n", regval);
return -ENODEV;
}
ninfo("Rev ID: %02x\n", regval);
/* Set filter mode: unicast OR broadcast AND crc valid */
enc_wrbreg(priv, ENC_ERXFCON, ERXFCON_UCEN | ERXFCON_CRCEN |
ERXFCON_BCEN);
/* Enable MAC receive */
enc_wrbreg(priv, ENC_MACON1, MACON1_MARXEN | MACON1_TXPAUS |
MACON1_RXPAUS);
/* Enable automatic padding and CRC operations */
#ifdef CONFIG_ENC28J60_HALFDUPLEX
enc_wrbreg(priv, ENC_MACON3, MACON3_PADCFG0 | MACON3_TXCRCEN |
MACON3_FRMLNEN);
enc_wrbreg(priv, ENC_MACON4, MACON4_DEFER); /* Defer transmission enable */
/* Set Non-Back-to-Back Inter-Packet Gap */
enc_wrbreg(priv, ENC_MAIPGL, 0x12);
enc_wrbreg(priv, ENC_MAIPGH, 0x0c);
/* Set Back-to-Back Inter-Packet Gap */
enc_wrbreg(priv, ENC_MABBIPG, 0x12);
#else
/* Set filter mode: unicast OR broadcast AND crc valid AND Full Duplex */
enc_wrbreg(priv, ENC_MACON3,
MACON3_PADCFG0 | MACON3_TXCRCEN | MACON3_FRMLNEN |
MACON3_FULDPX);
/* Set Non-Back-to-Back Inter-Packet Gap */
enc_wrbreg(priv, ENC_MAIPGL, 0x12);
/* Set Back-to-Back Inter-Packet Gap */
enc_wrbreg(priv, ENC_MABBIPG, 0x15);
#endif
/* Set the maximum packet size which the controller will accept */
enc_wrbreg(priv, ENC_MAMXFLL, CONFIG_NET_ETH_PKTSIZE & 0xff);
enc_wrbreg(priv, ENC_MAMXFLH, CONFIG_NET_ETH_PKTSIZE >> 8);
/* Configure LEDs (No, just use the defaults for now) */
/* Setup up PHCON1 & 2 */
#ifdef CONFIG_ENC28J60_HALFDUPLEX
enc_wrphy(priv, ENC_PHCON1, 0x00);
enc_wrphy(priv, ENC_PHCON2, PHCON2_HDLDIS);
#else
enc_wrphy(priv, ENC_PHCON1, PHCON1_PDPXMD);
enc_wrphy(priv, ENC_PHCON2, 0x00);
#endif
return OK;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: enc_initialize
*
* Description:
* Initialize the Ethernet driver. The ENC28J60 device is assumed to be
* in the post-reset state upon entry to this function.
*
* Input Parameters:
* spi - A reference to the platform's SPI driver for the ENC28J60
* lower - The MCU-specific interrupt used to control low-level MCU
* functions (i.e., ENC28J60 GPIO interrupts).
* devno - If more than one ENC28J60 is supported, then this is the
* zero based number that identifies the ENC28J60;
*
* Returned Value:
* OK on success; Negated errno on failure.
*
* Assumptions:
*
****************************************************************************/
int enc_initialize(FAR struct spi_dev_s *spi,
FAR const struct enc_lower_s *lower, unsigned int devno)
{
FAR struct enc_driver_s *priv;
DEBUGASSERT(devno < CONFIG_ENC28J60_NINTERFACES);
priv = &g_enc28j60[devno];
/* Initialize the driver structure */
memset(g_enc28j60, 0,
CONFIG_ENC28J60_NINTERFACES * sizeof(struct enc_driver_s));
priv->dev.d_buf = g_pktbuf; /* Single packet buffer */
priv->dev.d_ifup = enc_ifup; /* I/F down callback */
priv->dev.d_ifdown = enc_ifdown; /* I/F up (new IP address) callback */
priv->dev.d_txavail = enc_txavail; /* New TX data callback */
#ifdef CONFIG_NET_MCASTGROUP
priv->dev.d_addmac = enc_addmac; /* Add multicast MAC address */
priv->dev.d_rmmac = enc_rmmac; /* Remove multicast MAC address */
#endif
priv->dev.d_private = priv; /* Used to recover private state from dev */
priv->spi = spi; /* Save the SPI instance */
priv->lower = lower; /* Save the low-level MCU interface */
/* The interface should be in the down state. However, this function is
* called too early in initialization to perform the ENC28J60 reset in
* enc_ifdown. We are depending upon the fact that the application level
* logic will call enc_ifdown later to reset the ENC28J60. NOTE: The MAC
* address will not be set up until enc_ifup() is called. That gives the
* app time to set the MAC address before bringing the interface up.
*/
priv->ifstate = ENCSTATE_UNINIT;
/* Attach the interrupt to the driver (but don't enable it yet) */
if (lower->attach(lower, enc_interrupt, priv) < 0)
{
/* We could not attach the ISR to the interrupt */
return -EAGAIN;
}
/* Register the device with the OS so that socket IOCTLs can be performed */
return netdev_register(&priv->dev, NET_LL_ETHERNET);
}
#endif /* CONFIG_NET && CONFIG_ENC28J60_NET */