nuttx/sched/Kconfig
Juha Niskanen a762c06ed9 Fix typos and some incorrect comments
Author: Alan Carvalho de Assis <acassis@gmail.com>

    Run nxstyle against .c and .h files and fix it

Author: Juha Niskanen <juha.niskanen@haltian.com>

    Fix typos and some incorrect comments
2020-01-20 09:32:36 -03:00

1789 lines
60 KiB
Plaintext

#
# For a description of the syntax of this configuration file,
# see the file kconfig-language.txt in the NuttX tools repository.
#
menuconfig DISABLE_OS_API
bool "Disable NuttX interfaces"
default y
---help---
The following can be used to disable categories of
APIs supported by the OS. If the compiler supports
weak functions, then it should not be necessary to
disable functions unless you want to restrict usage
of those APIs.
There are certain dependency relationships in these
features.
1) mq_notify logic depends on signals to awaken tasks
waiting for queues to become full or empty.
2) pthread_condtimedwait() depends on signals to wake
up waiting tasks.
if DISABLE_OS_API
config DISABLE_POSIX_TIMERS
bool "Disable POSIX timers"
default y if DEFAULT_SMALL
default n if !DEFAULT_SMALL
---help---
Disable support for the the entire POSIX timer family
including timer_create(), timer_gettime(), timer_settime(),
etc.
NOTE: This option will also disable getitimer() and
setitimer() which are not, strictly speaking, POSIX timers.
config DISABLE_PTHREAD
bool "Disable pthread support"
default n
config DISABLE_MQUEUE
bool "Disable POSIX message queue support"
default n
config DISABLE_ENVIRON
bool "Disable environment variable support"
default y if DEFAULT_SMALL
default n if !DEFAULT_SMALL
endif # DISABLE_OS_API
menu "Clocks and Timers"
config ARCH_HAVE_TICKLESS
bool
config SCHED_TICKLESS
bool "Support tick-less OS"
default n
depends on ARCH_HAVE_TICKLESS
---help---
By default, system time is driven by a periodic timer interrupt. An
alternative configurations is a tick-less configuration in which
there is no periodic timer interrupt. Instead and interval timer is
used to schedule the next OS time event. This option selects that
tick-less OS option. If the tick-less OS is selected, then there are
additional platform specific interfaces that must be provided as
defined include/nuttx/arch.h
if SCHED_TICKLESS
config SCHED_TICKLESS_ALARM
bool "Tickless alarm"
default n
---help---
The tickless option can be supported either via a simple interval
timer (plus elapsed time) or via an alarm. The interval timer allows
programming events to occur after an interval. With the alarm,
you can set a time in the future and get an event when that alarm
goes off. This option selects the use of an alarm.
The advantage of an alarm is that it avoids some small timing
errors; the advantage of the use of the interval timer is that
the hardware requirement may be less.
config SCHED_TICKLESS_LIMIT_MAX_SLEEP
bool "Max sleep period (in microseconds)"
default n
---help---
Enables use of the g_oneshot_maxticks variable. This variable is
initialized by platform-specific logic at runtime to the maximum
delay that the timer can wait (in configured clock ticks). The
RTOS tickless logic will then limit all requested delays to this
value.
endif
config USEC_PER_TICK
int "System timer tick period (microseconds)"
default 10000 if !SCHED_TICKLESS
default 100 if SCHED_TICKLESS
---help---
In the "normal" configuration where system time is provided by a
periodic timer interrupt, the default system timer is expected to
run at 100Hz or USEC_PER_TICK=10000. This setting must be defined
to inform of NuttX the interval that the processor hardware is
providing system timer interrupts to the OS.
If SCHED_TICKLESS is selected, then there are no system timer
interrupts. In this case, USEC_PER_TICK does not control any timer
rates. Rather, it only determines the resolution of time reported
by clock_systimer() and the resolution of times that can be set for
certain delays including watchdog timers and delayed work. In this
case there is a trade-off: It is better to have the USEC_PER_TICK as
low as possible for higher timing resolution. However, the time
is currently held in 'unsigned int' on some systems, this may be
16-bits but on most contemporary systems it will be 32-bits. In
either case, smaller values of USEC_PER_TICK will reduce the range
of values that delays that can be represented. So the trade-off is
between range and resolution (you could also modify the code to use
a 64-bit value if you really want both).
The default, 100 microseconds, will provide for a range of delays
up to 120 hours.
This value should never be less than the underlying resolution of
the timer. Error may ensue.
if !SCHED_TICKLESS
config SYSTEMTICK_EXTCLK
bool "Use external clock"
default n
depends on ARCH_HAVE_EXTCLK
---help---
Use external clock for system tick. When enabled, the platform-specific
logic must start its own timer interrupt to make periodic calls to the
nxsched_process_timer() or the functions called within. The purpose is
to move the scheduling off the processor clock to allow entering low
power states that would disable that clock.
config SYSTEMTICK_HOOK
bool "System timer hook"
default n
---help---
Enable a call to a user-provided, board-level function on each timer
tick. This permits custom actions that may be performed on each
timer tick. The form of the user-provided function is:
void board_timerhook(void);
(prototyped in include/nuttx/board.h).
endif # !SCHED_TICKLESS
config SYSTEM_TIME64
bool "64-bit system clock"
default n
---help---
The system timer is incremented at the rate determined by
USEC_PER_TICK, typically at 100Hz. The count at any given time is
then the "uptime" in units of system timer ticks. By default, the
system time is 32-bits wide. Those defaults provide a range of about
497 days which is probably a sufficient range for "uptime".
However, if the system timer rate is significantly higher than 100Hz
and/or if a very long "uptime" is required, then this option can be
selected to support a 64-bit wide timer.
config CLOCK_MONOTONIC
bool "Support CLOCK_MONOTONIC"
default n
---help---
CLOCK_MONOTONIC is an optional standard POSIX clock. Unlike
CLOCK_REALTIME which can move forward and backward when the
time-of-day changes, CLOCK_MONOTONIC is the elapsed time since some
arbitrary point in the post (the system start-up time for NuttX)
and, hence, is always monotonically increasing. CLOCK_MONOTONIC
is, hence, the more appropriate clock for determining time
differences.
The value of the CLOCK_MONOTONIC clock cannot be set via clock_settime().
config ARCH_HAVE_TIMEKEEPING
bool
default n
config CLOCK_TIMEKEEPING
bool "Support timekeeping algorithms"
default n
depends on EXPERIMENTAL && ARCH_HAVE_TIMEKEEPING
---help---
CLOCK_TIMEKEEPING enables experimental time management algorithms.
config JULIAN_TIME
bool "Enables Julian time conversions"
default n
---help---
Enables Julian time conversions
config START_YEAR
int "Start year"
default 2018
range 1970 2106
---help---
NuttX uses an unsigned 32-bit integer for time_t which provides a
range from 1970 to 2106.
config START_MONTH
int "Start month"
default 1
range 1 12
config START_DAY
int "Start day"
default 1
range 1 31
config MAX_WDOGPARMS
int "Maximum number of watchdog parameters"
default 4
---help---
Maximum number of parameters that can be passed to a watchdog handler
config PREALLOC_WDOGS
int "Number of pre-allocated watchdog timers"
default 32
---help---
The number of pre-allocated watchdog structures. The system manages
a pool of preallocated watchdog structures to minimize dynamic
allocations. Dynamic allocations will still be made if this pool is
exhausted. You will, however, get better performance and memory
usage if this value is tuned to minimize such allocations.
config WDOG_INTRESERVE
int "Watchdog structures reserved for interrupt handlers"
default 4
---help---
Watchdog structures may be allocated from normal task and also from
interrupt handlers. Interrupt handlers, however, can only use pre-
allocated watchdog timer. So, in order to keep normal task
allocations from exhausting all watchdog structures, a small number
of pre-allocated watchdog timers must be reserved for exclusive use
by interrupt handler. This setting determines that number of
reserved watchdogs.
config PREALLOC_TIMERS
int "Number of pre-allocated POSIX timers"
default 8
---help---
The number of pre-allocated POSIX timer structures. The system manages a
pool of preallocated timer structures to minimize dynamic allocations. Set to
zero for all dynamic allocations.
endmenu # Clocks and Timers
menu "Tasks and Scheduling"
config SPINLOCK
bool "Support Spinlocks"
default n
depends on ARCH_HAVE_TESTSET
---help---
Enables support for spinlocks. Spinlocks are used primarily for
synchronization in SMP configurations but are available for general
synchronization between CPUs. Use in a single CPU configuration would
most likely be fatal. Note, however, that this does not depend on
CONFIG_ARCH_HAVE_MULTICPU. This permits the use of spinlocks in
other novel architectures.
config SPINLOCK_IRQ
bool "Support Spinlocks with IRQ control"
default n
depends on ARCH_GLOBAL_IRQDISABLE
---help---
Enables support for spinlocks with IRQ control. This feature can be
used to protect data in SMP mode.
config IRQCHAIN
bool "Enable multi handler sharing a IRQ"
default n
---help---
Enable support for IRQCHAIN.
if IRQCHAIN
config PREALLOC_IRQCHAIN
int "Number of pre-allocated irq chains"
default 8
---help---
The number of pre-allocated irq chain structures. The system manages
a pool of preallocated irq chain structures to minimize dynamic
allocations. You will, however, get better performance and memory
usage if this value is tuned to minimize such allocations.
endif # IRQCHAIN
config IRQCOUNT
bool
default n
config SMP
bool "Symmetric Multi-Processing (SMP)"
default n
depends on ARCH_HAVE_MULTICPU
select SPINLOCK
select SCHED_RESUMESCHEDULER
select IRQCOUNT
---help---
Enables support for Symmetric Multi-Processing (SMP) on a multi-CPU
platform.
if SMP
config SMP_NCPUS
int "Number of CPUs"
default 4
range 1 32 if DEBUG_FEATURES
range 2 32 if !DEBUG_FEATURES
---help---
This value identifies the number of CPUs supported by the processor
that will be used for SMP.
If CONFIG_DEBUG_FEATURES is enabled, then the value one is permitted
for CONFIG_SMP_NCPUS. This is not normally a valid setting for an
SMP configuration. However, running the SMP logic in a single CPU
configuration is useful during certain testing.
config SMP_IDLETHREAD_STACKSIZE
int "CPU IDLE stack size"
default 2048
---help---
Each CPU will have its own IDLE task. System initialization occurs
on CPU0 and uses CONFIG_IDLETHREAD_STACKSIZE which will probably be
larger than is generally needed. This setting provides the stack
size for the IDLE task on CPUS 1 through (CONFIG_SMP_NCPUS-1).
endif # SMP
choice
prompt "Initialization Task"
default INIT_ENTRYPOINT if !BUILD_KERNEL
default INIT_FILEPATH if BUILD_KERNEL && !BINFMT_DISABLE
default INIT_NONE if BUILD_KERNEL && BINFMT_DISABLE
config INIT_NONE
bool "None"
config INIT_ENTRYPOINT
bool "Via application entry point"
depends on !BUILD_KERNEL
config INIT_FILEPATH
bool "Via executable file"
depends on !BINFMT_DISABLE
endchoice # Initialization task
if INIT_ENTRYPOINT
config USER_ENTRYPOINT
string "Application entry point"
default "main"
---help---
The name of the entry point for user applications. For the example
applications this is of the form 'app_main' where 'app' is the application
name. If not defined, USER_ENTRYPOINT defaults to "main".
config USERMAIN_PRIORITY
int "init thread priority"
default 100
---help---
The priority of the user initialization thread.
endif # INIT_ENTRYPOINT
if INIT_FILEPATH
config USER_INITPATH
string "Application initialization path"
default "/bin/init"
---help---
The name of the entry point for user applications. For the example
applications this is of the form 'app_main' where 'app' is the application
name. If not defined, USER_ENTRYPOINT defaults to "main".
config INIT_SYMTAB
string "Symbol table"
default "NULL" if !EXECFUNCS_HAVE_SYMTAB
default EXECFUNCS_SYMTAB_ARRAY if EXECFUNCS_HAVE_SYMTAB
depends on !BUILD_PROTECTED && !BUILD_KERNEL
---help---
The name of othe global array that holds the exported symbol table.
The special string "NULL" may be provided if there is no symbol
table. Quotation marks will be stripped when config.h is generated.
NOTE: This setting cannot be used in protected or kernel builds.
Any kernel mode symbols tables would not be usable for resolving
symbols in user mode executables.
config INIT_NEXPORTS
string "Symbol table size"
default "0" if !EXECFUNCS_HAVE_SYMTAB
default EXECFUNCS_NSYMBOLS_VAR if EXECFUNCS_HAVE_SYMTAB
depends on !BUILD_PROTECTED && !BUILD_KERNEL
---help---
The size of the symbol table. NOTE that is is logically a numeric
value but is represent by a string. That allows you to put
sizeof(something) or a macro or a global variable name for the
symbol table size. Quotation marks will be stripped when config.h
is generated.
NOTE: This setting cannot be used in protected or kernel builds.
Any kernel mode symbols tables would not be usable for resolving
symbols in user mode executables.
menuconfig INIT_MOUNT
bool "Auto-mount init file system"
default n
depends on !DISABLE_MOUNTPOINT
---help---
In order to use the the initial startup program when CONFIG_INIT_FILEPATH
is provided, it is necessary to mount the initial file system that
provides init program. Normally this mount is done in the board-specific
initialization logic. However, if the mount is very simple, it can be
performed by the OS bring-up logic itself by selecting this option.
if INIT_MOUNT
config INIT_MOUNT_SOURCE
string "The block device to mount"
default "/dev/ram0"
config INIT_MOUNT_TARGET
string "Path to the mounted file system"
default "/bin"
config INIT_MOUNT_FSTYPE
string "The file system type to mount"
default "romfs"
config INIT_MOUNT_FLAGS
hex "Flags passed to mount"
default 0
config INIT_MOUNT_DATA
string "Additional data passed to mount"
default ""
endif # INIT_MOUNT
endif # INIT_FILEPATH
config RR_INTERVAL
int "Round robin timeslice (MSEC)"
default 0
---help---
The round robin timeslice will be set this number of milliseconds;
Round robin scheduling (SCHED_RR) is enabled by setting this
interval to a positive, non-zero value.
config SCHED_SPORADIC
bool "Support sporadic scheduling"
default n
select SCHED_SUSPENDSCHEDULER
select SCHED_RESUMESCHEDULER
---help---
Build in additional logic to support sporadic scheduling
(SCHED_SPORADIC).
if SCHED_SPORADIC
config SCHED_SPORADIC_MAXREPL
int "Maximum number of replenishments"
default 3
range 1 255
---help---
Controls the size of allocated replenishment structures and, hence,
also limits the maximum number of replenishments.
config SPORADIC_INSTRUMENTATION
bool "Sporadic scheduler monitor hooks"
default n
---help---
Enables instrumentation in the sporadic scheduler to monitor
scheduler behavior. If enabled, then the board-specific logic must
provide the following functions:
void arch_sporadic_start(FAR struct tcb_s *tcb);
void arch_sporadic_lowpriority(FAR struct tcb_s *tcb);
void arch_sporadic_suspend(FAR struct tcb_s *tcb);
void arch_sporadic_resume(FAR struct tcb_s *tcb);
endif # SCHED_SPORADIC
config TASK_NAME_SIZE
int "Maximum task name size"
default 31
---help---
Specifies the maximum size of a task name to save in the TCB.
Useful if scheduler instrumentation is selected. Set to zero to
disable. Excludes the NUL terminator; the actual allocated size
will be TASK_NAME_SIZE + 1. The default of 31 then results in
a align-able 32-byte allocation.
config MAX_TASKS
int "Max number of tasks"
default 32
---help---
The maximum number of simultaneously active tasks. This value must be
a power of two.
config SCHED_HAVE_PARENT
bool "Support parent/child task relationships"
default n
---help---
Remember the ID of the parent task when a new child task is
created. This support enables some additional features (such as
SIGCHLD) and modifies the behavior of other interfaces. For
example, it makes waitpid() more standards complete by restricting
the waited-for tasks to the children of the caller. Default:
disabled.
config SCHED_CHILD_STATUS
bool "Retain child exit status"
default n
depends on SCHED_HAVE_PARENT
---help---
If this option is selected, then the exit status of the child task
will be retained after the child task exits. This option should be
selected if you require knowledge of a child process' exit status.
Without this setting, wait(), waitpid() or waitid() may fail. For
example, if you do:
1) Start child task
2) Wait for exit status (using wait(), waitpid(), or waitid()).
This can fail because the child task may run to completion before
the wait begins. There is a non-standard work-around in this case:
The above sequence will work if you disable pre-emption using
sched_lock() prior to starting the child task, then re-enable pre-
emption with sched_unlock() after the wait completes. This works
because the child task is not permitted to run until the wait is in
place.
The standard solution would be to enable SCHED_CHILD_STATUS. In
this case the exit status of the child task is retained after the
child exits and the wait will successful obtain the child task's
exit status whether it is called before the child task exits or not.
Warning: If you enable this feature, then your application must
either (1) take responsibility for reaping the child status with wait(),
waitpid(), or waitid(), or (2) suppress retention of child status.
If you do not reap the child status, then you have a memory leak and
your system will eventually fail.
Retention of child status can be suppressed on the parent using logic like:
struct sigaction sa;
sa.sa_handler = SIG_IGN;
sa.sa_flags = SA_NOCLDWAIT;
int ret = sigaction(SIGCHLD, &sa, NULL);
if SCHED_CHILD_STATUS
config PREALLOC_CHILDSTATUS
int "Number of pre-allocated child status"
default 0
---help---
To prevent runaway child status allocations and to improve
allocation performance, child task exit status structures are pre-
allocated when the system boots. This setting determines the number
of child status structures that will be pre-allocated. If this
setting is not defined or if it is defined to be zero then a value
of 2*MAX_TASKS is used.
Note that there cannot be more than MAX_TASKS tasks in total.
However, the number of child status structures may need to be
significantly larger because this number includes the maximum number
of tasks that are running PLUS the number of tasks that have exit'ed
without having their exit status reaped (via wait(), waitid(), or
waitpid()).
Obviously, if tasks spawn children indefinitely and never have the
exit status reaped, then you may have a memory leak! If you enable
the SCHED_CHILD_STATUS feature, then your application must take
responsibility for either (1) reaping the child status with wait(),
waitpid(), or waitid() or it must (2) suppress retention of child
status. Otherwise, your system will eventually fail.
Retention of child status can be suppressed on the parent using logic like:
struct sigaction sa;
sa.sa_handler = SIG_IGN;
sa.sa_flags = SA_NOCLDWAIT;
int ret = sigaction(SIGCHLD, &sa, NULL);
config DEBUG_CHILDSTATUS
bool "Enable Child Status Debug Output"
default n
depends on SCHED_CHILD_STATUS && DEBUG_FEATURES
---help---
Very detailed... I am sure that you do not want this.
endif # SCHED_CHILD_STATUS
config SCHED_WAITPID
bool "Enable waitpid() API"
default n
---help---
Enables the waitpid() interface in a default, non-standard mode
(non-standard in the sense that the waited for PID need not be child
of the caller). If SCHED_HAVE_PARENT is also defined, then this
setting will modify the behavior or waitpid() (making more spec
compliant) and will enable the waitid() and wait() interfaces as
well.
config SCHED_EXIT_KILL_CHILDREN
bool "Enable kill all children when exit"
default n
depends on SCHED_HAVE_PARENT && SCHED_CHILD_STATUS
---help---
When a task exits, all of its child threads will be killed.
Caution: This selection should not be used unless you are certain
of what you are doing. Uninformed of this option can often lead to
memory leaks since, for example, memory allocations held by threads
are not automatically freed!
config SCHED_USER_IDENTITY
bool "Support per-task User Identity"
default n
---help---
This selection enables functionality of getuid(), setuid(), getgid(),
setgid(). If this option is not selected, then stub, root-only
versions of these interfaces are avaialbe. When selected, these
interfaces will associate a UID and/or GID with each task group.
Those can then be managed using the interfaces. Child tasks will
inherit the UID and GID of its parent.
endmenu # Tasks and Scheduling
menu "Pthread Options"
config NPTHREAD_KEYS
int "Maximum number of pthread keys"
default 4 if !DISABLE_PTHREAD
default 0 if DISABLE_PTHREAD
range 0 32
---help---
The number of items of thread-specific data that can be retained.
The value zero disables support for pthread-specific data.
if !DISABLE_PTHREAD
config PTHREAD_MUTEX_TYPES
bool "Enable mutex types"
default n
---help---
Set to enable support for recursive and errorcheck mutexes. Enables
pthread_mutexattr_settype().
choice
prompt "pthread mutex robustness"
default PTHREAD_MUTEX_ROBUST if !DEFAULT_SMALL
default PTHREAD_MUTEX_UNSAFE if DEFAULT_SMALL
config PTHREAD_MUTEX_ROBUST
bool "Robust mutexes"
---help---
Support only the robust form of the NORMAL mutex.
config PTHREAD_MUTEX_UNSAFE
bool "Traditional unsafe mutexes"
---help---
Support only the traditional non-robust form of the NORMAL mutex.
You should select this option only for backward compatibility with
software you may be porting or, perhaps, if you are trying to minimize
footprint.
config PTHREAD_MUTEX_BOTH
bool "Both robust and unsafe mutexes"
---help---
Support both forms of NORMAL mutexes.
endchoice # pthread mutex robustness
choice
prompt "Default NORMAL mutex robustness"
default PTHREAD_MUTEX_DEFAULT_ROBUST
depends on PTHREAD_MUTEX_BOTH
config PTHREAD_MUTEX_DEFAULT_ROBUST
bool "Robust default"
---help---
The default is robust NORMAL mutexes (non-standard)
config PTHREAD_MUTEX_DEFAULT_UNSAFE
bool "Unsafe default"
---help---
The default is traditional unsafe NORMAL mutexes (standard)
endchoice # Default NORMAL mutex robustness
config PTHREAD_CLEANUP
bool "pthread cleanup stack"
default n
---help---
Select to enable support for pthread exit cleanup stacks. This
enables the interfaces pthread_cleanup_push() and
pthread_cleanup_pop().
config PTHREAD_CLEANUP_STACKSIZE
int "pthread cleanup stack size"
default 1
range 1 32
depends on PTHREAD_CLEANUP
---help---
The maximum number of cleanup actions that may be pushed by
pthread_clean_push(). This setting will increase the size of EVERY
pthread task control block by about n * CONFIG_PTHREAD_CLEANUP_STACKSIZE
where n is the size of a pointer, 2* sizeof(uintptr_t), this would be
8 for a CPU with 32-bit addressing and 4 for a CPU with 16-bit
addressing.
config CANCELLATION_POINTS
bool "Cancellation points"
default n
---help---
Enable POSIX cancellation points for pthread_cancel(). If selected,
cancellation points will also used with the () task_delete() API even if
pthreads are not enabled.
endif # !DISABLE_PTHREAD
endmenu # Pthread Options
menu "Performance Monitoring"
config SCHED_SUSPENDSCHEDULER
bool
default n
config SCHED_RESUMESCHEDULER
bool
default n
config SCHED_IRQMONITOR
bool "Enable IRQ monitoring"
default n
depends on FS_PROCFS
---help---
Enabling counting of interrupts from all interrupt sources. These
counts will be available in the mounted procfs file systems at the
top-level file, "irqs".
config SCHED_CRITMONITOR
bool "Enable Critical Section monitoring"
default n
depends on FS_PROCFS
select SCHED_SUSPENDSCHEDULER
select SCHED_RESUMESCHEDULER
select IRQCOUNT
---help---
Enables logic that monitors the duration of time that a thread keeps
interrupts or pre-emption disabled. These global locks can have
negative consequences to real timer performance: Disabling interrupts
adds jitter in the time when a interrupt request is asserted until
the hardware can responds with the interrupt. Disabling pre-emption
adds jitter in the timer from when the event is posted in the
interrupt handler until the task that responds to the event can run.
If this option is selected, then the following interfaces must be
provided by platform-specific logic:
uint32_t up_critmon_gettime(void);
void up_critmon_convert(uint32_t elapsed, FAR struct timespec *ts);
The first interface simply provides the current time value in unknown
units. NOTE: This function may be called early before the timer has
been initialized. In that event, the function should just return a
start time of zero.
Nothing is assumed about the units of this time value. The following
are assumed, however: (1) The time is an unsigned integer value, (2)
the time is monotonically increasing, and (3) the elapsed time (also
in unknown units) can be obtained by subtracting a start time from
the current time.
The second interface simple converts an elapsed time into well known
units for presentation by the ProcFS file system.
config SCHED_CPULOAD
bool "Enable CPU load monitoring"
default n
select SCHED_CPULOAD_EXTCLK if SCHED_TICKLESS
---help---
If this option is selected, the timer interrupt handler will monitor
if the system is IDLE or busy at the time of that the timer interrupt
occurs. This is a very coarse measurement, but over a period of time,
it can very accurately determined the percentage of the time that the
CPU is IDLE.
The statistics collected in this could be used, for example in the
PROCFS file system to provide CPU load measurements when read.
Note that in tickless mode of operation (SCHED_TICKLESS) there is
no system timer interrupt and CPU load measurements will not be
possible unless you provide an alternative clock to driver the
sampling and select SCHED_CPULOAD_EXTCLK.
if SCHED_CPULOAD
config SCHED_CPULOAD_EXTCLK
bool "Use external clock"
default n
---help---
The CPU load measurements are determined by sampling the active
tasks periodically at the occurrence to a timer expiration. By
default, the system clock is used to do that sampling.
There is a serious issue for the accuracy of measurements if the
system clock is used, however. NuttX threads are often started at
the time of the system timer expiration. Others may be stopped at
the time of the system timer expiration (if round-robin time-slicing
is enabled). Such thread behavior occurs synchronously with the
system timer and, hence, is not randomly sampled. As a consequence,
the CPU load attributed to these threads that run synchronously with
they system timer may be grossly in error.
The solution is to use some other clock that runs at a different
rate and has timer expirations that are asynchronous with the
system timer. Then truly accurate load measurements can be
achieved. This option enables use of such an "external" clock. The
implementation of the clock must be provided by platform-specific
logic; that platform-specific logic must call the system function
nxsched_process_cpuload() at each timer expiration with interrupts
disabled.
if SCHED_CPULOAD_EXTCLK
config SCHED_CPULOAD_TICKSPERSEC
int "External clock rate"
default 100
---help---
If an external clock is used to drive the sampling for the CPU load
calculations, then this value must be provided. This value provides
the rate of the external clock interrupts in units of ticks per
second. The default value of 100 corresponds to a 100Hz clock. NOTE:
that 100Hz is the default frequency of the system time and, hence,
the worst possible choice in most cases.
choice
prompt "Select CPU load timer"
default CPULOAD_ONESHOT
config CPULOAD_ONESHOT
bool "Use Oneshot timer"
---help---
Use an MCU-specific oneshot timer as the external clock. The
oneshot timer must be configured by board specific logic which must
then call:
void sched_oneshot_extclk(FAR struct oneshot_lowerhalf_s *lower);
To start the CPU load measurement. See include/nuttx/clock.h
NOTE that in this configuration, CONFIG_SCHED_CPULOAD_TICKSPERSEC is
the sample rate that will be accomplished by programming the oneshot
time repeatedly. If CPULOAD_ONESHOT_ENTROPY is also selected, then
the underly frequency driving the oneshot timer must be
significantly faster than CONFIG_SCHED_CPULOAD_TICKSPERSE to permit
precise modulation the sample periods.
config CPULOAD_PERIOD
bool "Use Period timer"
---help---
Use an MCU-specific period timer as the external clock. The
period timer must be configured by board specific logic which must
then call:
void sched_period_extclk(FAR struct timer_lowerhalf_s *lower);
To start the CPU load measurement. See include/nuttx/clock.h
NOTE that in this configuration, CONFIG_SCHED_CPULOAD_TICKSPERSEC is
the sample rate that will be accomplished by programming the period
time.
endchoice
config CPULOAD_ENTROPY
int "Bits of entropy"
default 6
range 0 30
depends on CPULOAD_ONESHOT
---help---
This is the number of bits of entropy that will be applied. The
oneshot will be set to this interval:
CPULOAD_ONESHOT_NOMINAL - (CPULOAD_ONESHOT_ENTROPY / 2) +
error + nrand(CPULOAD_ONESHOT_ENTROPY)
Where
CPULOAD_ONESHOT_NOMINAL is the nominal sample interval implied
by CONFIG_SCHED_CPULOAD_TICKSPERSEC in units of microseconds.
CPULOAD_ONESHOT_ENTROPY is (1 << CONFIG_CPULOAD_ENTROPY),
and 'error' is an error value that is retained from interval to
interval so that although individual intervals are randomized,
the average will still be CONFIG_SCHED_CPULOAD_TICKSPERSEC.
This special value of zero disables entropy.
endif # SCHED_CPULOAD_EXTCLK
config SCHED_CPULOAD_TIMECONSTANT
int "CPU load time constant"
default 2
---help---
The accumulated CPU count is divided by two when the accumulated
tick count exceeds this time constant. This time constant is in
units of seconds.
endif # SCHED_CPULOAD
config SCHED_INSTRUMENTATION
bool "System performance monitor hooks"
default n
select SCHED_SUSPENDSCHEDULER
select SCHED_RESUMESCHEDULER
---help---
Enables instrumentation in scheduler to monitor system performance.
If enabled, then the board-specific logic must provide the following
functions (see include/sched.h):
void sched_note_start(FAR struct tcb_s *tcb);
void sched_note_stop(FAR struct tcb_s *tcb);
void sched_note_suspend(FAR struct tcb_s *tcb);
void sched_note_resume(FAR struct tcb_s *tcb);
If CONFIG_SMP is enabled, then these additional interfaces are
expected:
void sched_note_cpu_pause(FAR struct tcb_s *tcb, int cpu);
void sched_note_cpu_paused(FAR struct tcb_s *tcb);
void sched_note_cpu_resume(FAR struct tcb_s *tcb, int cpu);
void sched_note_cpu_resumed(FAR struct tcb_s *tcb);
NOTE: These are internal OS interfaces and are called at at very
critical locations in the OS. There is very little that can be
done in these interfaces. For example, normal devices may not be
used; syslog output cannot be performed.
An option is to use SCHED_INSTRUMENTATION_BUFFER below.
if SCHED_INSTRUMENTATION
config SCHED_INSTRUMENTATION_CPUSET
hex "CPU bit set"
default 0xffff
depends on SMP
---help---
Monitor only CPUs in the bitset. Bit 0=CPU0, Bit1=CPU1, etc.
config SCHED_INSTRUMENTATION_PREEMPTION
bool "Preemption monitor hooks"
default n
---help---
Enables additional hooks for changes to pre-emption state. Board-
specific logic must provide this additional logic.
void sched_note_premption(FAR struct tcb_s *tcb, bool state);
config SCHED_INSTRUMENTATION_CSECTION
bool "Critical section monitor hooks"
default n
select IRQCOUNT
---help---
Enables additional hooks for entry and exit from critical sections.
Interrupts are disabled while within a critical section. Board-
specific logic must provide this additional logic.
void sched_note_csection(FAR struct tcb_s *tcb, bool state);
config SCHED_INSTRUMENTATION_SPINLOCKS
bool "Spinlock monitor hooks"
default n
---help---
Enables additional hooks for spinlock state. Board-specific logic
must provide this additional logic.
void sched_note_spinlock(FAR struct tcb_s *tcb, bool state);
void sched_note_spinlocked(FAR struct tcb_s *tcb, bool state);
void sched_note_spinunlock(FAR struct tcb_s *tcb, bool state);
void sched_note_spinabort(FAR struct tcb_s *tcb, bool state);
config SCHED_INSTRUMENTATION_BUFFER
bool "Buffer instrumentation data in memory"
default n
---help---
If this option is selected, then in-memory buffering logic is
enabled to capture scheduler instrumentation data. This has
the advantage that (1) the platform logic does not have to provide
the sched_note_* interaces described for the previous settings.
Instead, the buffering logic catches all of these. It encodes
timestamps the scheduler note and adds the note to an in-memory,
circular buffer. And (2) buffering the scheduler instrumentation
data (versus performing some output operation) minimizes the impact
of the instrumentation on the behavior of the system.
If the in-memory buffer becomes full, then older notes are
overwritten by newer notes. The following interface is provided:
ssize_t sched_note_get(FAR uint8_t *buffer, size_t buflen);
Platform specific information must call this function and dispose
of it quickly so that overwriting of the tail of the circular buffer
does not occur. See include/nuttx/sched_note.h for additional
information.
if SCHED_INSTRUMENTATION_BUFFER
config SCHED_NOTE_BUFSIZE
int "Instrumentation buffer size"
default 2048
---help---
The size of the in-memory, circular instrumentation buffer (in
bytes).
config SCHED_NOTE_GET
bool "Callable interface to get instrumentatin data"
default n
depends on !SCHED_INSTRUMENTATION_CSECTION && (!SCHED_INSTRUMENTATION_SPINLOCK || !SMP)
---help---
Add support for interfaces to get the size of the next note and also
to extract the next note from the instrumentation buffer:
ssize_t sched_note_get(FAR uint8_t *buffer, size_t buflen);
ssize_t sched_note_size(void);
NOTE: This option is not available if critical sections are being
monitor (nor if spinlocks are being monitored in SMP configuration)
because there would be a logical error in the design in those cases.
That error is that these interfaces call enter_ and leave_critical_section
(and which us spinlocks in SMP mode). That means that each call to
sched_note_get() causes several additional entries to be added from
the note buffer in order to remove one entry.
endif # SCHED_INSTRUMENTATION_BUFFER
endif # SCHED_INSTRUMENTATION
endmenu # Performance Monitoring
menu "Files and I/O"
config DEV_CONSOLE
bool "Enable /dev/console"
default y
---help---
Set if architecture-specific logic provides /dev/console at boot-up
time. Enables stdout, stderr, stdin in the start-up application.
You need this setting if your console device is ready at boot time.
For example, if you are using a serial console, then /dev/console
(aka, /dev/ttyS0) will be available when the application first starts.
You must not select DEV_CONSOLE if you console device comes up later
and is not ready until after the application starts. At this time,
the only console device that behaves this way is a USB serial console.
When the application first starts, the USB is (probably) not yet
connected and /dev/console will not be created until later when the
host connects to the USB console.
config FDCLONE_DISABLE
bool "Disable cloning of file descriptors"
default n
---help---
Disable cloning of all file descriptors by task_create() when a new
ask is started. If set, all files/drivers will appear to be closed
in the new task.
config FDCLONE_STDIO
bool "Disable clone file descriptors without stdio"
default n
---help---
Disable cloning of all but the first three file descriptors (stdin,
stdout, stderr) by task_create() when a new task is started. If set,
all files/drivers will appear to be closed in the new task except
for stdin, stdout, and stderr.
config SDCLONE_DISABLE
bool "Disable cloning of socket descriptors"
default n
---help---
Disable cloning of all socket
descriptors by task_create() when a new task is started. If
set, all sockets will appear to be closed in the new task.
config NFILE_DESCRIPTORS
int "Maximum number of file descriptors per task"
default 16
range 3 99999
---help---
The maximum number of file descriptors per task (one for each open)
config NFILE_STREAMS
int "Maximum number of FILE streams"
default 16
---help---
The maximum number of streams that can be fopen'ed
config NAME_MAX
int "Maximum size of a file name"
default 32
---help---
The maximum size of a file name.
endmenu # Files and I/O
menuconfig PRIORITY_INHERITANCE
bool "Enable priority inheritance "
default n
---help---
Set to enable support for priority inheritance on mutexes and semaphores.
When this option is enabled, the initial configuration of all seamphores
and mutexes will be with priority inheritance enabled. That configuration
may not be appropriate in all cases (such as when the semaphore or mutex
is used for signaling). In such cases, priority inheritance can be
disabled for individual semaphores by calling:
int ret = sem_setprotocol(&sem, SEM_PRIO_NONE);
From applications, the functionally equivalent OS internal interface,
nxsem_setprotocol(), should be used within the OS
And for individual pthread mutexes by setting the protocol attribute
before initializing the mutex:
int ret = pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_NONE);
if PRIORITY_INHERITANCE
config SEM_PREALLOCHOLDERS
int "Number of pre-allocated holders"
default 16
---help---
This setting is only used if priority inheritance is enabled.
It defines the maximum number of different threads (minus one) that
can take counts on a semaphore with priority inheritance support.
This may be set to zero if priority inheritance is disabled OR if you
are only using semaphores as mutexes (only one holder) OR if no more
than two threads participate using a counting semaphore.
config SEM_NNESTPRIO
int "Maximum number of higher priority threads"
default 16
---help---
If priority inheritance is enabled, then this setting is the
maximum number of higher priority threads (minus 1) than can be
waiting for another thread to release a count on a semaphore.
This value may be set to zero if no more than one thread is
expected to wait for a semaphore.
endif # PRIORITY_INHERITANCE
menu "RTOS hooks"
config BOARD_EARLY_INITIALIZE
bool "Custom board early initialization"
default n
---help---
There are three points in time where you can insert custom,
board-specific initialization logic:
1) <arch>_board_initialize(): This function is used only for
initialization of very low-level things like configuration of
GPIO pins, power setting. The OS has not been initialized
at this point, so you cannot allocate memory or initialize
device drivers at this phase.
2) The next level of initialization is performed by a call to
up_initialize() (in arch/<arch>/src/common/up_initialize.c).
The OS has been initialized at this point and it is okay to
initialize drivers in this phase.
At this same point in time, the OS will also call a board-
specific initialization function named board_early_initialize()
if CONFIG_BOARD_EARLY_INITIALIZE is selected. The context in
which board_early_initialize() executes is suitable for early
initialization of most, simple device drivers and is a logical,
board-specific extension of up_initialize().
board_early_initialize() runs on the startup, initialization thread.
Some initialization operations cannot be performed on the start-up,
initialization thread. That is because the initialization thread
cannot wait for event. Waiting may be required, for example, to
mount a file system or or initialize a device such as an SD card.
For this reason, such driver initialize must be deferred to
board_late_initialize().
3) And, finally, just before the user application code starts.
If CONFIG_BOARD_LATE_INITIALIZE is selected, then an additional
initialization call will be performed in the boot-up sequence to a
function called board_late_initialize(). board_late_initialize()
will be called after up_initialize() is called and just before the
main application is started. This additional initialization
phase may be used, for example, to initialize more complex,
board-specific device drivers.
Waiting for events, use of I2C, SPI, etc are permissable in the
context of board_late_initialize(). That is because
board_late_initialize() will run on a temporary, internal kernel
thread.
config BOARD_LATE_INITIALIZE
bool "Custom board late initialization"
default n
---help---
There are three points in time where you can insert custom,
board-specific initialization logic:
1) <arch>_board_initialize(): This function is used only for
initialization of very low-level things like configuration of
GPIO pins, power setting. The OS has not been initialized
at this point, so you cannot allocate memory or initialize
device drivers at this phase.
2) The next level of initialization is performed by a call to
up_initialize() (in arch/<arch>/src/common/up_initialize.c).
The OS has been initialized at this point and it is okay to
initialize drivers in this phase.
At this same point in time, the OS will also call a board-
specific initialization function named board_early_initialize()
if CONFIG_BOARD_EARLY_INITIALIZE is selected. The context in
which board_early_initialize() executes is suitable for early
initialization of most, simple device drivers and is a logical,
board-specific extension of up_initialize().
board_early_initialize() runs on the startup, initialization thread.
Some initialization operations cannot be performed on the start-up,
initialization thread. That is because the initialization thread
cannot wait for event. Waiting may be required, for example, to
mount a file system or or initialize a device such as an SD card.
For this reason, such driver initialize must be deferred to
board_late_initialize().
3) And, finally, just before the user application code starts.
If CONFIG_BOARD_LATE_INITIALIZE is selected, then an additional
initialization call will be performed in the boot-up sequence to a
function called board_late_initialize(). board_late_initialize()
will be called after up_initialize() is called and just before the
main application is started. This additional initialization
phase may be used, for example, to initialize more complex,
board-specific device drivers.
Waiting for events, use of I2C, SPI, etc are permissable in the
context of board_late_initialize(). That is because
board_late_initialize() will run on a temporary, internal kernel
thread.
if BOARD_LATE_INITIALIZE
config BOARD_INITTHREAD_STACKSIZE
int "Board initialization thread stack size"
default 2048
---help---
The size of the stack to allocate when starting the board
initialization thread.
config BOARD_INITTHREAD_PRIORITY
int "Board initialization thread priority"
default 240
---help---
The priority of the board initialization thread. This priority is
not a critical setting. No other application threads will be
started until the board initialization is completed. Hence, there
is very little competition for the CPU.
endif # BOARD_LATE_INITIALIZE
config SCHED_STARTHOOK
bool "Enable startup hook"
default n
---help---
Enable a non-standard, internal OS API call nxtask_starthook().
nxtask_starthook() registers a function that will be called on task
startup before that actual task entry point is called. The
starthook is useful, for example, for setting up automatic
configuration of C++ constructors.
config SCHED_ATEXIT
bool "Enable atexit() API"
default n
---help---
Enables the atexit() API
config SCHED_ATEXIT_MAX
int "Max number of atexit() functions"
default 1
depends on SCHED_ATEXIT && !SCHED_ONEXIT
---help---
By default if SCHED_ATEXIT is selected, only a single atexit() function
is supported. That number can be increased by defined this setting to
the number that you require.
If both SCHED_ONEXIT and SCHED_ATEXIT are selected, then atexit() is built
on top of the on_exit() implementation. In that case, SCHED_ONEXIT_MAX
determines the size of the combined number of atexit(0) and on_exit calls
and SCHED_ATEXIT_MAX is not used.
config SCHED_ONEXIT
bool "Enable on_exit() API"
default n
---help---
Enables the on_exit() API
config SCHED_ONEXIT_MAX
int "Max number of on_exit() functions"
default 1
depends on SCHED_ONEXIT
---help---
By default if SCHED_ONEXIT is selected, only a single on_exit() function
is supported. That number can be increased by defined this setting to the
number that you require.
If both SCHED_ONEXIT and SCHED_ATEXIT are selected, then atexit() is built
on top of the on_exit() implementation. In that case, SCHED_ONEXIT_MAX
determines the size of the combined number of atexit(0) and on_exit calls.
endmenu # RTOS hooks
menu "Signal Configuration"
config SIG_EVTHREAD
bool "Support SIGEV_THHREAD"
default n
depends on BUILD_FLAT && SCHED_WORKQUEUE
---help---
Built in support for the SIGEV_THREAD signal deliver method.
NOTE: The current implementation uses a work queue to notify the
client. This, however, would only work in the FLAT build. A
different mechanism would need to be development to support this
feature on the PROTECTED or KERNEL build.
config SIG_EVTHREAD_HPWORK
bool "SIGEV_EVTHREAD use HPWORK"
default n
depends on SIG_EVTHREAD && CONFIG_SCHED_HPWORK
---help---
if selected, SIGEV_THHREAD will use the high priority work queue.
If not, it will use the low priority work queue (if available).
REVISIT: This solution is non-optimal. Some notifications should
be high priority and others should be lower priority. Ideally, you
should be able to determine which work queue is used on a
notification-by-notification basis.
menuconfig SIG_DEFAULT
bool "Default signal actions"
default n
---help---
Enable to support default signal actions.
if SIG_DEFAULT
comment "Per-signal Default Actions"
config SIG_SIGUSR1_ACTION
bool "SIGUSR1"
default n
---help---
Enable the default action for SIGUSR1 (terminate the task)
Make sure that your applications are expecting this POSIX behavior.
Backward compatible behavior would require that the application use
sigaction() to ignore SIGUSR1.
config SIG_SIGUSR2_ACTION
bool "SIGUSR2"
default n
---help---
Enable the default action for SIGUSR2 (terminate the task)
Make sure that your applications are expecting this POSIX behavior.
Backward compatible behavior would require that the application use
sigaction() to ignore SIGUSR2.
config SIG_SIGALRM_ACTION
bool "SIGALRM"
default n
---help---
Enable the default action for SIGALRM (terminate the task)
Make sure that your applications are expecting this POSIX behavior.
Backward compatible behavior would require that the application use
sigaction() to ignore SIGALRM.
config SIG_SIGPOLL_ACTION
bool "SIGPOLL"
default n
depends on FS_AIO
---help---
Enable the default action for SIGPOLL (terminate the task)
Make sure that your applications are expecting this POSIX behavior.
Backward compatible behavior would require that the application use
sigaction() to ignore SIGPOLL.
config SIG_SIGSTOP_ACTION
bool "SIGSTOP SIGSTP, and SIGCONT"
default y
---help---
Enable the default action for SIGSTOP and SIGSTP (suspend the
task) and SIGCONT (resume the task).
config SIG_SIGKILL_ACTION
bool "SIGINT and SIGKILL"
default y
---help---
Enable the default action for SIGINT and SIGKILL (terminate the
task).
config SIG_SIGPIPE_ACTION
bool "SIGPIPE"
default y
---help---
Enable the default action for SIGPIPE (terminate the task).
endif # SIG_DEFAULT
menu "Signal Numbers"
comment "Standard Signal Numbers"
config SIG_SIGUSR1
int "SIGUSR1"
default 1
---help---
Value of standard user signal 1 (SIGUSR1). Default: 1
config SIG_SIGUSR2
int "SIGUSR2"
default 2
---help---
Value of standard user signal 2 (SIGUSR2). Default: 2
config SIG_SIGALRM
int "SIGALRM"
default 3
---help---
Default the signal number used with POSIX timers (SIGALRM).
Default: 3
config SIG_SIGCHLD
int "SIGCHLD"
default 4
depends on SCHED_HAVE_PARENT
---help---
The SIGCHLD signal is sent to the parent of a child process when it
exits, is interrupted (stopped), or resumes after being interrupted.
Default: 4
config SIG_POLL
int "SIGPOLL"
default 5
depends on FS_AIO
---help---
The SIGPOLL signal is sent to a process when an asynchronous I/O
event occurs (meaning it has been polled). Default: 5
if SIG_DEFAULT
config SIG_STOP
int "SIGSTOP"
default 6
depends on SIG_SIGSTOP_ACTION
---help---
Suspend/pause a task. SIGSTOP may not be caught or ignored.
config SIG_STP
int "SIGSTP"
default 7
depends on SIG_SIGSTOP_ACTION
---help---
Suspend/pause a task. Unlike SIGSTOP, this signal can be caught or
ignored.
config SIG_CONT
int "SIGCONT"
default 8
depends on SIG_SIGSTOP_ACTION
---help---
Resume a suspended/paused task. SIGSTOP only has an action when
send to a stopped task. SIGCONT is ignored by other task. SIGCONT
may not be caught or ignored by a stopped task.
config SIG_KILL
int "SIGKILL"
default 9
depends on SIG_SIGKILL_ACTION
---help---
The SIGKILL signal is sent to cause a task termination event.
SIGKILL may not be caught or ignored.
config SIG_INT
int "SIGINT"
default 10
depends on SIG_SIGKILL_ACTION
---help---
The SIGINT signal is sent to cause a task termination event.
SIGINT may be ignored or caught by the receiving task.
endif # SIG_DEFAULT
config SIG_PIPE
int "SIGPIPE"
default 11
---help---
The SIGPIPE signal is sent to a task termination event.
This signal is generated when write on a pipe with no one to read it.
SIGPIPE may be ignored.
comment "Non-standard Signal Numbers"
config SIG_SIGCONDTIMEDOUT
int "SIGCONDTIMEDOUT"
default 16
depends on !DISABLE_PTHREAD
---help---
This non-standard signal number is used the implementation of
pthread_cond_timedwait(). Default 16.
config SIG_SIGWORK
int "SIGWORK"
default 17
depends on SCHED_WORKQUEUE || LIB_USRWORK
---help---
SIGWORK is a non-standard signal used to wake up the internal NuttX
worker thread. This setting specifies the signal number that will be
used for SIGWORK. Default: 17
endmenu # Signal Numbers
endmenu # Signal Configuration
menu "POSIX Message Queue Options"
depends on !DISABLE_MQUEUE
config PREALLOC_MQ_MSGS
int "Number of pre-allocated messages"
default 32
---help---
The number of pre-allocated message structures. The system manages
a pool of preallocated message structures to minimize dynamic allocations
config MQ_MAXMSGSIZE
int "Maximum message size"
default 32
---help---
Message structures are allocated with a fixed payload size given by this
setting (does not include other message structure overhead.
endmenu # POSIX Message Queue Options
config MODULE
bool "Enable loadable OS modules"
default n
select LIBC_MODLIB
---help---
Enable support for loadable OS modules. Default: n
menu "Work queue support"
config SCHED_WORKQUEUE
# bool "Enable worker thread"
bool
default n
---help---
Create dedicated "worker" threads to handle delayed or asynchronous
processing.
config WQUEUE_NOTIFIER
bool "Generic work notifier"
default n
depends on SCHED_WORKQUEUE
---help---
Enable building of work queue notifier logic that will execute a
worker function an event occurs. This is is a general purpose
notifier, but was developed specifically to support poll() logic
where the poll must wait for an resources to become available.
config SCHED_HPWORK
bool "High priority (kernel) worker thread"
default n
select SCHED_WORKQUEUE
---help---
Create a dedicated high-priority "worker" thread to handle delayed
processing from interrupt handlers. This feature is required for
some drivers but, if there are no complaints, can be safely
disabled. The high priority worker thread also performs garbage
collection -- completing any delayed memory deallocations from
interrupt handlers. If the high-priority worker thread is disabled,
then that clean up will be performed either by (1) the low-priority
worker thread, if enabled, and if not (2) the IDLE thread instead
(which runs at the lowest of priority and may not be appropriate if
memory reclamation is of high priority)
For other, less-critical asynchronous or delayed process, the
low-priority worker thread is recommended.
if SCHED_HPWORK
config SCHED_HPNTHREADS
int "Number of high-priority worker threads"
default 1
---help---
This options selects multiple, high-priority threads. This is
essentially a "thread pool" that provides multi-threaded servicing
of the high-priority work queue. This breaks the serialization
of the "queue" (hence, it is no longer a queue at all).
CAUTION: Some drivers may use the work queue to serialize
operations. They may also use the high-priority work queue if it is
available. If there are multiple high-priority worker threads, then
this can result in the loss of that serialization. There may be
concurrent driver operations running on different HP threads and
this could lead to a failure. You may need to visit the use of the
HP work queue on your configuration is you select
CONFIG_SCHED_HPNTHREADS > 1
config SCHED_HPWORKPRIORITY
int "High priority worker thread priority"
default 224
---help---
The execution priority of the higher priority worker thread.
The higher priority worker thread is intended to serve as the
"bottom" half for device drivers. As a consequence it must run at
a very high, fixed priority. Typically, it should be the highest
priority thread in your system. Default: 224
For lower priority, application oriented worker thread support,
please consider enabling the lower priority work queue. The lower
priority work queue runs at a lower priority, of course, but has
the added advantage that it supports "priority inheritance" (if
PRIORITY_INHERITANCE is also selected): The priority of the lower
priority worker thread can then be adjusted to match the highest
priority client.
config SCHED_HPWORKSTACKSIZE
int "High priority worker thread stack size"
default 2048
---help---
The stack size allocated for the worker thread. Default: 2K.
endif # SCHED_HPWORK
config SCHED_LPWORK
bool "Low priority (kernel) worker thread"
default n
select SCHED_WORKQUEUE
---help---
If SCHED_LPWORK is defined then a lower-priority work queue will
be created. This lower priority work queue is better suited for
more extended, application oriented processing (such as file system
clean-up operations or asynchronous I/O)
if SCHED_LPWORK
config SCHED_LPNTHREADS
int "Number of low-priority worker threads"
default 1 if !FS_AIO
default 4 if FS_AIO
---help---
This options selects multiple, low-priority threads. This is
essentially a "thread pool" that provides multi-threaded servicing
of the low-priority work queue. This breaks the serialization
of the "queue" (hence, it is no longer a queue at all).
This options is required to support, for example, I/O operations
that stall waiting for input. If there is only a single thread,
then the entire low-priority queue processing stalls in such cases.
Such behavior is necessary to support asynchronous I/O, AIO (for
example).
CAUTION: Some drivers may use the work queue to serialize
operations. They may also use the low-priority work queue if it is
available. If there are multiple low-priority worker threads, then
this can result in the loss of that serialization. There may be
concurrent driver operations running on different LP threads and
this could lead to a failure. You may need to visit the use of the
LP work queue on your configuration is you select
CONFIG_SCHED_LPNTHREADS > 1
config SCHED_LPWORKPRIORITY
int "Low priority worker thread priority"
default 100
---help---
The minimum execution priority of the lower priority worker thread.
The lower priority worker thread is intended support application-
oriented functions. The lower priority work queue runs at a lower
priority, of course, but has the added advantage that it supports
"priority inheritance" (if PRIORITY_INHERITANCE is also selected):
The priority of the lower priority worker thread can then be
adjusted to match the highest priority client. Default: 100
NOTE: This priority inheritance feature is not automatic. The
lower priority worker thread will always a fixed priority unless
you implement logic that calls lpwork_boostpriority() to raise the
priority of the lower priority worker thread (typically called
before scheduling the work) and then call the matching
lpwork_restorepriority() when the work is completed (typically
called within the work handler at the completion of the work).
Currently, only the NuttX asynchronous I/O logic uses this dynamic
prioritization feature.
The higher priority worker thread, on the other hand, is intended
to serve as the "bottom" half for device drivers. As a consequence
it must run at a very high, fixed priority. Typically, it should
be the highest priority thread in your system.
config SCHED_LPWORKPRIOMAX
int "Low priority worker thread maximum priority"
default 176
depends on PRIORITY_INHERITANCE
---help---
The maximum execution priority of the lower priority worker thread.
The lower priority worker thread is intended support application-
oriented functions. The lower priority work queue runs at a lower
priority, of course, but has the added advantage that it supports
"priority inheritance" (if PRIORITY_INHERITANCE is also selected):
The priority of the lower priority worker thread can then be
adjusted to match the highest priority client.
The higher priority worker thread, on the other hand, is intended
to serve as the "bottom" half for device drivers. As a consequence
it must run at a very high, fixed priority. Typically, it should
be the highest priority thread in your system.
This value provides an upper limit on the priority of the lower
priority worker thread. This would be necessary, for example, if
the higher priority worker thread were to defer work to the lower
priority thread. Clearly, in such a case, you would want to limit
the maximum priority of the lower priority work thread. Default:
176
config SCHED_LPWORKSTACKSIZE
int "Low priority worker thread stack size"
default 2048
---help---
The stack size allocated for the lower priority worker thread. Default: 2K.
endif # SCHED_LPWORK
endmenu # Work Queue Support
menu "Stack and heap information"
config IDLETHREAD_STACKSIZE
int "Idle thread stack size"
default 1024
---help---
The size of the initial stack used by the IDLE thread. The IDLE thread
is the thread that (1) performs the initial boot of the system up to the
point where start-up application is spawned, and (2) there after is the
IDLE thread that executes only when there is no other thread ready to run.
config USERMAIN_STACKSIZE
int "Main thread stack size"
default 2048
---help---
The size of the stack to allocate for the user initialization thread
that is started as soon as the OS completes its initialization.
config PTHREAD_STACK_MIN
int "Minimum pthread stack size"
default 256
---help---
Minimum pthread stack size
config PTHREAD_STACK_DEFAULT
int "Default pthread stack size"
default 2048
---help---
Default pthread stack size
endmenu # Stack and heap information