2fc5237854
Master * cosmetics * stm32_hrtim: add helper macros * smps: cosmetics * stm32f33xxx_adc: injected channels support, fix some definitions, add interface to disable interrupts * stm32f334-dsico: beginning of lower-half driver for SMPS (buck-boost onboard converter) * nucleo-f334r8/highpri: missing ADC trigger configuration Approved-by: Gregory Nutt <gnutt@nuttx.org>
528 lines
18 KiB
ArmAsm
528 lines
18 KiB
ArmAsm
/************************************************************************************
|
|
* arch/arm/src/stm32/gnu/stm32_vectors.S
|
|
*
|
|
* Copyright (C) 2009-2013, 2015-2016 Gregory Nutt. All rights reserved.
|
|
* Author: Gregory Nutt <gnutt@nuttx.org>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name NuttX nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
************************************************************************************/
|
|
|
|
/************************************************************************************
|
|
* Included Files
|
|
************************************************************************************/
|
|
|
|
#include <nuttx/config.h>
|
|
|
|
#include <arch/irq.h>
|
|
|
|
#include "chip.h"
|
|
#include "exc_return.h"
|
|
|
|
/************************************************************************************
|
|
* Configuration
|
|
************************************************************************************/
|
|
|
|
/************************************************************************************
|
|
* Pre-processor Definitions
|
|
************************************************************************************/
|
|
/* Configuration ********************************************************************/
|
|
|
|
#ifdef CONFIG_ARCH_HIPRI_INTERRUPT
|
|
/* In kernel mode without an interrupt stack, this interrupt handler will set the
|
|
* MSP to the stack pointer of the interrupted thread. If the interrupted thread
|
|
* was a privileged thread, that will be the MSP otherwise it will be the PSP. If
|
|
* the PSP is used, then the value of the MSP will be invalid when the interrupt
|
|
* handler returns because it will be a pointer to an old position in the
|
|
* unprivileged stack. Then when the high priority interrupt occurs and uses this
|
|
* stale MSP, there will most likely be a system failure.
|
|
*
|
|
* If the interrupt stack is selected, on the other hand, then the interrupt
|
|
* handler will always set the MSP to the interrupt stack. So when the high
|
|
* priority interrupt occurs, it will either use the MSP of the last privileged
|
|
* thread to run or, in the case of the nested interrupt, the interrupt stack if
|
|
* no privileged task has run.
|
|
*/
|
|
|
|
# if defined(CONFIG_BUILD_PROTECTED) && CONFIG_ARCH_INTERRUPTSTACK < 4
|
|
# error Interrupt stack must be used with high priority interrupts in kernel mode
|
|
# endif
|
|
|
|
/* Use the BASEPRI to control interrupts is required if nested, high
|
|
* priority interrupts are supported.
|
|
*/
|
|
|
|
# ifndef CONFIG_ARMV7M_USEBASEPRI
|
|
# error CONFIG_ARMV7M_USEBASEPRI must be used with CONFIG_ARCH_HIPRI_INTERRUPT
|
|
# endif
|
|
#endif
|
|
|
|
/* Memory Map ***********************************************************************/
|
|
/*
|
|
* 0x0800:0000 - Beginning of FLASH. Address of vectors (if not using bootloader)
|
|
* Mapped to address 0x0000:0000 at boot time.
|
|
* 0x0800:3000 - Address of vectors if using bootloader
|
|
* 0x0803:ffff - End of flash
|
|
* 0x2000:0000 - Start of SRAM and start of .data (_sdata)
|
|
* - End of .data (_edata) abd start of .bss (_sbss)
|
|
* - End of .bss (_ebss) and bottom of idle stack
|
|
* - _ebss + CONFIG_IDLETHREAD_STACKSIZE = end of idle stack, start of heap
|
|
* 0x2000:ffff - End of SRAM and end of heap
|
|
*/
|
|
|
|
#define IDLE_STACK (_ebss+CONFIG_IDLETHREAD_STACKSIZE-4)
|
|
#define HEAP_BASE (_ebss+CONFIG_IDLETHREAD_STACKSIZE)
|
|
|
|
/************************************************************************************
|
|
* Public Symbols
|
|
************************************************************************************/
|
|
|
|
.syntax unified
|
|
.thumb
|
|
.file "stm32_vectors.S"
|
|
|
|
/* Check if common ARMv7 interrupt vectoring is used (see arch/arm/src/armv7-m/up_vectors.c) */
|
|
|
|
#ifndef CONFIG_ARMV7M_CMNVECTOR
|
|
|
|
.globl __start
|
|
|
|
/************************************************************************************
|
|
* Macros
|
|
************************************************************************************/
|
|
|
|
/* On entry into an IRQ, the hardware automatically saves the xPSR, PC, LR, R12, R0-R3
|
|
* registers on the stack, then branches to an instantantiation of the following
|
|
* macro. This macro simply loads the IRQ number into R0, then jumps to the common
|
|
* IRQ handling logic.
|
|
*/
|
|
|
|
.macro HANDLER, label, irqno
|
|
.thumb_func
|
|
\label:
|
|
mov r0, #\irqno
|
|
b exception_common
|
|
.endm
|
|
|
|
/************************************************************************************
|
|
* Vectors
|
|
************************************************************************************/
|
|
|
|
.section .vectors, "ax"
|
|
.code 16
|
|
.align 2
|
|
.globl _vectors
|
|
.type _vectors, function
|
|
|
|
_vectors:
|
|
|
|
/* Processor Exceptions */
|
|
|
|
.word IDLE_STACK /* Vector 0: Reset stack pointer */
|
|
.word __start /* Vector 1: Reset vector */
|
|
.word stm32_nmi /* Vector 2: Non-Maskable Interrupt (NMI) */
|
|
.word stm32_hardfault /* Vector 3: Hard fault */
|
|
.word stm32_mpu /* Vector 4: Memory management (MPU) */
|
|
.word stm32_busfault /* Vector 5: Bus fault */
|
|
.word stm32_usagefault /* Vector 6: Usage fault */
|
|
.word stm32_reserved /* Vector 7: Reserved */
|
|
.word stm32_reserved /* Vector 8: Reserved */
|
|
.word stm32_reserved /* Vector 9: Reserved */
|
|
.word stm32_reserved /* Vector 10: Reserved */
|
|
.word stm32_svcall /* Vector 11: SVC call */
|
|
.word stm32_dbgmonitor /* Vector 12: Debug monitor */
|
|
.word stm32_reserved /* Vector 13: Reserved */
|
|
.word stm32_pendsv /* Vector 14: Pendable system service request */
|
|
.word stm32_systick /* Vector 15: System tick */
|
|
|
|
/* External Interrupts */
|
|
|
|
#if !defined(CONFIG_STM32_NOEXT_VECTORS)
|
|
#undef VECTOR
|
|
#define VECTOR(l,i) .word l
|
|
|
|
#undef UNUSED
|
|
#define UNUSED(i) .word stm32_reserved
|
|
|
|
#if defined(CONFIG_STM32_STM32L15XX)
|
|
# include "chip/stm32l15xxx_vectors.h"
|
|
#elif defined(CONFIG_STM32_STM32F10XX)
|
|
# include "chip/stm32f10xxx_vectors.h"
|
|
#elif defined(CONFIG_STM32_STM32F20XX)
|
|
# include "chip/stm32f20xxx_vectors.h"
|
|
#elif defined(CONFIG_STM32_STM32F30XX)
|
|
# include "chip/stm32f30xxx_vectors.h"
|
|
#elif defined(CONFIG_STM32_STM32F33XX)
|
|
# include "chip/stm32f33xxx_vectors.h"
|
|
#elif defined(CONFIG_STM32_STM32F37XX)
|
|
# include "chip/stm32f37xxx_vectors.h"
|
|
#elif defined(CONFIG_STM32_STM32F4XXX)
|
|
# include "chip/stm32f40xxx_vectors.h"
|
|
#else
|
|
# error "No vectors for STM32 chip"
|
|
#endif
|
|
#endif /* CONFIG_STM32_NOEXT_VECTORS */
|
|
.size _vectors, .-_vectors
|
|
|
|
/************************************************************************************
|
|
* .text
|
|
************************************************************************************/
|
|
|
|
.text
|
|
.type handlers, function
|
|
.thumb_func
|
|
handlers:
|
|
HANDLER stm32_reserved, STM32_IRQ_RESERVED /* Unexpected/reserved vector */
|
|
HANDLER stm32_nmi, STM32_IRQ_NMI /* Vector 2: Non-Maskable Interrupt (NMI) */
|
|
HANDLER stm32_hardfault, STM32_IRQ_HARDFAULT /* Vector 3: Hard fault */
|
|
HANDLER stm32_mpu, STM32_IRQ_MEMFAULT /* Vector 4: Memory management (MPU) */
|
|
HANDLER stm32_busfault, STM32_IRQ_BUSFAULT /* Vector 5: Bus fault */
|
|
HANDLER stm32_usagefault, STM32_IRQ_USAGEFAULT /* Vector 6: Usage fault */
|
|
HANDLER stm32_svcall, STM32_IRQ_SVCALL /* Vector 11: SVC call */
|
|
HANDLER stm32_dbgmonitor, STM32_IRQ_DBGMONITOR /* Vector 12: Debug Monitor */
|
|
HANDLER stm32_pendsv, STM32_IRQ_PENDSV /* Vector 14: Penable system service request */
|
|
HANDLER stm32_systick, STM32_IRQ_SYSTICK /* Vector 15: System tick */
|
|
|
|
#if !defined(CONFIG_STM32_NOEXT_VECTORS)
|
|
|
|
#undef VECTOR
|
|
#define VECTOR(l,i) HANDLER l, i
|
|
|
|
#undef UNUSED
|
|
#define UNUSED(i)
|
|
|
|
#if defined(CONFIG_STM32_STM32L15XX)
|
|
# include "chip/stm32l15xxx_vectors.h"
|
|
#elif defined(CONFIG_STM32_STM32F10XX)
|
|
# include "chip/stm32f10xxx_vectors.h"
|
|
#elif defined(CONFIG_STM32_STM32F20XX)
|
|
# include "chip/stm32f20xxx_vectors.h"
|
|
#elif defined(CONFIG_STM32_STM32F30XX)
|
|
# include "chip/stm32f30xxx_vectors.h"
|
|
#elif defined(CONFIG_STM32_STM32F33XX)
|
|
# include "chip/stm32f33xxx_vectors.h"
|
|
#elif defined(CONFIG_STM32_STM32F37XX)
|
|
# include "chip/stm32f37xxx_vectors.h"
|
|
#elif defined(CONFIG_STM32_STM32F4XXX)
|
|
# include "chip/stm32f40xxx_vectors.h"
|
|
#else
|
|
# error "No handlers for STM32 chip"
|
|
#endif
|
|
|
|
#endif /* CONFIG_STM32_NOEXT_VECTORS */
|
|
|
|
/* Common IRQ handling logic. On entry here, the return stack is on either
|
|
* the PSP or the MSP and looks like the following:
|
|
*
|
|
* REG_XPSR
|
|
* REG_R15
|
|
* REG_R14
|
|
* REG_R12
|
|
* REG_R3
|
|
* REG_R2
|
|
* REG_R1
|
|
* MSP->REG_R0
|
|
*
|
|
* And
|
|
* R0 contains the IRQ number
|
|
* R14 Contains the EXC_RETURN value
|
|
* We are in handler mode and the current SP is the MSP
|
|
*/
|
|
|
|
.globl exception_common
|
|
.type exception_common, function
|
|
|
|
exception_common:
|
|
|
|
/* Complete the context save */
|
|
|
|
#ifdef CONFIG_BUILD_PROTECTED
|
|
/* The EXC_RETURN value will be 0xfffffff9 (privileged thread) or 0xfffffff1
|
|
* (handler mode) if the stack is on the MSP. It can only be on the PSP if
|
|
* EXC_RETURN is 0xfffffffd (unprivileged thread)
|
|
*/
|
|
|
|
tst r14, #EXC_RETURN_PROCESS_STACK /* nonzero if context on process stack */
|
|
beq 1f /* Branch if context already on the MSP */
|
|
mrs r1, psp /* R1=The process stack pointer (PSP) */
|
|
mov sp, r1 /* Set the MSP to the PSP */
|
|
|
|
1:
|
|
#endif
|
|
|
|
/* r1 holds the value of the stack pointer AFTER the exception handling logic
|
|
* pushed the various registers onto the stack. Get r2 = the value of the
|
|
* stack pointer BEFORE the interrupt modified it.
|
|
*/
|
|
|
|
mov r2, sp /* R2=Copy of the main/process stack pointer */
|
|
add r2, #HW_XCPT_SIZE /* R2=MSP/PSP before the interrupt was taken */
|
|
#ifdef CONFIG_ARMV7M_USEBASEPRI
|
|
mrs r3, basepri /* R3=Current BASEPRI setting */
|
|
#else
|
|
mrs r3, primask /* R3=Current PRIMASK setting */
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARCH_FPU
|
|
/* Skip over the block of memory reserved for floating pointer register save.
|
|
* Lazy FPU register saving is used. FPU registers will be saved in this
|
|
* block only if a context switch occurs (this means, of course, that the FPU
|
|
* cannot be used in interrupt processing).
|
|
*/
|
|
|
|
sub sp, #(4*SW_FPU_REGS)
|
|
#endif
|
|
|
|
/* Save the remaining registers on the stack after the registers pushed
|
|
* by the exception handling logic. r2=SP and r3=primask or basepri, r4-r11,
|
|
* r14=register values.
|
|
*/
|
|
|
|
#ifdef CONFIG_BUILD_PROTECTED
|
|
stmdb sp!, {r2-r11,r14} /* Save the remaining registers plus the SP value */
|
|
#else
|
|
stmdb sp!, {r2-r11} /* Save the remaining registers plus the SP value */
|
|
#endif
|
|
|
|
#ifndef CONFIG_ARCH_HIPRI_INTERRUPT
|
|
/* Disable interrupts, select the stack to use for interrupt handling
|
|
* and call up_doirq to handle the interrupt
|
|
*/
|
|
|
|
cpsid i /* Disable further interrupts */
|
|
|
|
#else
|
|
/* Set the BASEPRI register so that further normal interrupts will be
|
|
* masked. Nested, high priority may still occur, however.
|
|
*/
|
|
|
|
mov r2, #NVIC_SYSH_DISABLE_PRIORITY
|
|
msr basepri, r2 /* Set the BASEPRI */
|
|
#endif
|
|
|
|
/* There are two arguments to up_doirq:
|
|
*
|
|
* R0 = The IRQ number
|
|
* R1 = The top of the stack points to the saved state
|
|
*/
|
|
|
|
mov r1, sp
|
|
|
|
/* Also save the top of the stack in a preserved register */
|
|
|
|
mov r4, sp
|
|
|
|
#if CONFIG_ARCH_INTERRUPTSTACK > 7
|
|
/* If CONFIG_ARCH_INTERRUPTSTACK is defined, we will set the MSP to use
|
|
* a special special interrupt stack pointer. The way that this is done
|
|
* here prohibits nested interrupts without some additional logic!
|
|
*/
|
|
|
|
ldr sp, =g_intstackbase
|
|
|
|
#else
|
|
/* Otherwise, we will re-use the interrupted thread's stack. That may
|
|
* mean using either MSP or PSP stack for interrupt level processing (in
|
|
* kernel mode).
|
|
*/
|
|
|
|
bic r2, r4, #7 /* Get the stack pointer with 8-byte alignment */
|
|
mov sp, r2 /* Instantiate the aligned stack */
|
|
|
|
#endif
|
|
|
|
bl up_doirq /* R0=IRQ, R1=register save (msp) */
|
|
mov r1, r4 /* Recover R1=main stack pointer */
|
|
|
|
/* On return from up_doirq, R0 will hold a pointer to register context
|
|
* array to use for the interrupt return. If that return value is the same
|
|
* as current stack pointer, then things are relatively easy.
|
|
*/
|
|
|
|
cmp r0, r1 /* Context switch? */
|
|
beq 2f /* Branch if no context switch */
|
|
|
|
/* We are returning with a pending context switch.
|
|
*
|
|
* If the FPU is enabled, then we will need to restore FPU registers.
|
|
* This is not done in normal interrupt save/restore because the cost
|
|
* is prohibitive. This is only done when switching contexts. A
|
|
* consequence of this is that floating point operations may not be
|
|
* performed in interrupt handling logic.
|
|
*
|
|
* Here:
|
|
* r0 = Address of the register save area
|
|
*
|
|
* NOTE: It is a requirement that up_restorefpu() preserve the value of
|
|
* r0!
|
|
*/
|
|
|
|
#ifdef CONFIG_ARCH_FPU
|
|
bl up_restorefpu /* Restore the FPU registers */
|
|
#endif
|
|
|
|
/* We are returning with a pending context switch. This case is different
|
|
* because in this case, the register save structure does not lie in the
|
|
* stack but, rather, within a TCB structure. We'll have to copy some
|
|
* values to the stack.
|
|
*/
|
|
|
|
add r1, r0, #SW_XCPT_SIZE /* R1=Address of HW save area in reg array */
|
|
ldmia r1, {r4-r11} /* Fetch eight registers in HW save area */
|
|
ldr r1, [r0, #(4*REG_SP)] /* R1=Value of SP before interrupt */
|
|
stmdb r1!, {r4-r11} /* Store eight registers in HW save area */
|
|
#ifdef CONFIG_BUILD_PROTECTED
|
|
ldmia r0, {r2-r11,r14} /* Recover R4-R11, r14 + 2 temp values */
|
|
#else
|
|
ldmia r0, {r2-r11} /* Recover R4-R11 + 2 temp values */
|
|
#endif
|
|
b 3f /* Re-join common logic */
|
|
|
|
/* We are returning with no context switch. We simply need to "unwind"
|
|
* the same stack frame that we created
|
|
*
|
|
* Here:
|
|
* r1 = Address of the return stack (same as r0)
|
|
*/
|
|
|
|
2:
|
|
#ifdef CONFIG_BUILD_PROTECTED
|
|
ldmia r1!, {r2-r11,r14} /* Recover R4-R11, r14 + 2 temp values */
|
|
#else
|
|
ldmia r1!, {r2-r11} /* Recover R4-R11 + 2 temp values */
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARCH_FPU
|
|
/* Skip over the block of memory reserved for floating pointer register
|
|
* save. Then R1 is the address of the HW save area
|
|
*/
|
|
|
|
add r1, #(4*SW_FPU_REGS)
|
|
#endif
|
|
|
|
/* Set up to return from the exception
|
|
*
|
|
* Here:
|
|
* r1 = Address on the target thread's stack position at the start of
|
|
* the registers saved by hardware
|
|
* r3 = primask or basepri
|
|
* r4-r11 = restored register values
|
|
*/
|
|
|
|
3:
|
|
|
|
#ifdef CONFIG_BUILD_PROTECTED
|
|
/* The EXC_RETURN value will be 0xfffffff9 (privileged thread) or 0xfffffff1
|
|
* (handler mode) if the stack is on the MSP. It can only be on the PSP if
|
|
* EXC_RETURN is 0xfffffffd (unprivileged thread)
|
|
*/
|
|
|
|
mrs r2, control /* R2=Contents of the control register */
|
|
tst r14, #EXC_RETURN_PROCESS_STACK /* nonzero if context on process stack */
|
|
beq 4f /* Branch if privileged */
|
|
|
|
orr r2, r2, #1 /* Unprivileged mode */
|
|
msr psp, r1 /* R1=The process stack pointer */
|
|
b 5f
|
|
4:
|
|
bic r2, r2, #1 /* Privileged mode */
|
|
msr msp, r1 /* R1=The main stack pointer */
|
|
5:
|
|
msr control, r2 /* Save the updated control register */
|
|
#else
|
|
msr msp, r1 /* Recover the return MSP value */
|
|
|
|
/* Preload r14 with the special return value first (so that the return
|
|
* actually occurs with interrupts still disabled).
|
|
*/
|
|
|
|
ldr r14, =EXC_RETURN_PRIVTHR /* Load the special value */
|
|
#endif
|
|
|
|
/* Restore the interrupt state */
|
|
|
|
#ifdef CONFIG_ARMV7M_USEBASEPRI
|
|
msr basepri, r3 /* Restore interrupts priority masking */
|
|
#ifndef CONFIG_ARCH_HIPRI_INTERRUPT
|
|
cpsie i /* Re-enable interrupts */
|
|
#endif
|
|
|
|
#else
|
|
msr primask, r3 /* Restore interrupts */
|
|
#endif
|
|
|
|
/* Always return with R14 containing the special value that will: (1)
|
|
* return to thread mode, and (2) continue to use the MSP
|
|
*/
|
|
|
|
bx r14 /* And return */
|
|
.size handlers, .-handlers
|
|
|
|
/************************************************************************************
|
|
* Name: g_intstackalloc/g_intstackbase
|
|
*
|
|
* Description:
|
|
* Shouldn't happen
|
|
*
|
|
************************************************************************************/
|
|
|
|
#if CONFIG_ARCH_INTERRUPTSTACK > 7
|
|
.bss
|
|
.global g_intstackalloc
|
|
.global g_intstackbase
|
|
.align 8
|
|
g_intstackalloc:
|
|
.skip ((CONFIG_ARCH_INTERRUPTSTACK + 4) & ~7)
|
|
g_intstackbase:
|
|
.size g_intstackalloc, .-g_intstackalloc
|
|
#endif
|
|
|
|
#endif /* CONFIG_ARMV7M_CMNVECTOR */
|
|
|
|
/************************************************************************************
|
|
* .rodata
|
|
************************************************************************************/
|
|
|
|
.section .rodata, "a"
|
|
|
|
/* Variables: _sbss is the start of the BSS region (see ld.script) _ebss is the end
|
|
* of the BSS regsion (see ld.script). The idle task stack starts at the end of BSS
|
|
* and is of size CONFIG_IDLETHREAD_STACKSIZE. The IDLE thread is the thread that
|
|
* the system boots on and, eventually, becomes the idle, do nothing task that runs
|
|
* only when there is nothing else to run. The heap continues from there until the
|
|
* end of memory. See g_idle_topstack below.
|
|
*/
|
|
|
|
.globl g_idle_topstack
|
|
.type g_idle_topstack, object
|
|
g_idle_topstack:
|
|
.word HEAP_BASE
|
|
.size g_idle_topstack, .-g_idle_topstack
|
|
|
|
.end
|