nuttx/configs/eagle100
patacongo 10784ad522 Prep for 0.4.7 release
git-svn-id: svn://svn.code.sf.net/p/nuttx/code/trunk@1837 42af7a65-404d-4744-a932-0658087f49c3
2009-05-29 15:36:48 +00:00
..
httpd Prep for 0.4.7 release 2009-05-29 15:36:48 +00:00
include Debug microSD CS 2009-05-24 20:40:11 +00:00
nettest Prep for 0.4.7 release 2009-05-29 15:36:48 +00:00
nsh Prep for 0.4.7 release 2009-05-29 15:36:48 +00:00
ostest Prep for 0.4.7 release 2009-05-29 15:36:48 +00:00
src Integrating new MMC/SD design 2009-05-26 23:45:45 +00:00
README.txt Add support for CodeSourcery and devkitARM toolchains 2009-05-28 20:36:04 +00:00

README
^^^^^^

References:
^^^^^^^^^^

  Micromint: http://www.micromint.com/
  Luminary:  http://www.luminarymicro.com/

Development Environment
^^^^^^^^^^^^^^^^^^^^^^^

  Either Linux or Cygwin on Windows can be used for the development environment.
  The source has been built only using the GNU toolchain (see below).  Other
  toolchains will likely cause problems. Testing was performed using the Cygwin
  environment because the Luminary FLASH programming application was used for
  writing to FLASH and this application works only under Windows.

GNU Toolchain Options
^^^^^^^^^^^^^^^^^^^^^

  The NuttX make system has been modified to support the following different
  toolchain options.

  1. The CodeSourcery GNU toolchain,
  2. The devkitARM GNU toolchain, or
  3. The NuttX buildroot Toolchain (see below).

  All testing has been conducted using the NuttX buildroot toolchain.  However,
  the make system is setup to default to use the devkitARM toolchain.  To use
  the CodeSource GNU toolchain, you simply need to build the system as follows:

     make                         # Will build for the devkitARM toolchain
     make CROSSDEV=arm-eabi-      # Will build for the devkitARM toolchain
     make CROSSDEV=arm-none-eabi- # Will build for the CodeSourcery toolchain
     make CROSSDEV=arm-elf-       # Will build for the NuttX buildroot toolchain

  Of course, hard coding this CROSS_COMPILE value in Make.defs file will save
  some repetitive typing.

NuttX buildroot Toolchain
^^^^^^^^^^^^^^^^^^^^^^^^^

  A GNU GCC-based toolchain is assumed.  The files */setenv.sh should
  be modified to point to the correct path to the Cortex-M3 GCC toolchain (if
  different from the default in your PATH variable).

  If you have no Cortex-M3 toolchain, one can be downloaded from the NuttX
  SourceForge download site (https://sourceforge.net/project/showfiles.php?group_id=189573).

  1. You must have already configured Nuttx in <some-dir>/nuttx.

     cd tools
     ./configure.sh eagle100/<sub-dir>

  2. Download the latest buildroot package into <some-dir>

  3. unpack the buildroot tarball.  The resulting directory may
     have versioning information on it like buildroot-x.y.z.  If so,
     rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.

  4. cd <some-dir>/buildroot

  5. cp configs/cortexm3-defconfig-4.3.3 .config

  6. make oldconfig

  7. make

  8. Edit setenv.h, if necessary, so that the PATH variable includes
     the path to the newly built binaries.

  See the file configs/README.txt in the buildroot source tree.  That has more
  detailed PLUS some special instructions that you will need to follow if you are
  building a Cortex-M3 toolchain for Cygwin under Windows.

Ethernet-Bootloader
^^^^^^^^^^^^^^^^^^^

  Here are some notes about using the Luminary Ethernet boot-loader built
  into the Eagle-100 board.

  Built-In Application:

  - The board has no fixed IP address but uses DHCP to get an address.
    I used a D-link router; I can use a web browser to surf to the D-link
    web page to get the address assigned by 

  - Then you can use this IP address in your browser to surf to the Eagle-100
    board.  It presents several interesting pages -- the most important is
    the page called "Firmware Update".  That page includes instructions on
    how to download code to the Eagle-100.

  - After you burn the first program, you lose this application.  Then you
    will probably be better off connected directly to the Eagle-100 board
    or through a switch (The router caused problems for me during downloads).

  Using the Ethernet Bootloader:

  - You will need the "LM Flash Programmer application".  You can get that
    program from the Luminary web site.  There is a link on the LM3S6918 page.

  - Is there any documentation for using the bootloader?  Yes and No:  There
    is an application note covering the bootloader on the Luminary site, but
    it is not very informative.  The Eagle100 User's Manual has the best
    information.

  - Are there any special things I have to do in my code, other than setting 
    the origin to 0x0000:2000 (APP_START_ADDRESS)?  No.  The bootloader assumes
    that you have a vector table at that address .  The bootloader does the
    following each time it boots (after you have downloaded the first valid
    application):

    o The bootloader sets the vector table register to the APP_START_ADDRESS,
    o It sets the stack pointer to the address at APP_START_ADDRESS, and then
    o Jumps to the address at APP_START_ADDRESS+4.

  - You can force the bootloader to skip starting the application and stay
    in the update mode.  You will need to do this in order to download a new
    application.  You force the update mode by holding the user button on the
    Eagle-100 board while resetting the board.  The user button is GPIOA, pin 6
    (call FORCED_UPDATE_PIN in the bootloader code).

  - Note 1:  I had to remove my D-Link router from the configuration in order
    to use the LM Flash Programmer (the Bootloader issues BOOTP requests to
    communicate with the LM Flash Programmer, my router was responding to
    these BOOTP requests and hosing the download).  It is safer to connect
    via a switch or via an Ethernet switch.

  - Note 2:  You don't need the router's DHCPD server in the download
    configuration; the Luminary Flash Programmer has the capability of
    temporarily assigning the IP address to the Eagle-100 via BOOTP.

Eagle100-specific Configuration Options
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

	CONFIG_ARCH - Identifies the arch/ subdirectory.  This should
	   be set to:

	   CONFIG_ARCH=arm

	CONFIG_ARCH_family - For use in C code:

	   CONFIG_ARCH_ARM=y

	CONFIG_ARCH_architecture - For use in C code:

	   CONFIG_ARCH_CORTEXM3=y

	CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory

	   CONFIG_ARCH_CHIP=lm3s

	CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
	   chip:

	   CONFIG_ARCH_CHIP_LM3S6918

	CONFIG_ARCH_BOARD - Identifies the configs subdirectory and
	   hence, the board that supports the particular chip or SoC.

	   CONFIG_ARCH_BOARD=eagle100 (for the MicroMint Eagle-100 development board)

	CONFIG_ARCH_BOARD_name - For use in C code

	   CONFIG_ARCH_BOARD_EAGLE100

	CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
	   of delay loops

	CONFIG_ENDIAN_BIG - define if big endian (default is little
	   endian)

	CONFIG_DRAM_SIZE - Describes the installed DRAM (SRAM in this case):

	   CONFIG_DRAM_SIZE=0x00010000 (64Kb)

	CONFIG_DRAM_START - The start address of installed DRAM

	   CONFIG_DRAM_START=0x20000000

	CONFIG_DRAM_END - Last address+1 of installed RAM

	   CONFIG_DRAM_END=(CONFIG_DRAM_START+CONFIG_DRAM_SIZE)

	CONFIG_ARCH_IRQPRIO - The LM3S6918 supports interrupt prioritization

	   CONFIG_ARCH_IRQPRIO=y

	CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that
	   have LEDs

	CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
	   stack. If defined, this symbol is the size of the interrupt
	    stack in bytes.  If not defined, the user task stacks will be
	  used during interrupt handling.

	CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions

	CONFIG_ARCH_BOOTLOADER - Configure to use the MicroMint Eagle-100
	   Ethernet bootloader.

	CONFIG_ARCH_LEDS -  Use LEDs to show state. Unique to board architecture.

	CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that
	   cause a 100 second delay during boot-up.  This 100 second delay
	   serves no purpose other than it allows you to calibratre
	   CONFIG_ARCH_LOOPSPERMSEC.  You simply use a stop watch to measure
	   the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until
	   the delay actually is 100 seconds.

  LM3S6818 specific device driver settings

	CONFIG_UARTn_SERIAL_CONSOLE - selects the UARTn for the
	   console and ttys0 (default is the UART0).
	CONFIG_UARTn_RXBUFSIZE - Characters are buffered as received.
	   This specific the size of the receive buffer
	CONFIG_UARTn_TXBUFSIZE - Characters are buffered before
	   being sent.  This specific the size of the transmit buffer
	CONFIG_UARTn_BAUD - The configure BAUD of the UART.  Must be
	CONFIG_UARTn_BITS - The number of bits.  Must be either 7 or 8.
	CONFIG_UARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
	CONFIG_UARTn_2STOP - Two stop bits

	CONFIG_SSI0_DISABLE - Select to disable support for SSI0
	CONFIG_SSI1_DISABLE - Select to disable support for SSI1
	CONFIG_SSI_POLLWAIT - Select to disable interrupt driven SSI support.
	  Poll-waiting is recommended if the interrupt rate would be to
	  high in the interrupt driven case.
	CONFIG_SSI_TXLIMIT - Write this many words to the Tx FIFO before
	  emptying the Rx FIFO.  If the SPI frequency is high and this
	  value is large, then larger values of this setting may cause
	  Rx FIFO overrun errors.  Default: half of the Tx FIFO size (4).

	CONFIG_LM3S_ETHERNET - This must be set (along with CONFIG_NET)
	  to build the LM3S Ethernet driver
	CONFIG_LM3S_ETHLEDS - Enable to use Ethernet LEDs on the board.
	CONFIG_LM3S_BOARDMAC - If the board-specific logic can provide
	  a MAC address (via lm3s_ethernetmac()), then this should be selected.
	CONFIG_LM3S_ETHHDUPLEX - Set to force half duplex operation
	CONFIG_LM3S_ETHNOAUTOCRC - Set to suppress auto-CRC generation
	CONFIG_LM3S_ETHNOPAD - Set to suppress Tx padding
	CONFIG_LM3S_MULTICAST - Set to enable multicast frames
	CONFIG_LM3S_PROMISCUOUS - Set to enable promiscuous mode
	CONFIG_LM3S_BADCRC - Set to enable bad CRC rejection.

Configurations
^^^^^^^^^^^^^^

Each Eagle-100 configuration is maintained in a sudirectory and
can be selected as follow:

	cd tools
	./configure.sh eagle100/<subdir>
	cd -
	. ./setenv.sh

Where <subdir> is one of the following:

  nettest:
    This configuration directory may be used to enable networking using the
    LM3S6918's Ethernet controller. It uses examples/nettest to excercise the
    TCP/IP network.

  httpd:
    This builds the uIP web server example using the examples/uip application
    (for execution from FLASH). See examples/README.txt for information
    about ostest.

  nsh:
    Configures the NuttShell (nsh) located at examples/nsh.  The
    Configuration enables both the serial and telnetd NSH interfaces.

  ostest:
    This configuration directory, performs a simple OS test using
    examples/ostest.

By default, all of these examples are built to be used with the Luminary
Ethernet Bootloader (you can change the ld.script file in any of these
sub-directories to change that configuration).