nuttx/libs/libc/machine/xtensa/arch_strcmp.S
yangdongdong 1956385a7d libs/libc: Breakdown LIBC_BUILD_STRING into specific string operations macro.
Provide a way to only customize specific string operations,
such as for memcpy with the DMA capability by ROM.

Signed-off-by: yangdongdong <yangdongdong@xiaomi.com>
2023-08-29 22:55:18 +08:00

768 lines
22 KiB
ArmAsm

/****************************************************************************
* libs/libc/machine/xtensa/arch_strcmp.S
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include "xtensa_asm.h"
#include <arch/chip/core-isa.h>
#include <arch/xtensa/xtensa_abi.h>
#include "libc.h"
#ifdef LIBC_BUILD_STRCMP
/****************************************************************************
* Pre-processor Macros
****************************************************************************/
#define MASK4 0x40404040
/****************************************************************************
* Public Functions
****************************************************************************/
.section .text
.begin schedule
.align 4
.literal_position
.global strcmp
.type strcmp,@function
.align 4
strcmp:
#if XCHAL_HAVE_LOOPS && XCHAL_HAVE_DENSITY && !XCHAL_HAVE_BE && XCHAL_HAVE_FLIX3
/* Fast version for FLIX3 Little Endian */
ENTRY(16)
/* a2 = s1, a3 = s2 */
l8ui a8, a2, 0 # byte 0 from s1
l8ui a9, a3, 0 # byte 0 from s2
movi a10, 3 # mask
movi a5, 0xfffffffc
or a11, a2, a3
movi a4, MASK0 # mask for byte 0
movi a7, MASK4
addi a3, a3, -8
addi a2, a2, -8
and a5, a5, a2
bne.w18 a8, a9, .Lretdiff
l32i a8, a5, 8 # get word from aligned variant of s1
bany.w18 a11, a10, .Lnot_aligned
/* s1 is word-aligned; s2 is word-aligned.
If the zero-overhead loop option is available, use an (almost)
infinite zero-overhead loop with conditional exits so we only pay
for taken branches when exiting the loop. */
/* New algorithm, relying on the fact that all normal ASCII is between
32 and 127.
Rather than check all bytes for zero:
Take one word (4 bytes). Call it w1.
Shift w1 left by one into w1'.
Or w1 and w1'. For all normal ASCII bit 6 will be 1; for zero it won't.
Check that all 4 bit 6's (one for each byte) are one:
If they are, we are definitely not done.
If they are not, we are probably done, but need to check for zero. */
.Laligned:
/* Loop forever */
1:
loop a0, .Laligned_done
/* First unrolled loop body. */
l32i a9, a3, 8 # get word from s2
addi a3, a3, 8 # advance s2 pointer
slli a5, a8, 1
or a10, a8, a5
{l32i a11, a2, 12 # get word from s1+4
bne.w18 a8, a9, .Lwne2}
l32i a9, a3, 4 # get word from s2+4
bnall.w18 a10, a7, .Lprobeq
/* Second unrolled loop body. */
slli a5, a11, 1
or a10, a11, a5
addi a2, a2, 8 # advance s1 pointer
mov a8, a11
bne.w18 a11, a9, .Lwne2
l32i a8, a2, 8 # get word from s1
bnall.w18 a10, a7, .Lprobeq2
.Laligned_done:
l32i a8, a2, 8 # get word from s1
j 1b
.Lnot_aligned:
xor a11, a2, a3 # compare low two bits of s1 and s2
bany a11, a10, .Lunaligned # if they have different alignment
/* s1/s2 are not word-aligned. */
movi a5, 0xfffffffc
addi a2, a2, 1 # advance s1
beqz a9, .Leq # bytes equal, if zero, strings are equal
addi a3, a3, 1 # advance s2
and a6, a2, a5
l32i a8, a6, 8 # get word from s1
bnone a2, a10, .Laligned # if s1/s2 now aligned
l8ui a8, a2, 8 # byte 1 from s1
l8ui a9, a3, 8 # byte 1 from s2
addi a2, a2, 1 # advance s1
bne a8, a9, .Lretdiff # if different, return difference
beqz a8, .Leq # bytes equal, if zero, strings are equal
addi a3, a3, 1 # advance s2
and a6, a2, a5
l32i a8, a6, 8 # get word from s1
bnone a2, a10, .Laligned # if s1/s2 now aligned
l8ui a8, a2, 8 # byte 2 from s1
l8ui a9, a3, 8 # byte 2 from s2
addi a2, a2, 1 # advance s1
bne a8, a9, .Lretdiff # if different, return difference
beqz a8, .Leq # bytes equal, if zero, strings are equal
addi a3, a3, 1 # advance s2
l32i a8, a2, 8 # get word from s1
j .Laligned
/* s1 and s2 have different alignment.
If the zero-overhead loop option is available, use an (almost)
infinite zero-overhead loop with conditional exits so we only pay
for taken branches when exiting the loop.
Note: It is important for this unaligned case to come before the
code for aligned strings, because otherwise some of the branches
above cannot reach and have to be transformed to branches around
jumps. The unaligned code is smaller and the branches can reach
over it. */
.Lunaligned:
movi.n a8, 0 # set up for the maximum loop count
loop a8, .Lretdiff # loop forever (almost anyway)
l8ui a8, a2, 8
l8ui a9, a3, 8
addi a2, a2, 1
bne a8, a9, .Lretdiff
addi a3, a3, 1
beqz a8, .Lretdiff
.Lretdiff:
sub a2, a8, a9
RET(16)
.Lprobeq2:
/* Adjust pointers to account for the loop unrolling. */
mov a8, a11
addi a2, a2, -4
addi a3, a3, 4
/* align (0 mod 4) */
.Lprobeq:
/* Words are probably equal, but check for sure.
If not, loop over the rest of string using normal algorithm. */
bnone a8, a4, .Leq # if byte 0 is zero
movi a5, MASK1 # mask for byte 1
movi a6, MASK2 # mask for byte 2
bnone a8, a5, .Leq # if byte 1 is zero
movi a7, MASK3 # mask for byte 3
bnone a8, a6, .Leq # if byte 2 is zero
bnone a8, a7, .Leq # if byte 3 is zero
/* align (1 mod 4) */
addi.n a2, a2, 12 # advance s1 pointer
addi.n a3, a3, 4 # advance s2 pointer
/* align (1 mod 4) or (2 mod 4) */
1:
loop a0, .Lend # loop forever (a4 is bigger than max iters)
l32i a8, a2, 0 # get word from s1
l32i a9, a3, 0 # get word from s2
addi a2, a2, 4 # advance s1 pointer
bne a8, a9, .Lwne
bnone a8, a4, .Leq # if byte 0 is zero
bnone a8, a5, .Leq # if byte 1 is zero
bnone a8, a6, .Leq # if byte 2 is zero
bnone a8, a7, .Leq # if byte 3 is zero
addi a3, a3, 4 # advance s2 pointer
.Lend:
j 1b
/* Words are equal; some byte is zero. */
.Leq: movi a2, 0 # return equal
RET(16)
.Lwne2: /* Words are not equal. On big-endian processors, if none of the
bytes are zero, the return value can be determined by a simple
comparison. */
.Lwne: /* Words are not equal. */
xor a2, a8, a9 # get word with nonzero in byte that differs
extui a10, a8, 0, 8
extui a11, a9, 0, 8
movi a5, MASK1 # mask for byte 1
bany.w18 a2, a4, .Ldiff0 # if byte 0 differs
bnone.w18 a8, a4, .Leq # if byte 0 is zero
movi a6, MASK2 # mask for byte 2
bany.w18 a2, a5, .Ldiff1 # if byte 1 differs
extui a10, a8, 24, 8
bnone.w18 a8, a5, .Leq # if byte 1 is zero
extui a11, a9, 24, 8
bany.w18 a2, a6, .Ldiff2 # if byte 2 differs
sub a2, a10, a11
bnone.w18 a8, a6, .Leq # if byte 2 is zero
/* Little-endian is a little more difficult because can't subtract
whole words. */
.Ldiff3:
/* Bytes 0-2 are equal; byte 3 is different.
For little-endian need to have a sign bit for the difference. */
RET(16)
.Ldiff0:
/* Byte 0 is different. */
sub a2, a10, a11
RET(16)
.Ldiff1:
/* Byte 0 is equal; byte 1 is different. */
extui a10, a8, 8, 8
extui a11, a9, 8, 8
sub a2, a10, a11
RET(16)
.Ldiff2:
/* Bytes 0-1 are equal; byte 2 is different. */
extui a10, a8, 16, 8
extui a11, a9, 16, 8
sub a2, a10, a11
RET(16)
#else
#if XCHAL_HAVE_LOOPS && XCHAL_HAVE_DENSITY && !XCHAL_HAVE_BE && XCHAL_HAVE_PDX4
/* Fast version for FLIX3 Little Endian */
ENTRY(16)
/* a2 = s1, a3 = s2 */
l8ui a8, a2, 0 # byte 0 from s1
l8ui a9, a3, 0 # byte 0 from s2
movi a10, 3 # mask
movi a5, 0xfffffffc
or a11, a2, a3
movi a4, MASK0 # mask for byte 0
movi a7, MASK4
addi a3, a3, -8
addi a2, a2, -8
and a5, a5, a2
bne.w15 a8, a9, .Lretdiff
l32i a8, a5, 8 # get word from aligned variant of s1
bany.w15 a11, a10, .Lnot_aligned
/* s1 is word-aligned; s2 is word-aligned.
If the zero-overhead loop option is available, use an (almost)
infinite zero-overhead loop with conditional exits so we only pay
for taken branches when exiting the loop. */
/* New algorithm, relying on the fact that all normal ASCII is between
32 and 127.
Rather than check all bytes for zero:
Take one word (4 bytes). Call it w1.
Shift w1 left by one into w1'.
Or w1 and w1'. For all normal ASCII bit 6 will be 1; for zero it won't.
Check that all 4 bit 6's (one for each byte) are one:
If they are, we are definitely not done.
If they are not, we are probably done, but need to check for zero. */
.Laligned:
/* Loop forever */
1:
loop a0, .Laligned_done
/* First unrolled loop body. */
l32i a9, a3, 8 # get word from s2
addi a3, a3, 8 # advance s2 pointer
slli a5, a8, 1
or a10, a8, a5
{
bne.w15 a8, a9, .Lwne2
l32i a11, a2, 12 # get word from s1+4
nop
nop
}
l32i a9, a3, 4 # get word from s2+4
bnall.w15 a10, a7, .Lprobeq
/* Second unrolled loop body. */
slli a5, a11, 1
or a10, a11, a5
addi a2, a2, 8 # advance s1 pointer
mov a8, a11
bne.w15 a11, a9, .Lwne2
l32i a8, a2, 8 # get word from s1
bnall.w15 a10, a7, .Lprobeq2
.Laligned_done:
l32i a8, a2, 8 # get word from s1
j 1b
.Lnot_aligned:
xor a11, a2, a3 # compare low two bits of s1 and s2
bany a11, a10, .Lunaligned # if they have different alignment
/* s1/s2 are not word-aligned. */
movi a5, 0xfffffffc
addi a2, a2, 1 # advance s1
beqz a9, .Leq # bytes equal, if zero, strings are equal
addi a3, a3, 1 # advance s2
and a6, a2, a5
l32i a8, a6, 8 # get word from s1
bnone a2, a10, .Laligned # if s1/s2 now aligned
l8ui a8, a2, 8 # byte 1 from s1
l8ui a9, a3, 8 # byte 1 from s2
addi a2, a2, 1 # advance s1
bne a8, a9, .Lretdiff # if different, return difference
beqz a8, .Leq # bytes equal, if zero, strings are equal
addi a3, a3, 1 # advance s2
and a6, a2, a5
l32i a8, a6, 8 # get word from s1
bnone a2, a10, .Laligned # if s1/s2 now aligned
l8ui a8, a2, 8 # byte 2 from s1
l8ui a9, a3, 8 # byte 2 from s2
addi a2, a2, 1 # advance s1
bne a8, a9, .Lretdiff # if different, return difference
beqz a8, .Leq # bytes equal, if zero, strings are equal
addi a3, a3, 1 # advance s2
l32i a8, a2, 8 # get word from s1
j .Laligned
/* s1 and s2 have different alignment.
If the zero-overhead loop option is available, use an (almost)
infinite zero-overhead loop with conditional exits so we only pay
for taken branches when exiting the loop.
Note: It is important for this unaligned case to come before the
code for aligned strings, because otherwise some of the branches
above cannot reach and have to be transformed to branches around
jumps. The unaligned code is smaller and the branches can reach
over it. */
.Lunaligned:
movi.n a8, 0 # set up for the maximum loop count
loop a8, .Lretdiff # loop forever (almost anyway)
l8ui a8, a2, 8
l8ui a9, a3, 8
addi a2, a2, 1
bne a8, a9, .Lretdiff
addi a3, a3, 1
beqz a8, .Lretdiff
.Lretdiff:
sub a2, a8, a9
RET(16)
.Lprobeq2:
/* Adjust pointers to account for the loop unrolling. */
mov a8, a11
addi a2, a2, -4
addi a3, a3, 4
/* align (0 mod 4) */
.Lprobeq:
/* Words are probably equal, but check for sure.
If not, loop over the rest of string using normal algorithm. */
bnone a8, a4, .Leq # if byte 0 is zero
movi a5, MASK1 # mask for byte 1
movi a6, MASK2 # mask for byte 2
bnone a8, a5, .Leq # if byte 1 is zero
movi a7, MASK3 # mask for byte 3
bnone a8, a6, .Leq # if byte 2 is zero
bnone a8, a7, .Leq # if byte 3 is zero
/* align (1 mod 4) */
addi.n a2, a2, 12 # advance s1 pointer
addi.n a3, a3, 4 # advance s2 pointer
/* align (1 mod 4) or (2 mod 4) */
1:
loop a0, .Lend # loop forever (a4 is bigger than max iters)
l32i a8, a2, 0 # get word from s1
l32i a9, a3, 0 # get word from s2
addi a2, a2, 4 # advance s1 pointer
bne a8, a9, .Lwne
bnone a8, a4, .Leq # if byte 0 is zero
bnone a8, a5, .Leq # if byte 1 is zero
bnone a8, a6, .Leq # if byte 2 is zero
bnone a8, a7, .Leq # if byte 3 is zero
addi a3, a3, 4 # advance s2 pointer
.Lend:
j 1b
/* Words are equal; some byte is zero. */
.Leq: movi a2, 0 # return equal
RET(16)
.Lwne2: /* Words are not equal. On big-endian processors, if none of the
bytes are zero, the return value can be determined by a simple
comparison. */
.Lwne: /* Words are not equal. */
xor a2, a8, a9 # get word with nonzero in byte that differs
extui a10, a8, 0, 8
extui a11, a9, 0, 8
movi a5, MASK1 # mask for byte 1
bany.w15 a2, a4, .Ldiff0 # if byte 0 differs
bnone.w15 a8, a4, .Leq # if byte 0 is zero
movi a6, MASK2 # mask for byte 2
bany.w15 a2, a5, .Ldiff1 # if byte 1 differs
extui a10, a8, 24, 8
bnone.w15 a8, a5, .Leq # if byte 1 is zero
extui a11, a9, 24, 8
bany.w15 a2, a6, .Ldiff2 # if byte 2 differs
sub a2, a10, a11
bnone.w15 a8, a6, .Leq # if byte 2 is zero
/* Little-endian is a little more difficult because can't subtract
whole words. */
.Ldiff3:
/* Bytes 0-2 are equal; byte 3 is different.
For little-endian need to have a sign bit for the difference. */
RET(16)
.Ldiff0:
/* Byte 0 is different. */
sub a2, a10, a11
RET(16)
.Ldiff1:
/* Byte 0 is equal; byte 1 is different. */
extui a10, a8, 8, 8
extui a11, a9, 8, 8
sub a2, a10, a11
RET(16)
.Ldiff2:
/* Bytes 0-1 are equal; byte 2 is different. */
extui a10, a8, 16, 8
extui a11, a9, 16, 8
sub a2, a10, a11
RET(16)
#else /* Not FLIX3 */
ENTRY(16)
/* a2 = s1, a3 = s2 */
l8ui a8, a2, 0 # byte 0 from s1
l8ui a9, a3, 0 # byte 0 from s2
movi a10, 3 # mask
bne a8, a9, .Lretdiff
or a11, a2, a3
bnone a11, a10, .Laligned
xor a11, a2, a3 # compare low two bits of s1 and s2
bany a11, a10, .Lunaligned # if they have different alignment
/* s1/s2 are not word-aligned. */
addi a2, a2, 1 # advance s1
beqz a8, .Leq # bytes equal, if zero, strings are equal
addi a3, a3, 1 # advance s2
bnone a2, a10, .Laligned # if s1/s2 now aligned
l8ui a8, a2, 0 # byte 1 from s1
l8ui a9, a3, 0 # byte 1 from s2
addi a2, a2, 1 # advance s1
bne a8, a9, .Lretdiff # if different, return difference
beqz a8, .Leq # bytes equal, if zero, strings are equal
addi a3, a3, 1 # advance s2
bnone a2, a10, .Laligned # if s1/s2 now aligned
l8ui a8, a2, 0 # byte 2 from s1
l8ui a9, a3, 0 # byte 2 from s2
addi a2, a2, 1 # advance s1
bne a8, a9, .Lretdiff # if different, return difference
beqz a8, .Leq # bytes equal, if zero, strings are equal
addi a3, a3, 1 # advance s2
j .Laligned
/* s1 and s2 have different alignment.
If the zero-overhead loop option is available, use an (almost)
infinite zero-overhead loop with conditional exits so we only pay
for taken branches when exiting the loop.
Note: It is important for this unaligned case to come before the
code for aligned strings, because otherwise some of the branches
above cannot reach and have to be transformed to branches around
jumps. The unaligned code is smaller and the branches can reach
over it. */
.align 4
#if XCHAL_HAVE_LOOPS
#if XCHAL_HAVE_DENSITY
/* (2 mod 4) alignment for loop instruction */
#else
/* (1 mod 4) alignment for loop instruction */
.byte 0
.byte 0
#endif
#endif
.Lunaligned:
#if XCHAL_HAVE_LOOPS
#if XCHAL_HAVE_DENSITY
_movi.n a8, 0 # set up for the maximum loop count
#else
_movi a8, 0 # set up for the maximum loop count
#endif
loop a8, .Lretdiff # loop forever (almost anyway)
#endif
.Lnextbyte:
l8ui a8, a2, 0
l8ui a9, a3, 0
addi a2, a2, 1
bne a8, a9, .Lretdiff
addi a3, a3, 1
#if XCHAL_HAVE_LOOPS
beqz a8, .Lretdiff
#else
bnez a8, .Lnextbyte
#endif
.Lretdiff:
sub a2, a8, a9
RET(16)
/* s1 is word-aligned; s2 is word-aligned.
If the zero-overhead loop option is available, use an (almost)
infinite zero-overhead loop with conditional exits so we only pay
for taken branches when exiting the loop. */
/* New algorithm, relying on the fact that all normal ASCII is between
32 and 127.
Rather than check all bytes for zero:
Take one word (4 bytes). Call it w1.
Shift w1 left by one into w1'.
Or w1 and w1'. For all normal ASCII bit 6 will be 1; for zero it won't.
Check that all 4 bit 6's (one for each byte) are one:
If they are, we are definitely not done.
If they are not, we are probably done, but need to check for zero. */
.align 4
#if XCHAL_HAVE_LOOPS
#if XCHAL_HAVE_CONST16
/* (2 mod 4) alignment for loop instruction */
.byte 0
#endif
.Laligned:
movi a4, MASK0 # mask for byte 0
movi a7, MASK4
/* Loop forever */
1:
loop a0, .Laligned_done
/* First unrolled loop body. */
l32i a8, a2, 0 # get word from s1
l32i a9, a3, 0 # get word from s2
slli a5, a8, 1
bne a8, a9, .Lwne2
or a9, a8, a5
bnall a9, a7, .Lprobeq
/* Second unrolled loop body. */
l32i a8, a2, 4 # get word from s1+4
l32i a9, a3, 4 # get word from s2+4
slli a5, a8, 1
bne a8, a9, .Lwne2
or a9, a8, a5
bnall a9, a7, .Lprobeq2
addi a2, a2, 8 # advance s1 pointer
addi a3, a3, 8 # advance s2 pointer
.Laligned_done:
j 1b
.Lprobeq2:
/* Adjust pointers to account for the loop unrolling. */
addi a2, a2, 4
addi a3, a3, 4
#else /* !XCHAL_HAVE_LOOPS */
.Laligned:
movi a4, MASK0 # mask for byte 0
movi a7, MASK4
j .Lfirstword
.Lnextword:
addi a2, a2, 4 # advance s1 pointer
addi a3, a3, 4 # advance s2 pointer
.Lfirstword:
l32i a8, a2, 0 # get word from s1
l32i a9, a3, 0 # get word from s2
slli a5, a8, 1
bne a8, a9, .Lwne2
or a9, a8, a5
ball a9, a7, .Lnextword
#endif /* !XCHAL_HAVE_LOOPS */
/* align (0 mod 4) */
.Lprobeq:
/* Words are probably equal, but check for sure.
If not, loop over the rest of string using normal algorithm. */
bnone a8, a4, .Leq # if byte 0 is zero
movi a5, MASK1 # mask for byte 1
movi a6, MASK2 # mask for byte 2
bnone a8, a5, .Leq # if byte 1 is zero
movi a7, MASK3 # mask for byte 3
bnone a8, a6, .Leq # if byte 2 is zero
bnone a8, a7, .Leq # if byte 3 is zero
/* align (1 mod 4) */
#if XCHAL_HAVE_DENSITY
addi.n a2, a2, 4 # advance s1 pointer
addi.n a3, a3, 4 # advance s2 pointer
/* align (1 mod 4) or (2 mod 4) */
#else
addi a2, a2, 4 # advance s1 pointer
addi a3, a3, 4 # advance s2 pointer
or a1, a1, a1 # nop
#if XCHAL_HAVE_CONST16
or a1, a1, a1 # nop
#endif
/* align (2 mod 4) */
#endif /* XCHAL_HAVE_DENSITY */
#if XCHAL_HAVE_LOOPS
1:
loop a0, .Leq # loop forever (a4 is bigger than max iters)
l32i a8, a2, 0 # get word from s1
l32i a9, a3, 0 # get word from s2
addi a2, a2, 4 # advance s1 pointer
bne a8, a9, .Lwne
bnone a8, a4, .Leq # if byte 0 is zero
bnone a8, a5, .Leq # if byte 1 is zero
bnone a8, a6, .Leq # if byte 2 is zero
bnone a8, a7, .Leq # if byte 3 is zero
addi a3, a3, 4 # advance s2 pointer
j 1b
#else /* !XCHAL_HAVE_LOOPS */
j .Lfirstword2
.Lnextword2:
addi a3, a3, 4 # advance s2 pointer
.Lfirstword2:
l32i a8, a2, 0 # get word from s1
l32i a9, a3, 0 # get word from s2
addi a2, a2, 4 # advance s1 pointer
bne a8, a9, .Lwne
bnone a8, a4, .Leq # if byte 0 is zero
bnone a8, a5, .Leq # if byte 1 is zero
bnone a8, a6, .Leq # if byte 2 is zero
bany a8, a7, .Lnextword2 # if byte 3 is zero
#endif /* !XCHAL_HAVE_LOOPS */
/* Words are equal; some byte is zero. */
.Leq: movi a2, 0 # return equal
RET(16)
.Lwne2: /* Words are not equal. On big-endian processors, if none of the
bytes are zero, the return value can be determined by a simple
comparison. */
#if XCHAL_HAVE_BE
or a10, a8, a5
bnall a10, a7, .Lsomezero
bgeu a8, a9, .Lposreturn
movi a2, -1
RET(16)
.Lposreturn:
movi a2, 1
RET(16)
.Lsomezero: # There is probably some zero byte.
#endif /* XCHAL_HAVE_BE */
.Lwne: /* Words are not equal. */
xor a2, a8, a9 # get word with nonzero in byte that differs
bany a2, a4, .Ldiff0 # if byte 0 differs
movi a5, MASK1 # mask for byte 1
bnone a8, a4, .Leq # if byte 0 is zero
bany a2, a5, .Ldiff1 # if byte 1 differs
movi a6, MASK2 # mask for byte 2
bnone a8, a5, .Leq # if byte 1 is zero
bany a2, a6, .Ldiff2 # if byte 2 differs
bnone a8, a6, .Leq # if byte 2 is zero
#if XCHAL_HAVE_BE
.Ldiff3:
.Ldiff2:
.Ldiff1:
/* Byte 0 is equal (at least) and there is a difference before a zero
byte. Just subtract words to get the return value.
The high order equal bytes cancel, leaving room for the sign. */
sub a2, a8, a9
RET(16)
.Ldiff0:
/* Need to make room for the sign, so can't subtract whole words. */
extui a10, a8, 24, 8
extui a11, a9, 24, 8
sub a2, a10, a11
RET(16)
#else /* !XCHAL_HAVE_BE */
/* Little-endian is a little more difficult because can't subtract
whole words. */
.Ldiff3:
/* Bytes 0-2 are equal; byte 3 is different.
For little-endian need to have a sign bit for the difference. */
extui a10, a8, 24, 8
extui a11, a9, 24, 8
sub a2, a10, a11
RET(16)
.Ldiff0:
/* Byte 0 is different. */
extui a10, a8, 0, 8
extui a11, a9, 0, 8
sub a2, a10, a11
RET(16)
.Ldiff1:
/* Byte 0 is equal; byte 1 is different. */
extui a10, a8, 8, 8
extui a11, a9, 8, 8
sub a2, a10, a11
RET(16)
.Ldiff2:
/* Bytes 0-1 are equal; byte 2 is different. */
extui a10, a8, 16, 8
extui a11, a9, 16, 8
sub a2, a10, a11
RET(16)
#endif /* !XCHAL_HAVE_BE */
#endif /* FLIX3 */
#endif /* FLIX3 */
.end schedule
.size strcmp, . - strcmp
#endif