nuttx/configs/stm32vldiscovery
2017-05-13 16:01:38 -06:00
..
include STM32 Timer: Generalize and extend calculation of per-timer pre-scaler value. Inspired by original proposal from Pierre-noel Bouteville. 2016-06-03 11:38:59 -06:00
nsh Kconfig: Rename CONFIG_ARM_TOOLCHAIN_IAR to CONFIG_ARCH_TOOLCHAIN_IAR 2017-05-13 16:01:38 -06:00
scripts
src Buttons: Correct some comments left after last button-related change: 32- vs 8-bit bit set. 2017-04-09 14:44:49 -06:00
Kconfig
README.txt configs: Remove all setenv.bat files. Remove all references to setenv.sh and setenv.bat from all config README files. 2017-04-26 10:12:13 -06:00

README
======

This README discusses issues unique to NuttX configurations for the STMicro
STM32VLDiscovery (Value Line Discovery) board.

Contents
========

  - Development Environment
  - GNU Toolchain Options
  - IDEs
  - NuttX EABI "buildroot" Toolchain
  - NuttX OABI "buildroot" Toolchain
  - NXFLAT Toolchain
  - LEDs
  - UARTs
  - "STMicro STM32F100RC generic" specific Configuration Options
  - Configurations

Development Environment
=======================

  Either Linux or Cygwin on Windows can be used for the development environment.
  The source has been built only using the GNU toolchain (see below).  Other
  toolchains will likely cause problems.

GNU Toolchain Options
=====================

  Toolchain Configurations
  ------------------------
  The NuttX make system has been modified to support the following different
  toolchain options.

  1. The CodeSourcery GNU toolchain,
  2. The Atollic Toolchain,
  3. The devkitARM GNU toolchain,
  4. Raisonance GNU toolchain, or
  5. The NuttX buildroot Toolchain (see below).

  All testing has been conducted using the CodeSourcery toolchain for Windows.  To use
  the Atollic, devkitARM, Raisonance GNU, or NuttX buildroot toolchain, you simply need to
  add one of the following configuration options to your .config (or defconfig)
  file:

    CONFIG_ARMV7M_TOOLCHAIN_CODESOURCERYW=y  : CodeSourcery under Windows
    CONFIG_ARMV7M_TOOLCHAIN_CODESOURCERYL=y  : CodeSourcery under Linux
    CONFIG_ARMV7M_TOOLCHAIN_ATOLLIC=y        : The Atollic toolchain under Windows
    CONFIG_ARMV7M_TOOLCHAIN_DEVKITARM=y      : devkitARM under Windows
    CONFIG_ARMV7M_TOOLCHAIN_RAISONANCE=y     : Raisonance RIDE7 under Windows
    CONFIG_ARMV7M_TOOLCHAIN_BUILDROOT=y      : NuttX buildroot under Linux or Cygwin (default)

  NOTE: the CodeSourcery (for Windows), Atollic, devkitARM, and Raisonance toolchains are
  Windows native toolchains.  The CodeSourcey (for Linux) and NuttX buildroot
  toolchains are Cygwin and/or Linux native toolchains. There are several limitations
  to using a Windows based toolchain in a Cygwin environment.  The three biggest are:

  1. The Windows toolchain cannot follow Cygwin paths.  Path conversions are
     performed automatically in the Cygwin makefiles using the 'cygpath' utility
     but you might easily find some new path problems.  If so, check out 'cygpath -w'

  2. Windows toolchains cannot follow Cygwin symbolic links.  Many symbolic links
     are used in Nuttx (e.g., include/arch).  The make system works around these
     problems for the Windows tools by copying directories instead of linking them.
     But this can also cause some confusion for you:  For example, you may edit
     a file in a "linked" directory and find that your changes had no effect.
     That is because you are building the copy of the file in the "fake" symbolic
     directory.  If you use a Windows toolchain, you should get in the habit of
     making like this:

       make clean_context all

     An alias in your .bashrc file might make that less painful.

  The CodeSourcery Toolchain (2009q1)
  -----------------------------------
  The CodeSourcery toolchain (2009q1) does not work with default optimization
  level of -Os (See Make.defs).  It will work with -O0, -O1, or -O2, but not with
  -Os.

  The Atollic "Pro" and "Lite" Toolchain
  --------------------------------------
  One problem that I had with the Atollic toolchains is that the provide a gcc.exe
  and g++.exe in the same bin/ file as their ARM binaries.  If the Atollic bin/ path
  appears in your PATH variable before /usr/bin, then you will get the wrong gcc
  when you try to build host executables.  This will cause to strange, uninterpretable
  errors build some host binaries in tools/ when you first make.

  The Atollic "Lite" Toolchain
  ----------------------------
  The free, "Lite" version of the Atollic toolchain does not support C++ nor
  does it support ar, nm, objdump, or objdcopy. If you use the Atollic "Lite"
  toolchain, you will have to set:

    CONFIG_HAVE_CXX=n

  In order to compile successfully.  Otherwise, you will get errors like:

    "C++ Compiler only available in TrueSTUDIO Professional"

  The make may then fail in some of the post link processing because of some of
  the other missing tools.  The Make.defs file replaces the ar and nm with
  the default system x86 tool versions and these seem to work okay.  Disable all
  of the following to avoid using objcopy:

    CONFIG_RRLOAD_BINARY=n
    CONFIG_INTELHEX_BINARY=n
    CONFIG_MOTOROLA_SREC=n
    CONFIG_RAW_BINARY=n

  devkitARM
  ---------
  The devkitARM toolchain includes a version of MSYS make.  Make sure that the
  the paths to Cygwin's /bin and /usr/bin directories appear BEFORE the devkitARM
  path or will get the wrong version of make.

IDEs
====

  NuttX is built using command-line make.  It can be used with an IDE, but some
  effort will be required to create the project.

  Makefile Build
  --------------
  Under Eclipse, it is pretty easy to set up an "empty makefile project" and
  simply use the NuttX makefile to build the system.  That is almost for free
  under Linux.  Under Windows, you will need to set up the "Cygwin GCC" empty
  makefile project in order to work with Windows (Google for "Eclipse Cygwin" -
  there is a lot of help on the internet).

  Native Build
  ------------
  Here are a few tips before you start that effort:

  1) Select the toolchain that you will be using in your .config file
  2) Start the NuttX build at least one time from the Cygwin command line
     before trying to create your project.  This is necessary to create
     certain auto-generated files and directories that will be needed.
  3) Set up include pathes:  You will need include/, arch/arm/src/stm32,
     arch/arm/src/common, arch/arm/src/armv7-m, and sched/.
  4) All assembly files need to have the definition option -D __ASSEMBLY__
     on the command line.

  Startup files will probably cause you some headaches.  The NuttX startup file
  is arch/arm/src/stm32/stm32_vectors.S.  With RIDE, I have to build NuttX
  one time from the Cygwin command line in order to obtain the pre-built
  startup object needed by RIDE.

NuttX EABI "buildroot" Toolchain
================================

  A GNU GCC-based toolchain is assumed.  The PATH environment variable should
  be modified to point to the correct path to the Cortex-M3 GCC toolchain (if
  different from the default in your PATH variable).

  If you have no Cortex-M3 toolchain, one can be downloaded from the NuttX
  Bitbucket download site (https://bitbucket.org/nuttx/buildroot/downloads/).
  This GNU toolchain builds and executes in the Linux or Cygwin environment.

  1. You must have already configured Nuttx in <some-dir>/nuttx.

     cd tools
     ./configure.sh stm32vldiscovery/<sub-dir>

  2. Download the latest buildroot package into <some-dir>

  3. unpack the buildroot tarball.  The resulting directory may
     have versioning information on it like buildroot-x.y.z.  If so,
     rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.

  4. cd <some-dir>/buildroot

  5. cp configs/cortexm3-eabi-defconfig-4.6.3 .config

  6. make oldconfig

  7. make

  8. Make sure that the PATH variable includes the path to the newly built
     binaries.

  See the file configs/README.txt in the buildroot source tree.  That has more
  details PLUS some special instructions that you will need to follow if you are
  building a Cortex-M3 toolchain for Cygwin under Windows.

  NOTE:  Unfortunately, the 4.6.3 EABI toolchain is not compatible with the
  the NXFLAT tools.  See the top-level TODO file (under "Binary loaders") for
  more information about this problem. If you plan to use NXFLAT, please do not
  use the GCC 4.6.3 EABI toochain; instead use the GCC 4.3.3 OABI toolchain.
  See instructions below.

NuttX OABI "buildroot" Toolchain
================================

  The older, OABI buildroot toolchain is also available.  To use the OABI
  toolchain:

  1. When building the buildroot toolchain, either (1) modify the cortexm3-eabi-defconfig-4.6.3
     configuration to use EABI (using 'make menuconfig'), or (2) use an exising OABI
     configuration such as cortexm3-defconfig-4.3.3

  2. Modify the Make.defs file to use the OABI conventions:

    +CROSSDEV = arm-nuttx-elf-
    +ARCHCPUFLAGS = -mtune=cortex-m3 -march=armv7-m -mfloat-abi=soft
    +NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-gotoff.ld -no-check-sections
    -CROSSDEV = arm-nuttx-eabi-
    -ARCHCPUFLAGS = -mcpu=cortex-m3 -mthumb -mfloat-abi=soft
    -NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-pcrel.ld -no-check-sections

NXFLAT Toolchain
================

  If you are *not* using the NuttX buildroot toolchain and you want to use
  the NXFLAT tools, then you will still have to build a portion of the buildroot
  tools -- just the NXFLAT tools.  The buildroot with the NXFLAT tools can
  be downloaded from the NuttX Bitbucket download site
  (https://bitbucket.org/nuttx/nuttx/downloads/).

  This GNU toolchain builds and executes in the Linux or Cygwin environment.

  1. You must have already configured Nuttx in <some-dir>/nuttx.

     cd tools
     ./configure.sh lpcxpresso-lpc1768/<sub-dir>

  2. Download the latest buildroot package into <some-dir>

  3. unpack the buildroot tarball.  The resulting directory may
     have versioning information on it like buildroot-x.y.z.  If so,
     rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.

  4. cd <some-dir>/buildroot

  5. cp configs/cortexm3-defconfig-nxflat .config

  6. make oldconfig

  7. make

  8. Make sure that the PATH variable includes the path to the newly built
     NXFLAT binaries.

LEDs
====

It is asumed that STMicro STM32F100RC generic board board has one LED on PA0.
You should configure the port and pin number in
configs/stm32vldiscovery/src/stm32vldiscovery.h. This LED is not used by
the board port unless CONFIG_ARCH_LEDS is defined.  In that case, the usage by
the board port is defined in include/board.h and src/up_leds.c. The LED is used
to encode OS-related events as follows:

  SYMBOL                Meaning                 LED1*
                                                green
  -------------------  -----------------------  -------
  LED_STARTED          NuttX has been started   ON
  LED_HEAPALLOCATE     Heap has been allocated  ON
  LED_IRQSENABLED      Interrupts enabled       ON
  LED_STACKCREATED     Idle stack created       ON
  LED_INIRQ            In an interrupt          ON
  LED_SIGNAL           In a signal handler      ON
  LED_ASSERTION        An assertion failed      OFF
  LED_PANIC            The system has crashed   OFF

So basically if the LED is off it means that there is a problem.

UART
====

Default USART/UART Configuration
--------------------------------

USART1 is enabled in all configurations (see */defconfig).  RX and TX are
configured on pins PA10 and PA9, respectively. Then connect the RX pin of
your USB/Serial adapter to TX pin (PA9) and the TX pin of your adapter to
RX pin (PA10) of your board besides, of course, the GND pin.

"STMicro STM32F100RC generic" specific Configuration Options
============================================================

    CONFIG_ARCH - Identifies the arch/ subdirectory.  This should
       be set to:

       CONFIG_ARCH=arm

    CONFIG_ARCH_family - For use in C code:

       CONFIG_ARCH_ARM=y

    CONFIG_ARCH_architecture - For use in C code:

       CONFIG_ARCH_CORTEXM3=y

    CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory

       CONFIG_ARCH_CHIP=stm32

    CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
       chip:

       CONFIG_ARCH_CHIP_STM32F100RB=y

    CONFIG_ARCH_BOARD_STM32_CUSTOM_CLOCKCONFIG - Enables special STM32 clock
       configuration features.

       CONFIG_ARCH_BOARD_STM32_CUSTOM_CLOCKCONFIG=n

    CONFIG_ARCH_BOARD - Identifies the configs subdirectory and
       hence, the board that supports the particular chip or SoC.

       CONFIG_ARCH_BOARD=stm32vldiscovery

    CONFIG_ARCH_BOARD_name - For use in C code

       CONFIG_ARCH_BOARD_STM32VL_DISCOVERY=y

    CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
       of delay loops

    CONFIG_ENDIAN_BIG - define if big endian (default is little
       endian)

    CONFIG_RAM_SIZE - Describes the installed DRAM (SRAM in this case):

       CONFIG_RAM_SIZE=24576 (24kB)

    CONFIG_RAM_START - The start address of installed DRAM

       CONFIG_RAM_START=0x20000000

    CONFIG_ARCH_LEDS - Use LED to show state. Unique to boards that have LED(s)

    CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
       stack. If defined, this symbol is the size of the interrupt
       stack in bytes.  If not defined, the user task stacks will be
       used during interrupt handling.

    CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions

    CONFIG_ARCH_CALIBRATION - when used togeter with CONFIG_DEBUG_FEATURES enables some
	   build in instrumentation that cause a 100 second delay during boot-up.
	   This 100 second delay serves no purpose other than it allows you to
	   calibratre CONFIG_ARCH_LOOPSPERMSEC.  You simply use a stop watch to
	   measure the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until
       the delay actually is 100 seconds.

  Individual subsystems can be enabled:

    AHB
    ----
    CONFIG_STM32_CRC
    CONFIG_STM32_DMA1
    CONFIG_STM32_DMA2

    APB1
    ----
    CONFIG_STM32_TIM2
    CONFIG_STM32_TIM3
    CONFIG_STM32_TIM4
    CONFIG_STM32_TIM5
    CONFIG_STM32_TIM6
    CONFIG_STM32_TIM7
    CONFIG_STM32_TIM12
    CONFIG_STM32_TIM13
    CONFIG_STM32_TIM14
	CONFIG_STM32_RTC
    CONFIG_STM32_WWDG
    CONFIG_STM32_IWDG
    CONFIG_STM32_SPI2
    CONFIG_STM32_SPI3
    CONFIG_STM32_USART2
    CONFIG_STM32_USART3
    CONFIG_STM32_UART4
    CONFIG_STM32_UART5
    CONFIG_STM32_I2C1
    CONFIG_STM32_I2C2
	CONFIG_STM32_PWR -- Required for RTC
	CONFIG_STM32_BKP -- Required for RTC
    CONFIG_STM32_DAC1
    CONFIG_STM32_DAC2
	CONFIG_STM32_CEC

    APB2
    ----
	CONFIG_STM32_ADC1
    CONFIG_STM32_TIM1
	CONFIG_STM32_SPI1
    CONFIG_STM32_USART1
    CONFIG_STM32_TIM15
	CONFIG_STM32_TIM16
	CONFIG_STM32_TIM17

  Timer devices may be used for different purposes.  One special purpose is
  to generate modulated outputs for such things as motor control.  If CONFIG_STM32_TIMn
  is defined (as above) then the following may also be defined to indicate that
  the timer is intended to be used for pulsed output modulation, ADC conversion,
  or DAC conversion. Note that ADC/DAC require two definition:  Not only do you have
  to assign the timer (n) for used by the ADC or DAC, but then you also have to
  configure which ADC or DAC (m) it is assigned to.

    CONFIG_STM32_TIMn_PWM   Reserve timer n for use by PWM, n=1,..,17
    CONFIG_STM32_TIMn_ADC   Reserve timer n for use by ADC, n=1,..,17
    CONFIG_STM32_TIMn_ADC1  Reserve timer n to trigger ADCm, n=1,..,17
    CONFIG_STM32_TIMn_DAC   Reserve timer n for use by DAC, n=1,..,17
    CONFIG_STM32_TIMn_DACm  Reserve timer n to trigger DACm, n=1,..,17, m=1,..,2

  For each timer that is enabled for PWM usage, we need the following additional
  configuration settings:

    CONFIG_STM32_TIMx_CHANNEL - Specifies the timer output channel {1,..,4}

  NOTE: The STM32 timers are each capable of generating different signals on
  each of the four channels with different duty cycles.  That capability is
  not supported by this driver:  Only one output channel per timer.

  JTAG Enable settings (by default full SWJ is enabled):

    CONFIG_STM32_JTAG_FULL_ENABLE - Enables full SWJ (JTAG-DP + SW-DP)
    CONFIG_STM32_JTAG_NOJNTRST_ENABLE - Enables full SWJ (JTAG-DP + SW-DP)
      but without JNTRST.
    CONFIG_STM32_JTAG_SW_ENABLE - Set JTAG-DP disabled and SW-DP enabled

  STMicro STM32F100RC generic specific device driver settings

    CONFIG_U[S]ARTn_SERIAL_CONSOLE - selects the USARTn (n=1,2,3) or UART
           m (m=4,5) for the console and ttys0 (default is the USART1).
    CONFIG_U[S]ARTn_RXBUFSIZE - Characters are buffered as received.
       This specific the size of the receive buffer
    CONFIG_U[S]ARTn_TXBUFSIZE - Characters are buffered before
       being sent.  This specific the size of the transmit buffer
    CONFIG_U[S]ARTn_BAUD - The configure BAUD of the UART.  Must be
    CONFIG_U[S]ARTn_BITS - The number of bits.  Must be either 7 or 8.
    CONFIG_U[S]ARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
    CONFIG_U[S]ARTn_2STOP - Two stop bits

Configurations
==============

Each STMicro STM32F100RC generic configuration is maintained in a sub-directory
and can be selected as follow:

    cd tools
    ./configure.sh stm32vldiscovery/<subdir>
    cd -

Where <subdir> is one of the following:

  nsh:
  ---
    Configures the NuttShell (nsh) located at apps/examples/nsh.  The
    Configuration enables only the serial NSH interfaces.

    Default toolchain:

    CONFIG_ARMV7M_TOOLCHAIN_CODESOURCERYL=y  : CodeSourcery under Linux / Mac OS X