1931 lines
38 KiB
C
1931 lines
38 KiB
C
/****************************************************************************
|
|
* libs/libc/stdio/legacy_dtoa.c
|
|
*
|
|
* This file was ported to NuttX by Yolande Cates.
|
|
*
|
|
* Copyright (c) 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Chris Torek.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include <nuttx/config.h>
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "libc.h"
|
|
|
|
/****************************************************************************
|
|
* Pre-processor Definitions
|
|
****************************************************************************/
|
|
|
|
#ifdef CONFIG_DTOA_UNSIGNED_SHIFTS
|
|
# define SIGN_EXTEND(a,b) if (b < 0) a |= 0xffff0000;
|
|
#else
|
|
# define SIGN_EXTEND(a,b) /* no-op */
|
|
#endif
|
|
|
|
#ifdef CONFIG_ENDIAN_BIG
|
|
# define WORD0(x) ((uint32_t *)&x)[0]
|
|
# define WORD1(x) ((uint32_t *)&x)[1]
|
|
#else
|
|
# define WORD0(x) ((uint32_t *)&x)[1]
|
|
# define WORD1(x) ((uint32_t *)&x)[0]
|
|
#endif
|
|
|
|
#ifdef CONFIG_ENDIAN_BIG
|
|
# define STOREINC(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
|
|
((unsigned short *)a)[1] = (unsigned short)c, a++)
|
|
#else
|
|
# define STOREINC(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
|
|
((unsigned short *)a)[0] = (unsigned short)c, a++)
|
|
#endif
|
|
|
|
#define EXP_SHIFT 20
|
|
#define EXP_SHIFT1 20
|
|
#define EXP_MSK1 0x100000
|
|
#define EXP_MSK11 0x100000
|
|
#define EXP_MASK 0x7ff00000
|
|
#define P 53
|
|
#define BIAS 1023
|
|
#define IEEE_ARITH
|
|
#define EMIN (-1022)
|
|
#define EXP_1 0x3ff00000
|
|
#define EXP_11 0x3ff00000
|
|
#define EBITS 11
|
|
#define FRAC_MASK 0xfffff
|
|
#define FRAC_MASK1 0xfffff
|
|
#define TEN_PMAX 22
|
|
#define BLETCH 0x10
|
|
#define BNDRY_MASK 0xfffff
|
|
#define BNDRY_MASK1 0xfffff
|
|
#define LSB 1
|
|
#define SIGN_BIT 0x80000000
|
|
#define LOG2P 1
|
|
#define TINY0 0
|
|
#define TINY1 1
|
|
#define QUICK_MAX 14
|
|
#define SMALL_MAX 14
|
|
#define INFINITE(x) (WORD0(x) == 0x7ff00000) /* sufficient test for here */
|
|
|
|
#define KMAX 15
|
|
|
|
#define BCOPY(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
|
|
y->wds*sizeof(long) + 2*sizeof(int))
|
|
|
|
/****************************************************************************
|
|
* Private Type Definitions
|
|
****************************************************************************/
|
|
|
|
struct bigint_s
|
|
{
|
|
FAR struct bigint_s *next;
|
|
int k;
|
|
int maxwds;
|
|
int sign;
|
|
int wds;
|
|
unsigned long x[1];
|
|
};
|
|
|
|
typedef struct bigint_s bigint_t;
|
|
|
|
/****************************************************************************
|
|
* Private Data
|
|
****************************************************************************/
|
|
|
|
/* REVISIT: __dtoa is not thread safe due to thse two global variables.
|
|
* Options:
|
|
*
|
|
* 1. Allocate on stack. g_freelist is rather large, however.. around 275
|
|
* bytes (it could be shrunk a little by using stdint types instead of int.
|
|
* 2. Semaphore protect the global variables and handle interrupt level
|
|
* calls as a special case (perhaps refusing them? Or having a duplicate
|
|
* set of variables, one for tasks and one for interrupt usage)
|
|
*/
|
|
|
|
static FAR bigint_t *g_freelist[KMAX + 1];
|
|
static FAR bigint_t *g_p5s;
|
|
|
|
#ifdef IEEE_ARITH
|
|
static const double_t g_bigtens[] =
|
|
{
|
|
1e16, 1e32, 1e64, 1e128, 1e256
|
|
};
|
|
|
|
# define n_bigtens 5
|
|
#else
|
|
static const double_t g_bigtens[] =
|
|
{
|
|
1e16, 1e32
|
|
};
|
|
|
|
# define n_bigtens 2
|
|
#endif
|
|
|
|
/****************************************************************************
|
|
* Private Functions
|
|
****************************************************************************/
|
|
|
|
static FAR bigint_t *balloc(int k)
|
|
{
|
|
FAR bigint_t *rv;
|
|
int x;
|
|
|
|
if ((rv = g_freelist[k]))
|
|
{
|
|
g_freelist[k] = rv->next;
|
|
}
|
|
else
|
|
{
|
|
x = 1 << k;
|
|
rv = (FAR bigint_t *)
|
|
lib_malloc(sizeof(bigint_t) + (x - 1) * sizeof(long));
|
|
rv->k = k;
|
|
rv->maxwds = x;
|
|
}
|
|
|
|
rv->sign = 0;
|
|
rv->wds = 0;
|
|
return rv;
|
|
}
|
|
|
|
static void bfree(FAR bigint_t *v)
|
|
{
|
|
if (v != NULL)
|
|
{
|
|
v->next = g_freelist[v->k];
|
|
g_freelist[v->k] = v;
|
|
}
|
|
}
|
|
|
|
/* Multiply by m and add a */
|
|
|
|
static FAR bigint_t *multadd(FAR bigint_t *b, int m, int a)
|
|
{
|
|
FAR bigint_t *b1;
|
|
FAR unsigned long *x;
|
|
unsigned long y;
|
|
#ifdef CONFIG_DTOA_PACK32
|
|
unsigned long xi;
|
|
unsigned long z;
|
|
#endif
|
|
int wds;
|
|
int i;
|
|
|
|
wds = b->wds;
|
|
x = b->x;
|
|
i = 0;
|
|
|
|
do
|
|
{
|
|
#ifdef CONFIG_DTOA_PACK32
|
|
xi = *x;
|
|
y = (xi & 0xffff) * m + a;
|
|
z = (xi >> 16) * m + (y >> 16);
|
|
a = (int)(z >> 16);
|
|
*x++ = (z << 16) + (y & 0xffff);
|
|
#else
|
|
y = *x * m + a;
|
|
a = (int)(y >> 16);
|
|
*x++ = y & 0xffff;
|
|
#endif
|
|
}
|
|
while (++i < wds);
|
|
|
|
if (a != 0)
|
|
{
|
|
if (wds >= b->maxwds)
|
|
{
|
|
b1 = balloc(b->k + 1);
|
|
BCOPY(b1, b);
|
|
bfree(b);
|
|
b = b1;
|
|
}
|
|
b->x[wds++] = a;
|
|
b->wds = wds;
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
static int hi0bits(unsigned long x)
|
|
{
|
|
int k = 0;
|
|
|
|
if ((x & 0xffff0000) == 0)
|
|
{
|
|
k = 16;
|
|
x <<= 16;
|
|
}
|
|
|
|
if ((x & 0xff000000) == 0)
|
|
{
|
|
k += 8;
|
|
x <<= 8;
|
|
}
|
|
|
|
if ((x & 0xf0000000) == 0)
|
|
{
|
|
k += 4;
|
|
x <<= 4;
|
|
}
|
|
|
|
if ((x & 0xc0000000) == 0)
|
|
{
|
|
k += 2;
|
|
x <<= 2;
|
|
}
|
|
|
|
if ((x & 0x80000000) == 0)
|
|
{
|
|
k++;
|
|
if ((x & 0x40000000) == 0)
|
|
{
|
|
return 32;
|
|
}
|
|
}
|
|
|
|
return k;
|
|
}
|
|
|
|
static int lo0bits(FAR unsigned long *y)
|
|
{
|
|
unsigned long x = *y;
|
|
int k;
|
|
|
|
if ((x & 7) != 0)
|
|
{
|
|
if (x & 1)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
if ((x & 2) != 0)
|
|
{
|
|
*y = x >> 1;
|
|
return 1;
|
|
}
|
|
|
|
*y = x >> 2;
|
|
return 2;
|
|
}
|
|
|
|
k = 0;
|
|
if ((x & 0xffff) == 0)
|
|
{
|
|
k = 16;
|
|
x >>= 16;
|
|
}
|
|
|
|
if ((x & 0xff) == 0)
|
|
{
|
|
k += 8;
|
|
x >>= 8;
|
|
}
|
|
|
|
if ((x & 0xf) == 0)
|
|
{
|
|
k += 4;
|
|
x >>= 4;
|
|
}
|
|
|
|
if ((x & 0x3) == 0)
|
|
{
|
|
k += 2;
|
|
x >>= 2;
|
|
}
|
|
|
|
if ((x & 1) == 0)
|
|
{
|
|
k++;
|
|
x >>= 1;
|
|
if ((!x & 1) != 0)
|
|
{
|
|
return 32;
|
|
}
|
|
}
|
|
|
|
*y = x;
|
|
return k;
|
|
}
|
|
|
|
static FAR bigint_t *i2b(int i)
|
|
{
|
|
FAR bigint_t *b;
|
|
|
|
b = balloc(1);
|
|
b->x[0] = i;
|
|
b->wds = 1;
|
|
return b;
|
|
}
|
|
|
|
static FAR bigint_t *mult(FAR bigint_t *a, FAR bigint_t *b)
|
|
{
|
|
FAR bigint_t *c;
|
|
FAR unsigned long *x;
|
|
FAR unsigned long *xa;
|
|
FAR unsigned long *xae;
|
|
FAR unsigned long *xb;
|
|
FAR unsigned long *xbe;
|
|
FAR unsigned long *xc;
|
|
FAR unsigned long *xc0;
|
|
unsigned long carry;
|
|
unsigned long y;
|
|
unsigned long z;
|
|
#ifdef CONFIG_DTOA_PACK32
|
|
uint32_t z2;
|
|
#endif
|
|
int k;
|
|
int wa;
|
|
int wb;
|
|
int wc;
|
|
|
|
if (a->wds < b->wds)
|
|
{
|
|
c = a;
|
|
a = b;
|
|
b = c;
|
|
}
|
|
|
|
k = a->k;
|
|
wa = a->wds;
|
|
wb = b->wds;
|
|
wc = wa + wb;
|
|
|
|
if (wc > a->maxwds)
|
|
{
|
|
k++;
|
|
}
|
|
|
|
c = balloc(k);
|
|
for (x = c->x, xa = x + wc; x < xa; x++)
|
|
{
|
|
*x = 0;
|
|
}
|
|
|
|
xa = a->x;
|
|
xae = xa + wa;
|
|
xb = b->x;
|
|
xbe = xb + wb;
|
|
xc0 = c->x;
|
|
|
|
#ifdef CONFIG_DTOA_PACK32
|
|
for (; xb < xbe; xb++, xc0++)
|
|
{
|
|
if ((y = *xb & 0xffff) != 0)
|
|
{
|
|
x = xa;
|
|
xc = xc0;
|
|
carry = 0;
|
|
|
|
do
|
|
{
|
|
z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
|
|
carry = z >> 16;
|
|
z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
|
|
carry = z2 >> 16;
|
|
STOREINC(xc, z2, z);
|
|
}
|
|
while (x < xae);
|
|
|
|
*xc = carry;
|
|
}
|
|
|
|
if ((y = *xb >> 16))
|
|
{
|
|
x = xa;
|
|
xc = xc0;
|
|
carry = 0;
|
|
z2 = *xc;
|
|
|
|
do
|
|
{
|
|
z = (*x & 0xffff) * y + (*xc >> 16) + carry;
|
|
carry = z >> 16;
|
|
STOREINC(xc, z, z2);
|
|
z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
|
|
carry = z2 >> 16;
|
|
}
|
|
while (x < xae);
|
|
|
|
*xc = z2;
|
|
}
|
|
}
|
|
#else
|
|
for (; xb < xbe; xc0++)
|
|
{
|
|
if ((y = *xb++))
|
|
{
|
|
x = xa;
|
|
xc = xc0;
|
|
carry = 0;
|
|
|
|
do
|
|
{
|
|
z = *x++ * y + *xc + carry;
|
|
carry = z >> 16;
|
|
*xc++ = z & 0xffff;
|
|
}
|
|
while (x < xae);
|
|
|
|
*xc = carry;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (xc0 = c->x, xc = xc0 + wc; wc > 0 && *--xc == 0; --wc);
|
|
c->wds = wc;
|
|
return c;
|
|
}
|
|
|
|
static FAR bigint_t *pow5mult(FAR bigint_t *b, int k)
|
|
{
|
|
FAR bigint_t *b1;
|
|
FAR bigint_t *p5;
|
|
FAR bigint_t *p51;
|
|
static int p05[3] =
|
|
{
|
|
5, 25, 125
|
|
};
|
|
int i;
|
|
|
|
if ((i = k & 3) != 0)
|
|
{
|
|
b = multadd(b, p05[i - 1], 0);
|
|
}
|
|
|
|
if ((k >>= 2) == 0)
|
|
{
|
|
return b;
|
|
}
|
|
|
|
if ((p5 = g_p5s) == 0)
|
|
{
|
|
/* First time */
|
|
|
|
g_p5s = i2b(625);
|
|
p5 = g_p5s;
|
|
p5->next = 0;
|
|
}
|
|
|
|
for (; ; )
|
|
{
|
|
if ((k & 1) != 0)
|
|
{
|
|
b1 = mult(b, p5);
|
|
bfree(b);
|
|
b = b1;
|
|
}
|
|
|
|
if ((k >>= 1) == 0)
|
|
{
|
|
break;
|
|
}
|
|
|
|
if ((p51 = p5->next) == 0)
|
|
{
|
|
p5->next = mult(p5, p5);
|
|
p51 = p5->next;
|
|
p51->next = 0;
|
|
}
|
|
|
|
p5 = p51;
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
static FAR bigint_t *lshift(FAR bigint_t *b, int k)
|
|
{
|
|
FAR bigint_t *b1;
|
|
FAR unsigned long *x;
|
|
FAR unsigned long *x1;
|
|
FAR unsigned long *xe;
|
|
unsigned long z;
|
|
int i;
|
|
int k1;
|
|
int n;
|
|
int n1;
|
|
|
|
#ifdef CONFIG_DTOA_PACK32
|
|
n = k >> 5;
|
|
#else
|
|
n = k >> 4;
|
|
#endif
|
|
k1 = b->k;
|
|
n1 = n + b->wds + 1;
|
|
|
|
for (i = b->maxwds; n1 > i; i <<= 1)
|
|
{
|
|
k1++;
|
|
}
|
|
|
|
b1 = balloc(k1);
|
|
x1 = b1->x;
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
*x1++ = 0;
|
|
}
|
|
|
|
x = b->x;
|
|
xe = x + b->wds;
|
|
|
|
#ifdef CONFIG_DTOA_PACK32
|
|
if ((k &= 0x1f) != 0)
|
|
{
|
|
k1 = 32 - k;
|
|
z = 0;
|
|
|
|
do
|
|
{
|
|
*x1++ = *x << k | z;
|
|
z = *x++ >> k1;
|
|
}
|
|
while (x < xe);
|
|
|
|
if ((*x1 = z) != 0)
|
|
{
|
|
++n1;
|
|
}
|
|
}
|
|
#else
|
|
if ((k &= 0xf) != 0)
|
|
{
|
|
k1 = 16 - k;
|
|
z = 0;
|
|
|
|
do
|
|
{
|
|
*x1++ = ((*x << k) & 0xffff) | z;
|
|
z = *x++ >> k1;
|
|
}
|
|
while (x < xe);
|
|
|
|
if ((*x1 = z) != 0)
|
|
{
|
|
++n1;
|
|
}
|
|
}
|
|
#endif
|
|
else
|
|
{
|
|
do
|
|
{
|
|
*x1++ = *x++;
|
|
}
|
|
while (x < xe);
|
|
}
|
|
|
|
b1->wds = n1 - 1;
|
|
bfree(b);
|
|
return b1;
|
|
}
|
|
|
|
static int cmp(FAR bigint_t *a, FAR bigint_t *b)
|
|
{
|
|
FAR unsigned long *xa;
|
|
FAR unsigned long *xa0;
|
|
FAR unsigned long *xb;
|
|
FAR unsigned long *xb0;
|
|
int i;
|
|
int j;
|
|
|
|
i = a->wds;
|
|
j = b->wds;
|
|
|
|
#ifdef CONFIG_DEBUG_LIB
|
|
if (i > 1 && a->x[i - 1] == 0)
|
|
{
|
|
lerr("ERROR: cmp called with a->x[a->wds-1] == 0\n");
|
|
}
|
|
|
|
if (j > 1 && b->x[j - 1] == 0)
|
|
{
|
|
lerr("ERROR: cmp called with b->x[b->wds-1] == 0\n");
|
|
}
|
|
#endif
|
|
|
|
if (i -= j)
|
|
{
|
|
return i;
|
|
}
|
|
|
|
xa0 = a->x;
|
|
xa = xa0 + j;
|
|
xb0 = b->x;
|
|
xb = xb0 + j;
|
|
|
|
for (; ; )
|
|
{
|
|
if (*--xa != *--xb)
|
|
{
|
|
return *xa < *xb ? -1 : 1;
|
|
}
|
|
|
|
if (xa <= xa0)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static FAR bigint_t *diff(FAR bigint_t *a, FAR bigint_t *b)
|
|
{
|
|
FAR bigint_t *c;
|
|
FAR unsigned long *xa;
|
|
FAR unsigned long *xae;
|
|
FAR unsigned long *xb;
|
|
FAR unsigned long *xbe;
|
|
FAR unsigned long *xc;
|
|
long borrow; /* We need signed shifts here. */
|
|
long y;
|
|
#ifdef CONFIG_DTOA_PACK32
|
|
int32_t z;
|
|
#endif
|
|
int i;
|
|
int wa;
|
|
int wb;
|
|
|
|
i = cmp(a, b);
|
|
if (i == 0)
|
|
{
|
|
c = balloc(0);
|
|
c->wds = 1;
|
|
c->x[0] = 0;
|
|
return c;
|
|
}
|
|
|
|
if (i < 0)
|
|
{
|
|
c = a;
|
|
a = b;
|
|
b = c;
|
|
i = 1;
|
|
}
|
|
else
|
|
{
|
|
i = 0;
|
|
}
|
|
|
|
c = balloc(a->k);
|
|
c->sign = i;
|
|
wa = a->wds;
|
|
xa = a->x;
|
|
xae = xa + wa;
|
|
wb = b->wds;
|
|
xb = b->x;
|
|
xbe = xb + wb;
|
|
xc = c->x;
|
|
borrow = 0;
|
|
|
|
#ifdef CONFIG_DTOA_PACK32
|
|
do
|
|
{
|
|
y = (*xa & 0xffff) - (*xb & 0xffff) + borrow;
|
|
borrow = y >> 16;
|
|
SIGN_EXTEND(borrow, y);
|
|
z = (*xa++ >> 16) - (*xb++ >> 16) + borrow;
|
|
borrow = z >> 16;
|
|
SIGN_EXTEND(borrow, z);
|
|
STOREINC(xc, z, y);
|
|
}
|
|
while (xb < xbe);
|
|
|
|
while (xa < xae)
|
|
{
|
|
y = (*xa & 0xffff) + borrow;
|
|
borrow = y >> 16;
|
|
SIGN_EXTEND(borrow, y);
|
|
z = (*xa++ >> 16) + borrow;
|
|
borrow = z >> 16;
|
|
SIGN_EXTEND(borrow, z);
|
|
STOREINC(xc, z, y);
|
|
}
|
|
#else
|
|
do
|
|
{
|
|
y = *xa++ - *xb++ + borrow;
|
|
borrow = y >> 16;
|
|
SIGN_EXTEND(borrow, y);
|
|
*xc++ = y & 0xffff;
|
|
}
|
|
while (xb < xbe);
|
|
|
|
while (xa < xae)
|
|
{
|
|
y = *xa++ + borrow;
|
|
borrow = y >> 16;
|
|
SIGN_EXTEND(borrow, y);
|
|
*xc++ = y & 0xffff;
|
|
}
|
|
#endif
|
|
|
|
while (*--xc == 0)
|
|
{
|
|
wa--;
|
|
}
|
|
|
|
c->wds = wa;
|
|
return c;
|
|
}
|
|
|
|
static FAR bigint_t *d2b(double_t d, int *e, int *bits)
|
|
{
|
|
FAR bigint_t *b;
|
|
FAR unsigned long *x;
|
|
unsigned long y;
|
|
unsigned long z;
|
|
int de;
|
|
int i;
|
|
int k;
|
|
|
|
#ifdef CONFIG_DTOA_PACK32
|
|
b = balloc(1);
|
|
#else
|
|
b = balloc(2);
|
|
#endif
|
|
x = b->x;
|
|
|
|
z = WORD0(d) & FRAC_MASK;
|
|
WORD0(d) &= 0x7fffffff; /* Clear sign bit, which we ignore */
|
|
|
|
de = (int)(WORD0(d) >> EXP_SHIFT);
|
|
if (de != 0)
|
|
{
|
|
z |= EXP_MSK1;
|
|
}
|
|
|
|
#ifdef CONFIG_DTOA_PACK32
|
|
if ((y = WORD1(d)) != 0)
|
|
{
|
|
if ((k = lo0bits(&y)) != 0)
|
|
{
|
|
x[0] = y | z << (32 - k);
|
|
z >>= k;
|
|
}
|
|
else
|
|
{
|
|
x[0] = y;
|
|
}
|
|
|
|
b->wds = (x[1] = z) ? 2 : 1;
|
|
i = b->wds;
|
|
}
|
|
else
|
|
{
|
|
#ifdef CONFIG_DEBUG_LIB
|
|
if (z == 0)
|
|
{
|
|
lerr("ERROR: Zero passed to d2b\n");
|
|
}
|
|
#endif
|
|
|
|
k = lo0bits(&z);
|
|
x[0] = z;
|
|
i = b->wds = 1;
|
|
k += 32;
|
|
}
|
|
#else
|
|
if ((y = WORD1(d)) != 0)
|
|
{
|
|
if ((k = lo0bits(&y)) != 0)
|
|
if (k >= 16)
|
|
{
|
|
x[0] = y | ((z << (32 - k)) & 0xffff);
|
|
x[1] = z >> (k - 16) & 0xffff;
|
|
x[2] = z >> k;
|
|
i = 2;
|
|
}
|
|
else
|
|
{
|
|
x[0] = y & 0xffff;
|
|
x[1] = (y >> 16) | ((z << (16 - k)) & 0xffff);
|
|
x[2] = z >> k & 0xffff;
|
|
x[3] = z >> (k + 16);
|
|
i = 3;
|
|
}
|
|
else
|
|
{
|
|
x[0] = y & 0xffff;
|
|
x[1] = y >> 16;
|
|
x[2] = z & 0xffff;
|
|
x[3] = z >> 16;
|
|
i = 3;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#ifdef CONFIG_DEBUG_LIB
|
|
if (z == 0)
|
|
{
|
|
lerr("ERROR: Zero passed to d2b\n");
|
|
}
|
|
#endif
|
|
k = lo0bits(&z);
|
|
if (k >= 16)
|
|
{
|
|
x[0] = z;
|
|
i = 0;
|
|
}
|
|
else
|
|
{
|
|
x[0] = z & 0xffff;
|
|
x[1] = z >> 16;
|
|
i = 1;
|
|
}
|
|
|
|
k += 32;
|
|
}
|
|
|
|
while (!x[i])
|
|
{
|
|
--i;
|
|
}
|
|
|
|
b->wds = i + 1;
|
|
#endif
|
|
if (de != 0)
|
|
{
|
|
*e = de - BIAS - (P - 1) + k;
|
|
*bits = P - k;
|
|
}
|
|
else
|
|
{
|
|
*e = de - BIAS - (P - 1) + 1 + k;
|
|
#ifdef CONFIG_DTOA_PACK32
|
|
*bits = 32 * i - hi0bits(x[i - 1]);
|
|
#else
|
|
*bits = (i + 2) * 16 - hi0bits(x[i]);
|
|
#endif
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
static const double_t tens[] =
|
|
{
|
|
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
|
|
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
|
|
1e20, 1e21, 1e22
|
|
};
|
|
|
|
static int quorem(FAR bigint_t *b, FAR bigint_t *s)
|
|
{
|
|
long borrow;
|
|
long y;
|
|
unsigned long carry;
|
|
unsigned long q;
|
|
unsigned long ys;
|
|
FAR unsigned long *bx;
|
|
FAR unsigned long *bxe;
|
|
FAR unsigned long *sx;
|
|
FAR unsigned long *sxe;
|
|
#ifdef CONFIG_DTOA_PACK32
|
|
int32_t z;
|
|
uint32_t si;
|
|
uint32_t zs;
|
|
#endif
|
|
int n;
|
|
|
|
n = s->wds;
|
|
|
|
#ifdef CONFIG_DEBUG_LIB
|
|
if (b->wds > n)
|
|
{
|
|
lerr("ERROR: oversize b in quorem\n");
|
|
}
|
|
#endif
|
|
|
|
if (b->wds < n)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
sx = s->x;
|
|
sxe = sx + --n;
|
|
bx = b->x;
|
|
bxe = bx + n;
|
|
q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
|
|
|
|
#ifdef CONFIG_DEBUG_LIB
|
|
if (q > 9)
|
|
{
|
|
lerr("ERROR: oversized quotient in quorem\n");
|
|
}
|
|
#endif
|
|
|
|
if (q != 0)
|
|
{
|
|
borrow = 0;
|
|
carry = 0;
|
|
|
|
do
|
|
{
|
|
#ifdef CONFIG_DTOA_PACK32
|
|
si = *sx++;
|
|
ys = (si & 0xffff) * q + carry;
|
|
zs = (si >> 16) * q + (ys >> 16);
|
|
carry = zs >> 16;
|
|
y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
|
|
borrow = y >> 16;
|
|
SIGN_EXTEND(borrow, y);
|
|
z = (*bx >> 16) - (zs & 0xffff) + borrow;
|
|
borrow = z >> 16;
|
|
SIGN_EXTEND(borrow, z);
|
|
STOREINC(bx, z, y);
|
|
#else
|
|
ys = *sx++ * q + carry;
|
|
carry = ys >> 16;
|
|
y = *bx - (ys & 0xffff) + borrow;
|
|
borrow = y >> 16;
|
|
SIGN_EXTEND(borrow, y);
|
|
*bx++ = y & 0xffff;
|
|
#endif
|
|
}
|
|
while (sx <= sxe);
|
|
|
|
if (*bxe == 0)
|
|
{
|
|
bx = b->x;
|
|
while (--bxe > bx && *bxe == 0)
|
|
{
|
|
--n;
|
|
}
|
|
|
|
b->wds = n;
|
|
}
|
|
}
|
|
|
|
if (cmp(b, s) >= 0)
|
|
{
|
|
q++;
|
|
borrow = 0;
|
|
carry = 0;
|
|
bx = b->x;
|
|
sx = s->x;
|
|
|
|
do
|
|
{
|
|
#ifdef CONFIG_DTOA_PACK32
|
|
si = *sx++;
|
|
ys = (si & 0xffff) + carry;
|
|
zs = (si >> 16) + (ys >> 16);
|
|
carry = zs >> 16;
|
|
y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
|
|
borrow = y >> 16;
|
|
SIGN_EXTEND(borrow, y);
|
|
z = (*bx >> 16) - (zs & 0xffff) + borrow;
|
|
borrow = z >> 16;
|
|
SIGN_EXTEND(borrow, z);
|
|
STOREINC(bx, z, y);
|
|
#else
|
|
ys = *sx++ + carry;
|
|
carry = ys >> 16;
|
|
y = *bx - (ys & 0xffff) + borrow;
|
|
borrow = y >> 16;
|
|
SIGN_EXTEND(borrow, y);
|
|
*bx++ = y & 0xffff;
|
|
#endif
|
|
}
|
|
while (sx <= sxe);
|
|
|
|
bx = b->x;
|
|
bxe = bx + n;
|
|
|
|
if (*bxe == 0)
|
|
{
|
|
while (--bxe > bx && *bxe == 0)
|
|
{
|
|
--n;
|
|
}
|
|
|
|
b->wds = n;
|
|
}
|
|
}
|
|
|
|
return q;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Public Functions
|
|
****************************************************************************/
|
|
|
|
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
|
|
*
|
|
* Inspired by "How to Print Floating-Point Numbers Accurately" by
|
|
* Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
|
|
*
|
|
* Modifications:
|
|
* 1. Rather than iterating, we use a simple numeric overestimate
|
|
* to determine k = floor(log10(d)). We scale relevant
|
|
* quantities using O(log2(k)) rather than O(k) multiplications.
|
|
* 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
|
|
* try to generate digits strictly left to right. Instead, we
|
|
* compute with fewer bits and propagate the carry if necessary
|
|
* when rounding the final digit up. This is often faster.
|
|
* 3. Under the assumption that input will be rounded nearest,
|
|
* mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
|
|
* That is, we allow equality in stopping tests when the
|
|
* round-nearest rule will give the same floating-point value
|
|
* as would satisfaction of the stopping test with strict
|
|
* inequality.
|
|
* 4. We remove common factors of powers of 2 from relevant
|
|
* quantities.
|
|
* 5. When converting floating-point integers less than 1e16,
|
|
* we use floating-point arithmetic rather than resorting
|
|
* to multiple-precision integers.
|
|
* 6. When asked to produce fewer than 15 digits, we first try
|
|
* to get by with floating-point arithmetic; we resort to
|
|
* multiple-precision integer arithmetic only if we cannot
|
|
* guarantee that the floating-point calculation has given
|
|
* the correctly rounded result. For k requested digits and
|
|
* "uniformly" distributed input, the probability is
|
|
* something like 10^(k-15) that we must resort to the int32_t
|
|
* calculation.
|
|
*/
|
|
|
|
FAR char *__dtoa(double_t d, int mode, int ndigits, FAR int *decpt,
|
|
FAR int *sign, FAR char **rve)
|
|
{
|
|
/* Arguments ndigits, decpt, sign are similar to those of ecvt and fcvt;
|
|
* trailing zeros are suppressed from the returned string. If not null,
|
|
* *rve is set to point to the end of the return value. If d is +-Infinity
|
|
* or NaN, then *decpt is set to 9999.
|
|
*
|
|
* mode: 0 ==> shortest string that yields d when read in and rounded to
|
|
* nearest. 1 ==> like 0, but with Steele & White stopping rule; e.g. with
|
|
* IEEE P754 arithmetic , mode 0 gives 1e23 whereas mode 1 gives
|
|
* 9.999999999999999e22. 2 ==> max(1,ndigits) significant digits. This
|
|
* gives a return value similar to that of ecvt, except that trailing zeros
|
|
* are suppressed. 3 ==> through ndigits past the decimal point. This
|
|
* gives a return value similar to that from fcvt, except that trailing
|
|
* zeros are suppressed, and ndigits can be negative. 4-9 should give the
|
|
* same return values as 2-3, i.e., 4 <= mode <= 9 ==> same return as mode
|
|
* 2 + (mode & 1). These modes are mainly for debugging; often they run
|
|
* slower but sometimes faster than modes 2-3. 4,5,8,9 ==> left-to-right
|
|
* digit generation. 6-9 ==> don't try fast floating-point estimate (if
|
|
* applicable).
|
|
*
|
|
* Values of mode other than 0-9 are treated as mode 0.
|
|
*
|
|
* Sufficient space is allocated to the return value to hold the suppressed
|
|
* trailing zeros.
|
|
*/
|
|
|
|
static FAR bigint_t *result;
|
|
static int result_k;
|
|
FAR bigint_t *b;
|
|
FAR bigint_t *b1;
|
|
FAR bigint_t *delta;
|
|
FAR bigint_t *mlo = NULL;
|
|
FAR bigint_t *mhi;
|
|
FAR bigint_t *s;
|
|
FAR char *st;
|
|
FAR char *st0;
|
|
double_t d2;
|
|
double_t ds;
|
|
double_t eps;
|
|
long l;
|
|
unsigned long x;
|
|
int denorm;
|
|
int bbits;
|
|
int b2;
|
|
int b5;
|
|
int be;
|
|
int dig;
|
|
int i;
|
|
int ieps;
|
|
int ilim = 0;
|
|
int ilim0;
|
|
int ilim1 = 0;
|
|
int j;
|
|
int j_1;
|
|
int k;
|
|
int k0;
|
|
int k_check;
|
|
int leftright;
|
|
int m2;
|
|
int m5;
|
|
int s2;
|
|
int s5;
|
|
int spec_case = 0;
|
|
int try_quick;
|
|
|
|
if (result != 0)
|
|
{
|
|
result->k = result_k;
|
|
result->maxwds = 1 << result_k;
|
|
bfree(result);
|
|
result = 0;
|
|
}
|
|
|
|
if ((WORD0(d) & SIGN_BIT) != 0)
|
|
{
|
|
/* Set sign for everything, including 0's and NaNs */
|
|
|
|
*sign = 1;
|
|
WORD0(d) &= ~SIGN_BIT; /* clear sign bit */
|
|
}
|
|
else
|
|
{
|
|
*sign = 0;
|
|
}
|
|
|
|
#if defined(IEEE_ARITH)
|
|
# ifdef IEEE_ARITH
|
|
if ((WORD0(d) & EXP_MASK) == EXP_MASK)
|
|
#else
|
|
if (WORD0(d) == 0x8000)
|
|
#endif
|
|
{
|
|
/* Infinity or NaN */
|
|
|
|
*decpt = 9999;
|
|
st =
|
|
#ifdef IEEE_ARITH
|
|
!WORD1(d) && !(WORD0(d) & 0xfffff) ? "Infinity" :
|
|
#endif
|
|
"NaN";
|
|
|
|
if (rve != NULL)
|
|
{
|
|
*rve =
|
|
#ifdef IEEE_ARITH
|
|
st[3] ? st + 8 :
|
|
#endif
|
|
st + 3;
|
|
}
|
|
|
|
return st;
|
|
}
|
|
#endif
|
|
|
|
if (d == 0)
|
|
{
|
|
*decpt = 1;
|
|
st = "0";
|
|
|
|
if (rve != NULL)
|
|
{
|
|
*rve = st + 1;
|
|
}
|
|
|
|
return st;
|
|
}
|
|
|
|
b = d2b(d, &be, &bbits);
|
|
i = (int)(WORD0(d) >> EXP_SHIFT1 & (EXP_MASK >> EXP_SHIFT1));
|
|
if (i != 0)
|
|
{
|
|
d2 = d;
|
|
WORD0(d2) &= FRAC_MASK1;
|
|
WORD0(d2) |= EXP_11;
|
|
|
|
/* log(x) ~=~ log(1.5) + (x-1.5)/1.5 log10(x) = log(x) / log(10) ~=~
|
|
* log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) log10(d) =
|
|
* (i-BIAS)*log(2)/log(10) + log10(d2) This suggests computing an
|
|
* approximation k to log10(d) by k = (i - BIAS)*0.301029995663981 + (
|
|
* (d2-1.5)*0.289529654602168 + 0.176091259055681 ); We want k to be
|
|
* too large rather than too small. The error in the first-order Taylor
|
|
* series approximation is in our favor, so we just round up the
|
|
* constant enough to compensate for any error in the multiplication of
|
|
* (i - BIAS) by 0.301029995663981; since |i - BIAS| <= 1077, and
|
|
* 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, adding 1e-13 to the constant
|
|
* term more than suffices. Hence we adjust the constant term to
|
|
* 0.1760912590558. (We could get a more accurate k by invoking log10,
|
|
* but this is probably not worthwhile.)
|
|
*/
|
|
|
|
i -= BIAS;
|
|
denorm = 0;
|
|
}
|
|
else
|
|
{
|
|
/* d is denormalized */
|
|
|
|
i = bbits + be + (BIAS + (P - 1) - 1);
|
|
x = i > 32 ? WORD0(d) << (64 - i) | WORD1(d) >> (i - 32) :
|
|
WORD1(d) << (32 - i);
|
|
d2 = x;
|
|
WORD0(d2) -= 31 * EXP_MSK1; /* Adjust exponent */
|
|
i -= (BIAS + (P - 1) - 1) + 1;
|
|
denorm = 1;
|
|
}
|
|
|
|
ds = (d2 - 1.5) * 0.289529654602168 + 0.1760912590558 +
|
|
i * 0.301029995663981;
|
|
k = (int)ds;
|
|
|
|
if (ds < 0. && ds != k)
|
|
{
|
|
k--; /* Want k = floor(ds) */
|
|
}
|
|
|
|
k_check = 1;
|
|
|
|
if (k >= 0 && k <= TEN_PMAX)
|
|
{
|
|
if (d < tens[k])
|
|
{
|
|
k--;
|
|
}
|
|
|
|
k_check = 0;
|
|
}
|
|
|
|
j = bbits - i - 1;
|
|
if (j >= 0)
|
|
{
|
|
b2 = 0;
|
|
s2 = j;
|
|
}
|
|
else
|
|
{
|
|
b2 = -j;
|
|
s2 = 0;
|
|
}
|
|
|
|
if (k >= 0)
|
|
{
|
|
b5 = 0;
|
|
s5 = k;
|
|
s2 += k;
|
|
}
|
|
else
|
|
{
|
|
b2 -= k;
|
|
b5 = -k;
|
|
s5 = 0;
|
|
}
|
|
|
|
if (mode < 0 || mode > 9)
|
|
{
|
|
mode = 0;
|
|
}
|
|
|
|
try_quick = 1;
|
|
if (mode > 5)
|
|
{
|
|
mode -= 4;
|
|
try_quick = 0;
|
|
}
|
|
|
|
leftright = 1;
|
|
switch (mode)
|
|
{
|
|
case 0:
|
|
case 1:
|
|
ilim = ilim1 = -1;
|
|
i = 18;
|
|
ndigits = 0;
|
|
break;
|
|
|
|
case 2:
|
|
leftright = 0;
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case 4:
|
|
if (ndigits <= 0)
|
|
{
|
|
ndigits = 1;
|
|
}
|
|
|
|
i = ndigits;
|
|
ilim1 = i;
|
|
ilim = i;
|
|
break;
|
|
|
|
case 3:
|
|
leftright = 0;
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case 5:
|
|
i = ndigits + k + 1;
|
|
ilim = i;
|
|
ilim1 = i - 1;
|
|
|
|
if (i <= 0)
|
|
{
|
|
i = 1;
|
|
}
|
|
}
|
|
|
|
j = sizeof(unsigned long);
|
|
for (result_k = 0;
|
|
(signed)(sizeof(bigint_t) - sizeof(unsigned long) + j) <= i;
|
|
j <<= 1)
|
|
{
|
|
result_k++;
|
|
}
|
|
|
|
result = balloc(result_k);
|
|
st0 = (FAR char *)result;
|
|
st = st0;
|
|
|
|
if (ilim >= 0 && ilim <= QUICK_MAX && try_quick)
|
|
{
|
|
/* Try to get by with floating-point arithmetic. */
|
|
|
|
i = 0;
|
|
d2 = d;
|
|
k0 = k;
|
|
ilim0 = ilim;
|
|
ieps = 2; /* Conservative */
|
|
|
|
if (k > 0)
|
|
{
|
|
ds = tens[k & 0xf];
|
|
j = k >> 4;
|
|
|
|
if ((j & BLETCH) != 0)
|
|
{
|
|
/* Prevent overflows */
|
|
|
|
j &= BLETCH - 1;
|
|
d /= g_bigtens[n_bigtens - 1];
|
|
ieps++;
|
|
}
|
|
|
|
for (; j; j >>= 1, i++)
|
|
{
|
|
if (j & 1)
|
|
{
|
|
ieps++;
|
|
ds *= g_bigtens[i];
|
|
}
|
|
}
|
|
|
|
d /= ds;
|
|
}
|
|
else if ((j_1 = -k))
|
|
{
|
|
d *= tens[j_1 & 0xf];
|
|
for (j = j_1 >> 4; j; j >>= 1, i++)
|
|
{
|
|
if ((j & 1) != 0)
|
|
{
|
|
ieps++;
|
|
d *= g_bigtens[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (k_check && d < 1. && ilim > 0)
|
|
{
|
|
if (ilim1 <= 0)
|
|
{
|
|
goto fast_failed;
|
|
}
|
|
|
|
ilim = ilim1;
|
|
k--;
|
|
d *= 10.;
|
|
ieps++;
|
|
}
|
|
|
|
eps = ieps * d + 7.;
|
|
WORD0(eps) -= (P - 1) * EXP_MSK1;
|
|
|
|
if (ilim == 0)
|
|
{
|
|
mhi = 0;
|
|
s = 0;
|
|
d -= 5.;
|
|
|
|
if (d > eps)
|
|
{
|
|
goto one_digit;
|
|
}
|
|
|
|
if (d < -eps)
|
|
{
|
|
goto no_digits;
|
|
}
|
|
|
|
goto fast_failed;
|
|
}
|
|
|
|
#ifndef CONFIG_DTOA_NO_LEFTRIGHT
|
|
if (leftright)
|
|
{
|
|
/* Use Steele & White method of only generating digits needed. */
|
|
|
|
eps = 0.5 / tens[ilim - 1] - eps;
|
|
for (i = 0; ; )
|
|
{
|
|
l = (int)d;
|
|
d -= l;
|
|
*st++ = '0' + (int)l;
|
|
|
|
if (d < eps)
|
|
{
|
|
goto ret1;
|
|
}
|
|
|
|
if (1. - d < eps)
|
|
{
|
|
goto bump_up;
|
|
}
|
|
|
|
if (++i >= ilim)
|
|
{
|
|
break;
|
|
}
|
|
|
|
eps *= 10.;
|
|
d *= 10.;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#endif
|
|
/* Generate ilim digits, then fix them up. */
|
|
|
|
eps *= tens[ilim - 1];
|
|
for (i = 1; ; i++, d *= 10.)
|
|
{
|
|
l = (int)d;
|
|
d -= l;
|
|
*st++ = '0' + (int)l;
|
|
|
|
if (i == ilim)
|
|
{
|
|
if (d > 0.5 + eps)
|
|
{
|
|
goto bump_up;
|
|
}
|
|
else if (d < 0.5 - eps)
|
|
{
|
|
while (*--st == '0')
|
|
{
|
|
}
|
|
|
|
st++;
|
|
goto ret1;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
#ifndef CONFIG_DTOA_NO_LEFTRIGHT
|
|
}
|
|
#endif
|
|
|
|
fast_failed:
|
|
st = st0;
|
|
d = d2;
|
|
k = k0;
|
|
ilim = ilim0;
|
|
}
|
|
|
|
/* Do we have a "small" integer? */
|
|
|
|
if (be >= 0 && k <= SMALL_MAX)
|
|
{
|
|
/* Yes. */
|
|
|
|
ds = tens[k];
|
|
if (ndigits < 0 && ilim <= 0)
|
|
{
|
|
s = mhi = 0;
|
|
if (ilim < 0 || d <= 5 * ds)
|
|
{
|
|
goto no_digits;
|
|
}
|
|
|
|
goto one_digit;
|
|
}
|
|
|
|
for (i = 1; ; i++)
|
|
{
|
|
l = (int)(d / ds);
|
|
d -= l * ds;
|
|
|
|
#ifdef Check_FLT_ROUNDS
|
|
/* If FLT_ROUNDS == 2, l will usually be high by 1 */
|
|
|
|
if (d < 0)
|
|
{
|
|
l--;
|
|
d += ds;
|
|
}
|
|
#endif
|
|
*st++ = '0' + (int)l;
|
|
if (i == ilim)
|
|
{
|
|
d += d;
|
|
if (d > ds || (d == ds && (l & 1)))
|
|
{
|
|
bump_up:
|
|
while (*--st == '9')
|
|
{
|
|
if (st == st0)
|
|
{
|
|
k++;
|
|
*st = '0';
|
|
break;
|
|
}
|
|
}
|
|
|
|
++*st++;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
if ((d *= 10.) == 0)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
goto ret1;
|
|
}
|
|
|
|
m2 = b2;
|
|
m5 = b5;
|
|
mhi = mlo = 0;
|
|
|
|
if (leftright)
|
|
{
|
|
if (mode < 2)
|
|
{
|
|
i = denorm ? be + (BIAS + (P - 1) - 1 + 1) : 1 + P - bbits;
|
|
}
|
|
else
|
|
{
|
|
j = ilim - 1;
|
|
if (m5 >= j)
|
|
{
|
|
m5 -= j;
|
|
}
|
|
else
|
|
{
|
|
s5 += j -= m5;
|
|
b5 += j;
|
|
m5 = 0;
|
|
}
|
|
|
|
if ((i = ilim) < 0)
|
|
{
|
|
m2 -= i;
|
|
i = 0;
|
|
}
|
|
}
|
|
|
|
b2 += i;
|
|
s2 += i;
|
|
mhi = i2b(1);
|
|
}
|
|
|
|
if (m2 > 0 && s2 > 0)
|
|
{
|
|
i = m2 < s2 ? m2 : s2;
|
|
b2 -= i;
|
|
m2 -= i;
|
|
s2 -= i;
|
|
}
|
|
|
|
if (b5 > 0)
|
|
{
|
|
if (leftright)
|
|
{
|
|
if (m5 > 0)
|
|
{
|
|
mhi = pow5mult(mhi, m5);
|
|
b1 = mult(mhi, b);
|
|
bfree(b);
|
|
b = b1;
|
|
}
|
|
|
|
if ((j = b5 - m5) != 0)
|
|
{
|
|
b = pow5mult(b, j);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
b = pow5mult(b, b5);
|
|
}
|
|
}
|
|
|
|
s = i2b(1);
|
|
if (s5 > 0)
|
|
{
|
|
s = pow5mult(s, s5);
|
|
}
|
|
|
|
/* Check for special case that d is a normalized power of 2. */
|
|
|
|
if (mode < 2)
|
|
{
|
|
if (WORD1(d) == 0 && (WORD0(d) & BNDRY_MASK) == 0 &&
|
|
(WORD0(d) & EXP_MASK) != 0)
|
|
{
|
|
/* The special case */
|
|
|
|
b2 += LOG2P;
|
|
s2 += LOG2P;
|
|
spec_case = 1;
|
|
}
|
|
else
|
|
{
|
|
spec_case = 0;
|
|
}
|
|
}
|
|
|
|
/* Arrange for convenient computation of quotients: shift left if
|
|
* necessary so divisor has 4 leading 0 bits.
|
|
*
|
|
* Perhaps we should just compute leading 28 bits of s once and for all
|
|
* and pass them and a shift to quorem, so it can do shifts and ors
|
|
* to compute the numerator for q.
|
|
*/
|
|
|
|
#ifdef CONFIG_DTOA_PACK32
|
|
i = ((s5 ? 32 - hi0bits(s->x[s->wds - 1]) : 1) + s2) & 0x1f;
|
|
if (i != 0)
|
|
{
|
|
i = 32 - i;
|
|
}
|
|
#else
|
|
i = ((s5 ? 32 - hi0bits(s->x[s->wds - 1]) : 1) + s2) & 0xf;
|
|
if (i != 0)
|
|
{
|
|
i = 16 - i;
|
|
}
|
|
#endif
|
|
|
|
if (i > 4)
|
|
{
|
|
i -= 4;
|
|
b2 += i;
|
|
m2 += i;
|
|
s2 += i;
|
|
}
|
|
else if (i < 4)
|
|
{
|
|
i += 28;
|
|
b2 += i;
|
|
m2 += i;
|
|
s2 += i;
|
|
}
|
|
|
|
if (b2 > 0)
|
|
{
|
|
b = lshift(b, b2);
|
|
}
|
|
|
|
if (s2 > 0)
|
|
{
|
|
s = lshift(s, s2);
|
|
}
|
|
|
|
if (k_check)
|
|
{
|
|
if (cmp(b, s) < 0)
|
|
{
|
|
k--;
|
|
b = multadd(b, 10, 0); /* we botched the k estimate */
|
|
if (leftright)
|
|
{
|
|
mhi = multadd(mhi, 10, 0);
|
|
}
|
|
|
|
ilim = ilim1;
|
|
}
|
|
}
|
|
|
|
if (ilim <= 0 && mode > 2)
|
|
{
|
|
if (ilim < 0 || cmp(b, s = multadd(s, 5, 0)) <= 0)
|
|
{
|
|
/* no digits, fcvt style */
|
|
|
|
no_digits:
|
|
k = -1 - ndigits;
|
|
goto ret;
|
|
}
|
|
|
|
one_digit:
|
|
*st++ = '1';
|
|
k++;
|
|
goto ret;
|
|
}
|
|
|
|
if (leftright)
|
|
{
|
|
if (m2 > 0)
|
|
{
|
|
mhi = lshift(mhi, m2);
|
|
}
|
|
|
|
/* Compute mlo -- check for special case that d is a normalized power of
|
|
* 2.
|
|
*/
|
|
|
|
mlo = mhi;
|
|
if (spec_case)
|
|
{
|
|
mhi = balloc(mhi->k);
|
|
BCOPY(mhi, mlo);
|
|
mhi = lshift(mhi, LOG2P);
|
|
}
|
|
|
|
for (i = 1; ; i++)
|
|
{
|
|
dig = quorem(b, s) + '0';
|
|
|
|
/* Do we yet have the shortest decimal string that will round to d? */
|
|
|
|
j = cmp(b, mlo);
|
|
delta = diff(s, mhi);
|
|
j_1 = delta->sign ? 1 : cmp(b, delta);
|
|
bfree(delta);
|
|
#ifndef CONFIG_DTOA_ROUND_BIASED
|
|
if (j_1 == 0 && !mode && !(WORD1(d) & 1))
|
|
{
|
|
if (dig == '9')
|
|
{
|
|
goto round_9_up;
|
|
}
|
|
|
|
if (j > 0)
|
|
{
|
|
dig++;
|
|
}
|
|
|
|
*st++ = dig;
|
|
goto ret;
|
|
}
|
|
#endif
|
|
if (j < 0 || (j == 0 && !mode
|
|
#ifndef CONFIG_DTOA_ROUND_BIASED
|
|
&& ((WORD1(d) & 1) == 0)
|
|
#endif
|
|
))
|
|
{
|
|
if ((j_1 > 0))
|
|
{
|
|
b = lshift(b, 1);
|
|
j_1 = cmp(b, s);
|
|
|
|
if ((j_1 > 0 || (j_1 == 0 && (dig & 1))) && dig++ == '9')
|
|
{
|
|
goto round_9_up;
|
|
}
|
|
}
|
|
|
|
*st++ = dig;
|
|
goto ret;
|
|
}
|
|
|
|
if (j_1 > 0)
|
|
{
|
|
if (dig == '9')
|
|
{
|
|
/* Possible if i == 1 */
|
|
|
|
round_9_up:
|
|
*st++ = '9';
|
|
goto roundoff;
|
|
}
|
|
|
|
*st++ = dig + 1;
|
|
goto ret;
|
|
}
|
|
|
|
*st++ = dig;
|
|
if (i == ilim)
|
|
{
|
|
break;
|
|
}
|
|
|
|
b = multadd(b, 10, 0);
|
|
if (mlo == mhi)
|
|
{
|
|
mhi = multadd(mhi, 10, 0);
|
|
mlo = mhi;
|
|
}
|
|
else
|
|
{
|
|
mlo = multadd(mlo, 10, 0);
|
|
mhi = multadd(mhi, 10, 0);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i = 1; ; i++)
|
|
{
|
|
*st++ = dig = quorem(b, s) + '0';
|
|
if (i >= ilim)
|
|
{
|
|
break;
|
|
}
|
|
|
|
b = multadd(b, 10, 0);
|
|
}
|
|
}
|
|
|
|
/* Round off last digit */
|
|
|
|
b = lshift(b, 1);
|
|
j = cmp(b, s);
|
|
|
|
if (j > 0 || (j == 0 && (dig & 1)))
|
|
{
|
|
roundoff:
|
|
while (*--st == '9')
|
|
{
|
|
if (st == st0)
|
|
{
|
|
k++;
|
|
*st++ = '1';
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
++*st++;
|
|
}
|
|
else
|
|
{
|
|
while (*--st == '0')
|
|
{
|
|
}
|
|
|
|
st++;
|
|
}
|
|
|
|
ret:
|
|
bfree(s);
|
|
if (mhi)
|
|
{
|
|
if (mlo && mlo != mhi)
|
|
{
|
|
bfree(mlo);
|
|
}
|
|
|
|
bfree(mhi);
|
|
}
|
|
|
|
ret1:
|
|
bfree(b);
|
|
if (st == st0)
|
|
{
|
|
/* Don't return empty string */
|
|
|
|
*st++ = '0';
|
|
k = 0;
|
|
}
|
|
|
|
*st = 0;
|
|
*decpt = k + 1;
|
|
if (rve != NULL)
|
|
{
|
|
*rve = st;
|
|
}
|
|
|
|
return st0;
|
|
}
|