20ebe0e64c
Signed-off-by: yinshengkai <yinshengkai@xiaomi.com>
4037 lines
102 KiB
C
4037 lines
102 KiB
C
/****************************************************************************
|
|
* libs/libc/regex/regcomp.c
|
|
*
|
|
* regcomp.c - TRE POSIX compatible regex compilation functions.
|
|
*
|
|
* Copyright (c) 2001-2009 Ville Laurikari <vl@iki.fi>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <regex.h>
|
|
#include <limits.h>
|
|
#include <stdint.h>
|
|
#include <ctype.h>
|
|
|
|
#include "tre.h"
|
|
|
|
#include <assert.h>
|
|
|
|
/* from tre-compile.h
|
|
*/
|
|
|
|
/****************************************************************************
|
|
* Public Functions
|
|
****************************************************************************/
|
|
|
|
typedef struct
|
|
{
|
|
int position;
|
|
int code_min;
|
|
int code_max;
|
|
int *tags;
|
|
int assertions;
|
|
tre_ctype_t class;
|
|
tre_ctype_t *neg_classes;
|
|
int backref;
|
|
} tre_pos_and_tags_t;
|
|
|
|
/* from tre-ast.c and tre-ast.h
|
|
*/
|
|
|
|
/* The different AST node types. */
|
|
|
|
typedef enum
|
|
{
|
|
LITERAL,
|
|
CATENATION,
|
|
ITERATION,
|
|
UNION
|
|
} tre_ast_type_t;
|
|
|
|
/* Special subtypes of TRE_LITERAL.
|
|
*/
|
|
#define EMPTY -1 /* Empty leaf (denotes empty string). */
|
|
#define ASSERTION -2 /* Assertion leaf. */
|
|
#define TAG -3 /* Tag leaf. */
|
|
#define BACKREF -4 /* Back reference leaf. */
|
|
|
|
#define IS_SPECIAL(x) ((x)->code_min < 0)
|
|
#define IS_EMPTY(x) ((x)->code_min == EMPTY)
|
|
#define IS_ASSERTION(x) ((x)->code_min == ASSERTION)
|
|
#define IS_TAG(x) ((x)->code_min == TAG)
|
|
#define IS_BACKREF(x) ((x)->code_min == BACKREF)
|
|
|
|
/* A generic AST node. All AST nodes consist of this node on the top
|
|
* level with `obj' pointing to the actual content.
|
|
*/
|
|
|
|
typedef struct
|
|
{
|
|
tre_ast_type_t type; /* Type of the node. */
|
|
void *obj; /* Pointer to actual node. */
|
|
int nullable;
|
|
int submatch_id;
|
|
int num_submatches;
|
|
int num_tags;
|
|
tre_pos_and_tags_t *firstpos;
|
|
tre_pos_and_tags_t *lastpos;
|
|
} tre_ast_node_t;
|
|
|
|
/* A "literal" node. These are created for assertions, back references,
|
|
* tags, matching parameter settings, and all expressions that match one
|
|
* character.
|
|
*/
|
|
|
|
typedef struct
|
|
{
|
|
long code_min;
|
|
long code_max;
|
|
int position;
|
|
tre_ctype_t class;
|
|
tre_ctype_t *neg_classes;
|
|
} tre_literal_t;
|
|
|
|
/* A "catenation" node. These are created when two regexps are concatenated.
|
|
* If there are more than one subexpressions in sequence, the `left' part
|
|
* holds all but the last, and `right' part holds the last subexpression
|
|
* (catenation is left associative).
|
|
*/
|
|
|
|
typedef struct
|
|
{
|
|
tre_ast_node_t *left;
|
|
tre_ast_node_t *right;
|
|
} tre_catenation_t;
|
|
|
|
/* An "iteration" node. These are created for the "*", "+", "?", and "{m,n}"
|
|
* operators.
|
|
*/
|
|
|
|
typedef struct
|
|
{
|
|
/* Subexpression to match. */
|
|
|
|
tre_ast_node_t *arg;
|
|
|
|
/* Minimum number of consecutive matches. */
|
|
|
|
int min;
|
|
|
|
/* Maximum number of consecutive matches. */
|
|
|
|
int max;
|
|
|
|
/* If 0, match as many characters as possible, if 1 match as few as
|
|
* possible. Note that this does not always mean the same thing as
|
|
* matching as many/few repetitions as possible.
|
|
*/
|
|
|
|
unsigned int minimal : 1;
|
|
} tre_iteration_t;
|
|
|
|
/* An "union" node. These are created for the "|" operator. */
|
|
|
|
typedef struct
|
|
{
|
|
tre_ast_node_t *left;
|
|
tre_ast_node_t *right;
|
|
} tre_union_t;
|
|
|
|
static tre_ast_node_t *tre_ast_new_node(tre_mem_t mem, int type, void *obj)
|
|
{
|
|
tre_ast_node_t *node = tre_mem_calloc(mem, sizeof *node);
|
|
|
|
if (!node || !obj)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
node->obj = obj;
|
|
node->type = type;
|
|
node->nullable = -1;
|
|
node->submatch_id = -1;
|
|
return node;
|
|
}
|
|
|
|
static tre_ast_node_t *tre_ast_new_literal(tre_mem_t mem, int code_min,
|
|
int code_max, int position)
|
|
{
|
|
tre_ast_node_t *node;
|
|
tre_literal_t *lit;
|
|
|
|
lit = tre_mem_calloc(mem, sizeof *lit);
|
|
node = tre_ast_new_node(mem, LITERAL, lit);
|
|
if (!node)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
lit->code_min = code_min;
|
|
lit->code_max = code_max;
|
|
lit->position = position;
|
|
return node;
|
|
}
|
|
|
|
static tre_ast_node_t *tre_ast_new_iter(tre_mem_t mem, tre_ast_node_t *arg,
|
|
int min, int max, int minimal)
|
|
{
|
|
tre_ast_node_t *node;
|
|
tre_iteration_t *iter;
|
|
|
|
iter = tre_mem_calloc(mem, sizeof *iter);
|
|
node = tre_ast_new_node(mem, ITERATION, iter);
|
|
if (!node)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
iter->arg = arg;
|
|
iter->min = min;
|
|
iter->max = max;
|
|
iter->minimal = minimal;
|
|
node->num_submatches = arg->num_submatches;
|
|
return node;
|
|
}
|
|
|
|
static tre_ast_node_t *tre_ast_new_union(tre_mem_t mem, tre_ast_node_t *left,
|
|
tre_ast_node_t *right)
|
|
{
|
|
tre_ast_node_t *node;
|
|
tre_union_t *un;
|
|
|
|
if (!left)
|
|
{
|
|
return right;
|
|
}
|
|
|
|
un = tre_mem_calloc(mem, sizeof *un);
|
|
node = tre_ast_new_node(mem, UNION, un);
|
|
if (!node || !right)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
un->left = left;
|
|
un->right = right;
|
|
node->num_submatches = left->num_submatches + right->num_submatches;
|
|
return node;
|
|
}
|
|
|
|
static tre_ast_node_t *tre_ast_new_catenation(tre_mem_t mem,
|
|
tre_ast_node_t *left,
|
|
tre_ast_node_t *right)
|
|
{
|
|
tre_ast_node_t *node;
|
|
tre_catenation_t *cat;
|
|
|
|
if (!left)
|
|
{
|
|
return right;
|
|
}
|
|
|
|
cat = tre_mem_calloc(mem, sizeof *cat);
|
|
node = tre_ast_new_node(mem, CATENATION, cat);
|
|
if (!node)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
cat->left = left;
|
|
cat->right = right;
|
|
node->num_submatches = left->num_submatches + right->num_submatches;
|
|
return node;
|
|
}
|
|
|
|
/* from tre-stack.c and tre-stack.h
|
|
*/
|
|
|
|
typedef struct tre_stack_rec tre_stack_t;
|
|
|
|
/* Creates a new stack object. `size' is initial size in bytes, `max_size'
|
|
* is maximum size, and `increment' specifies how much more space will be
|
|
* allocated with realloc() if all space gets used up. Returns the stack
|
|
* object or NULL if out of memory.
|
|
*/
|
|
|
|
static tre_stack_t *tre_stack_new(int size, int max_size, int increment);
|
|
|
|
/* Frees the stack object. */
|
|
|
|
static void tre_stack_destroy(tre_stack_t *s);
|
|
|
|
/* Returns the current number of objects in the stack. */
|
|
|
|
static int tre_stack_num_objects(tre_stack_t *s);
|
|
|
|
/* Each tre_stack_push_*(tre_stack_t *s, <type> value) function pushes
|
|
* `value' on top of stack `s'. Returns REG_ESPACE if out of memory.
|
|
* This tries to realloc() more space before failing if maximum size
|
|
* has not yet been reached. Returns REG_OK if successful.
|
|
*/
|
|
|
|
#define declare_pushf(typetag, type) \
|
|
static reg_errcode_t tre_stack_push_ ## typetag(tre_stack_t * s, type value)
|
|
|
|
declare_pushf(voidptr, void *);
|
|
declare_pushf(int, int);
|
|
|
|
/* Each tre_stack_pop_*(tre_stack_t *s) function pops the topmost
|
|
* element off of stack `s' and returns it. The stack must not be
|
|
* empty.
|
|
*/
|
|
|
|
#define declare_popf(typetag, type) \
|
|
static type tre_stack_pop_ ## typetag(tre_stack_t * s)
|
|
|
|
declare_popf(voidptr, void *);
|
|
declare_popf(int, int);
|
|
|
|
/* Just to save some typing. */
|
|
#define STACK_PUSH(s, typetag, value) \
|
|
do \
|
|
{ \
|
|
status = tre_stack_push_ ## typetag(s, value); \
|
|
} \
|
|
while (/* CONSTCOND */ 0)
|
|
|
|
#define STACK_PUSHX(s, typetag, value) \
|
|
{ \
|
|
status = tre_stack_push_ ## typetag(s, value); \
|
|
if (status != REG_OK) \
|
|
break; \
|
|
}
|
|
|
|
#define STACK_PUSHR(s, typetag, value) \
|
|
{ \
|
|
reg_errcode_t _status; \
|
|
_status = tre_stack_push_ ## typetag(s, value); \
|
|
if (_status != REG_OK) \
|
|
return _status; \
|
|
}
|
|
|
|
union tre_stack_item
|
|
{
|
|
void *voidptr_value;
|
|
int int_value;
|
|
};
|
|
|
|
struct tre_stack_rec
|
|
{
|
|
int size;
|
|
int max_size;
|
|
int increment;
|
|
int ptr;
|
|
union tre_stack_item *stack;
|
|
};
|
|
|
|
static tre_stack_t *tre_stack_new(int size, int max_size, int increment)
|
|
{
|
|
tre_stack_t *s;
|
|
|
|
s = xmalloc(sizeof(*s));
|
|
if (s != NULL)
|
|
{
|
|
s->stack = xmalloc(sizeof(*s->stack) * size);
|
|
if (s->stack == NULL)
|
|
{
|
|
xfree(s);
|
|
return NULL;
|
|
}
|
|
|
|
s->size = size;
|
|
s->max_size = max_size;
|
|
s->increment = increment;
|
|
s->ptr = 0;
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
static void tre_stack_destroy(tre_stack_t *s)
|
|
{
|
|
xfree(s->stack);
|
|
xfree(s);
|
|
}
|
|
|
|
static int tre_stack_num_objects(tre_stack_t *s)
|
|
{
|
|
return s->ptr;
|
|
}
|
|
|
|
static reg_errcode_t tre_stack_push(tre_stack_t *s,
|
|
union tre_stack_item value)
|
|
{
|
|
if (s->ptr < s->size)
|
|
{
|
|
s->stack[s->ptr] = value;
|
|
s->ptr++;
|
|
}
|
|
else
|
|
{
|
|
if (s->size >= s->max_size)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
else
|
|
{
|
|
union tre_stack_item *new_buffer;
|
|
int new_size;
|
|
new_size = s->size + s->increment;
|
|
if (new_size > s->max_size)
|
|
{
|
|
new_size = s->max_size;
|
|
}
|
|
|
|
new_buffer = xrealloc(s->stack, sizeof(*new_buffer) * new_size);
|
|
if (new_buffer == NULL)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
ASSERT(new_size > s->size);
|
|
s->size = new_size;
|
|
s->stack = new_buffer;
|
|
tre_stack_push(s, value);
|
|
}
|
|
}
|
|
|
|
return REG_OK;
|
|
}
|
|
|
|
#define define_pushf(typetag, type) \
|
|
declare_pushf(typetag, type) { \
|
|
union tre_stack_item item; \
|
|
item.typetag ## _value = value; \
|
|
return tre_stack_push(s, item); \
|
|
}
|
|
|
|
define_pushf(int, int)
|
|
define_pushf(voidptr, void *)
|
|
|
|
#define define_popf(typetag, type) \
|
|
declare_popf(typetag, type) { \
|
|
return s->stack[--s->ptr].typetag ## _value; \
|
|
}
|
|
|
|
define_popf(int, int)
|
|
define_popf(voidptr, void *)
|
|
|
|
/* from tre-parse.c and tre-parse.h
|
|
*/
|
|
|
|
/* Parse context. */
|
|
|
|
typedef struct
|
|
{
|
|
/* Memory allocator. The AST is allocated using this. */
|
|
|
|
tre_mem_t mem;
|
|
|
|
/* Stack used for keeping track of regexp syntax. */
|
|
|
|
tre_stack_t *stack;
|
|
|
|
/* The parsed node after a parse function returns. */
|
|
|
|
tre_ast_node_t *n;
|
|
|
|
/* Position in the regexp pattern after a parse function returns. */
|
|
|
|
const char *s;
|
|
|
|
/* The first character of the regexp. */
|
|
|
|
const char *re;
|
|
|
|
/* Current submatch ID. */
|
|
|
|
int submatch_id;
|
|
|
|
/* Current position (number of literal). */
|
|
|
|
int position;
|
|
|
|
/* The highest back reference or -1 if none seen so far. */
|
|
|
|
int max_backref;
|
|
|
|
/* Compilation flags. */
|
|
|
|
int cflags;
|
|
} tre_parse_ctx_t;
|
|
|
|
/* Some macros for expanding \w, \s, etc. */
|
|
|
|
typedef struct
|
|
{
|
|
char c;
|
|
const char *expansion;
|
|
} tre_macro;
|
|
|
|
static const tre_macro tre_macros[] =
|
|
{
|
|
{
|
|
't', "\t"
|
|
},
|
|
|
|
{
|
|
'n', "\n"
|
|
},
|
|
|
|
{
|
|
'r', "\r"
|
|
},
|
|
|
|
{
|
|
'f', "\f"
|
|
},
|
|
|
|
{
|
|
'a', "\a"
|
|
},
|
|
|
|
{
|
|
'e', "\033"
|
|
},
|
|
|
|
{
|
|
'w', "[[:alnum:]_]"
|
|
},
|
|
|
|
{
|
|
'W', "[^[:alnum:]_]"
|
|
},
|
|
|
|
{
|
|
's', "[[:space:]]"
|
|
},
|
|
|
|
{
|
|
'S', "[^[:space:]]"
|
|
},
|
|
|
|
{
|
|
'd', "[[:digit:]]"
|
|
},
|
|
|
|
{
|
|
'D', "[^[:digit:]]"
|
|
},
|
|
|
|
{
|
|
0, 0
|
|
}
|
|
};
|
|
|
|
/* Expands a macro delimited by `regex' and `regex_end' to `buf', which
|
|
* must have at least `len' items. Sets buf[0] to zero if the there
|
|
* is no match in `tre_macros'.
|
|
*/
|
|
|
|
static const char *tre_expand_macro(const char *s)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; tre_macros[i].c && tre_macros[i].c != *s; i++)
|
|
{
|
|
}
|
|
|
|
return tre_macros[i].expansion;
|
|
}
|
|
|
|
static int tre_compare_lit(const void *a, const void *b)
|
|
{
|
|
const tre_literal_t *const *la = a;
|
|
const tre_literal_t *const *lb = b;
|
|
|
|
/* assumes the range of valid code_min is < INT_MAX */
|
|
|
|
return la[0]->code_min - lb[0]->code_min;
|
|
}
|
|
|
|
struct literals
|
|
{
|
|
tre_mem_t mem;
|
|
tre_literal_t **a;
|
|
int len;
|
|
int cap;
|
|
};
|
|
|
|
static tre_literal_t *tre_new_lit(struct literals *p)
|
|
{
|
|
tre_literal_t **a;
|
|
|
|
if (p->len >= p->cap)
|
|
{
|
|
if (p->cap >= 1 << 15)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
p->cap *= 2;
|
|
a = xrealloc(p->a, p->cap * sizeof *p->a);
|
|
if (!a)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
p->a = a;
|
|
}
|
|
|
|
a = p->a + p->len++;
|
|
*a = tre_mem_calloc(p->mem, sizeof **a);
|
|
return *a;
|
|
}
|
|
|
|
static int add_icase_literals(struct literals *ls, int min, int max)
|
|
{
|
|
tre_literal_t *lit;
|
|
int b;
|
|
int e;
|
|
int c;
|
|
|
|
for (c = min; c <= max; )
|
|
{
|
|
/* assumes islower(c) and isupper(c) are exclusive
|
|
* and toupper(c)!=c if islower(c).
|
|
* multiple opposite case characters are not supported
|
|
*/
|
|
|
|
if (tre_islower(c))
|
|
{
|
|
b = e = tre_toupper(c);
|
|
for (c++, e++; c <= max; c++, e++)
|
|
{
|
|
if (tre_toupper(c) != e)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if (tre_isupper(c))
|
|
{
|
|
b = e = tre_tolower(c);
|
|
for (c++, e++; c <= max; c++, e++)
|
|
{
|
|
if (tre_tolower(c) != e)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
c++;
|
|
continue;
|
|
}
|
|
|
|
lit = tre_new_lit(ls);
|
|
if (!lit)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
lit->code_min = b;
|
|
lit->code_max = e - 1;
|
|
lit->position = -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Maximum number of character classes in a negated bracket expression. */
|
|
#define MAX_NEG_CLASSES 64
|
|
|
|
struct neg
|
|
{
|
|
int negate;
|
|
int len;
|
|
tre_ctype_t a[MAX_NEG_CLASSES];
|
|
};
|
|
|
|
/* TODO: parse bracket into a set of non-overlapping [lo, hi] ranges */
|
|
|
|
/* bracket grammar:
|
|
* Bracket = '[' List ']' | '[^' List ']'
|
|
* List = Term | List Term
|
|
* Term = Char | Range | Chclass | Eqclass
|
|
* Range = Char '-' Char | Char '-' '-'
|
|
* Char = Coll | coll_single
|
|
* Meta = ']' | '-'
|
|
* Coll = '[.' coll_single '.]' | '[.' coll_multi '.]'
|
|
* | '[.' Meta '.]'
|
|
* Eqclass = '[=' coll_single '=]' | '[=' coll_multi '=]'
|
|
* Chclass = '[:' class ':]'
|
|
*
|
|
* coll_single is a single char collating element but it can be
|
|
* '-' only at the beginning or end of a List and
|
|
* ']' only at the beginning of a List and
|
|
* '^' anywhere except after the openning '['
|
|
*/
|
|
|
|
static reg_errcode_t parse_bracket_terms(tre_parse_ctx_t *ctx, const char *s,
|
|
struct literals *ls,
|
|
struct neg *neg)
|
|
{
|
|
const char *start = s;
|
|
tre_ctype_t class;
|
|
int min;
|
|
int max;
|
|
wchar_t wc;
|
|
int len;
|
|
|
|
for (; ; )
|
|
{
|
|
class = 0;
|
|
len = mbtowc(&wc, s, -1);
|
|
if (len <= 0)
|
|
{
|
|
return *s ? REG_BADPAT : REG_EBRACK;
|
|
}
|
|
|
|
if (*s == ']' && s != start)
|
|
{
|
|
ctx->s = s + 1;
|
|
return REG_OK;
|
|
}
|
|
|
|
if (*s == '-' && s != start && s[1] != ']' &&
|
|
(s[1] != '-' || s[2] == ']'))
|
|
{
|
|
/* extension: [a-z--@] is accepted as [a-z]|[--@] */
|
|
|
|
return REG_ERANGE;
|
|
}
|
|
|
|
if (*s == '[' && (s[1] == '.' || s[1] == '='))
|
|
{
|
|
/* collating symbols and equivalence classes are not supported */
|
|
|
|
return REG_ECOLLATE;
|
|
}
|
|
|
|
if (*s == '[' && s[1] == ':')
|
|
{
|
|
char tmp[CHARCLASS_NAME_MAX + 1];
|
|
s += 2;
|
|
for (len = 0; len < CHARCLASS_NAME_MAX && s[len]; len++)
|
|
{
|
|
if (s[len] == ':')
|
|
{
|
|
memcpy(tmp, s, len);
|
|
tmp[len] = 0;
|
|
class = tre_ctype(tmp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!class || s[len + 1] != ']')
|
|
{
|
|
return REG_ECTYPE;
|
|
}
|
|
|
|
min = 0;
|
|
max = TRE_CHAR_MAX;
|
|
s += len + 2;
|
|
}
|
|
else
|
|
{
|
|
min = max = wc;
|
|
s += len;
|
|
if (*s == '-' && s[1] != ']')
|
|
{
|
|
s++;
|
|
len = mbtowc(&wc, s, -1);
|
|
max = wc;
|
|
|
|
/* XXX - Should use collation order instead of
|
|
* encoding values in character ranges.
|
|
*/
|
|
|
|
if (len <= 0 || min > max)
|
|
{
|
|
return REG_ERANGE;
|
|
}
|
|
|
|
s += len;
|
|
}
|
|
}
|
|
|
|
if (class && neg->negate)
|
|
{
|
|
if (neg->len >= MAX_NEG_CLASSES)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
neg->a[neg->len++] = class;
|
|
}
|
|
else
|
|
{
|
|
tre_literal_t *lit = tre_new_lit(ls);
|
|
if (!lit)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
lit->code_min = min;
|
|
lit->code_max = max;
|
|
lit->class = class;
|
|
lit->position = -1;
|
|
|
|
/* Add opposite-case codepoints if REG_ICASE is present.
|
|
* It seems that POSIX requires that bracket negation
|
|
* should happen before case-folding, but most practical
|
|
* implementations do it the other way around. Changing
|
|
* the order would need efficient representation of
|
|
* case-fold ranges and bracket range sets even with
|
|
* simple patterns so this is ok for now.
|
|
*/
|
|
|
|
if (ctx->cflags & REG_ICASE && !class)
|
|
{
|
|
if (add_icase_literals(ls, min, max))
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static reg_errcode_t parse_bracket(tre_parse_ctx_t *ctx, const char *s)
|
|
{
|
|
int i;
|
|
int max;
|
|
int min;
|
|
int negmax;
|
|
int negmin;
|
|
tre_ast_node_t *node = 0, *n;
|
|
tre_ctype_t *nc = 0;
|
|
tre_literal_t *lit;
|
|
struct literals ls;
|
|
struct neg neg;
|
|
reg_errcode_t err;
|
|
|
|
ls.mem = ctx->mem;
|
|
ls.len = 0;
|
|
ls.cap = 32;
|
|
ls.a = xmalloc(ls.cap * sizeof *ls.a);
|
|
if (!ls.a)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
neg.len = 0;
|
|
neg.negate = *s == '^';
|
|
if (neg.negate)
|
|
{
|
|
s++;
|
|
}
|
|
|
|
err = parse_bracket_terms(ctx, s, &ls, &neg);
|
|
if (err != REG_OK)
|
|
{
|
|
goto parse_bracket_done;
|
|
}
|
|
|
|
if (neg.negate)
|
|
{
|
|
/* Sort the array if we need to negate it. */
|
|
|
|
qsort(ls.a, ls.len, sizeof *ls.a, tre_compare_lit);
|
|
|
|
/* extra lit for the last negated range */
|
|
|
|
lit = tre_new_lit(&ls);
|
|
if (!lit)
|
|
{
|
|
err = REG_ESPACE;
|
|
goto parse_bracket_done;
|
|
}
|
|
|
|
lit->code_min = TRE_CHAR_MAX + 1;
|
|
lit->code_max = TRE_CHAR_MAX + 1;
|
|
lit->position = -1;
|
|
|
|
/* negated classes */
|
|
|
|
if (neg.len)
|
|
{
|
|
nc = tre_mem_alloc(ctx->mem, (neg.len + 1) * sizeof *neg.a);
|
|
if (!nc)
|
|
{
|
|
err = REG_ESPACE;
|
|
goto parse_bracket_done;
|
|
}
|
|
|
|
memcpy(nc, neg.a, neg.len * sizeof *neg.a);
|
|
nc[neg.len] = 0;
|
|
}
|
|
}
|
|
|
|
/* Build a union of the items in the array, negated if necessary. */
|
|
|
|
negmax = negmin = 0;
|
|
for (i = 0; i < ls.len; i++)
|
|
{
|
|
lit = ls.a[i];
|
|
min = lit->code_min;
|
|
max = lit->code_max;
|
|
if (neg.negate)
|
|
{
|
|
if (min <= negmin)
|
|
{
|
|
/* Overlap. */
|
|
|
|
negmin = MAX(max + 1, negmin);
|
|
continue;
|
|
}
|
|
|
|
negmax = min - 1;
|
|
lit->code_min = negmin;
|
|
lit->code_max = negmax;
|
|
negmin = max + 1;
|
|
}
|
|
|
|
lit->position = ctx->position;
|
|
lit->neg_classes = nc;
|
|
n = tre_ast_new_node(ctx->mem, LITERAL, lit);
|
|
node = tre_ast_new_union(ctx->mem, node, n);
|
|
if (!node)
|
|
{
|
|
err = REG_ESPACE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
parse_bracket_done:
|
|
xfree(ls.a);
|
|
ctx->position++;
|
|
ctx->n = node;
|
|
return err;
|
|
}
|
|
|
|
static const char *parse_dup_count(const char *s, int *n)
|
|
{
|
|
*n = -1;
|
|
if (!isdigit(*s))
|
|
{
|
|
return s;
|
|
}
|
|
|
|
*n = 0;
|
|
for (; ; )
|
|
{
|
|
*n = 10 * *n + (*s - '0');
|
|
s++;
|
|
if (!isdigit(*s) || *n > RE_DUP_MAX)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
static reg_errcode_t parse_dup(tre_parse_ctx_t *ctx, const char *s)
|
|
{
|
|
int min;
|
|
int max;
|
|
|
|
s = parse_dup_count(s, &min);
|
|
if (*s == ',')
|
|
{
|
|
s = parse_dup_count(s + 1, &max);
|
|
}
|
|
else
|
|
{
|
|
max = min;
|
|
}
|
|
|
|
if ((max < min && max >= 0) ||
|
|
max > RE_DUP_MAX ||
|
|
min > RE_DUP_MAX ||
|
|
min < 0 ||
|
|
(!(ctx->cflags & REG_EXTENDED) && *s++ != '\\') ||
|
|
*s++ != '}')
|
|
{
|
|
return REG_BADBR;
|
|
}
|
|
|
|
if (min == 0 && max == 0)
|
|
{
|
|
ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
|
}
|
|
else
|
|
{
|
|
ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0);
|
|
}
|
|
|
|
if (!ctx->n)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
ctx->s = s;
|
|
return REG_OK;
|
|
}
|
|
|
|
static int hexval(unsigned c)
|
|
{
|
|
if (c - '0' < 10)
|
|
{
|
|
return c - '0';
|
|
}
|
|
|
|
c |= 32;
|
|
if (c - 'a' < 6)
|
|
{
|
|
return c - 'a' + 10;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static reg_errcode_t marksub(tre_parse_ctx_t *ctx, tre_ast_node_t *node,
|
|
int subid)
|
|
{
|
|
if (node->submatch_id >= 0)
|
|
{
|
|
tre_ast_node_t *n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
|
if (!n)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
n = tre_ast_new_catenation(ctx->mem, n, node);
|
|
if (!n)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
n->num_submatches = node->num_submatches;
|
|
node = n;
|
|
}
|
|
|
|
node->submatch_id = subid;
|
|
node->num_submatches++;
|
|
ctx->n = node;
|
|
return REG_OK;
|
|
}
|
|
|
|
/* BRE grammar:
|
|
* Regex = Branch | '^' | '$' | '^$' | '^' Branch
|
|
* | Branch '$' | '^' Branch '$'
|
|
* Branch = Atom | Branch Atom
|
|
* Atom = char | quoted_char | '.' | Bracket | Atom Dup
|
|
* | '\(' Branch '\)' | back_ref
|
|
* Dup = '*' | '\{' Count '\}' | '\{' Count ',\}'
|
|
* | '\{' Count ',' Count '\}'
|
|
*
|
|
* (leading ^ and trailing $ in a sub expr may be an anchor or
|
|
* literal as well)
|
|
*
|
|
* ERE grammar:
|
|
* Regex = Branch | Regex '|' Branch
|
|
* Branch = Atom | Branch Atom
|
|
* Atom = char | quoted_char | '.' | Bracket | Atom Dup
|
|
* | '(' Regex ')' | '^' | '$'
|
|
* Dup = '*' | '+' | '?' | '{' Count '}' | '{' Count ',}'
|
|
* | '{' Count ',' Count '}'
|
|
*
|
|
* (a*+?, ^*, $+, \X, {, (|a) are unspecified)
|
|
*/
|
|
|
|
static reg_errcode_t parse_atom(tre_parse_ctx_t *ctx, const char *s)
|
|
{
|
|
int len;
|
|
int ere = ctx->cflags & REG_EXTENDED;
|
|
const char *p;
|
|
tre_ast_node_t *node;
|
|
wchar_t wc;
|
|
|
|
switch (*s)
|
|
{
|
|
case '[':
|
|
{
|
|
return parse_bracket(ctx, s + 1);
|
|
}
|
|
|
|
case '\\':
|
|
{
|
|
p = tre_expand_macro(s + 1);
|
|
if (p)
|
|
{
|
|
/* assume \X expansion is a single atom */
|
|
|
|
reg_errcode_t err = parse_atom(ctx, p);
|
|
ctx->s = s + 2;
|
|
return err;
|
|
}
|
|
|
|
/* extensions: \b, \B, \<, \>, \xHH \x{HHHH} */
|
|
|
|
switch (*++s)
|
|
{
|
|
case 0:
|
|
{
|
|
return REG_EESCAPE;
|
|
}
|
|
|
|
case 'b':
|
|
{
|
|
node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB, -1);
|
|
}
|
|
break;
|
|
|
|
case 'B':
|
|
{
|
|
node =
|
|
tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB_NEG, -1);
|
|
}
|
|
break;
|
|
|
|
case '<':
|
|
{
|
|
node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOW, -1);
|
|
}
|
|
break;
|
|
|
|
case '>':
|
|
{
|
|
node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOW, -1);
|
|
}
|
|
break;
|
|
|
|
case 'x':
|
|
{
|
|
s++;
|
|
int i;
|
|
int v = 0;
|
|
int c;
|
|
len = 2;
|
|
if (*s == '{')
|
|
{
|
|
len = 8;
|
|
s++;
|
|
}
|
|
|
|
for (i = 0; i < len && v < 0x110000; i++)
|
|
{
|
|
c = hexval(s[i]);
|
|
if (c < 0)
|
|
{
|
|
break;
|
|
}
|
|
|
|
v = 16 * v + c;
|
|
}
|
|
|
|
s += i;
|
|
if (len == 8)
|
|
{
|
|
if (*s != '}')
|
|
{
|
|
return REG_EBRACE;
|
|
}
|
|
|
|
s++;
|
|
}
|
|
|
|
node = tre_ast_new_literal(ctx->mem, v, v, ctx->position);
|
|
ctx->position++;
|
|
s--;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
if (isdigit(*s))
|
|
{
|
|
/* back reference */
|
|
|
|
int val = *s - '0';
|
|
node = tre_ast_new_literal(ctx->mem, BACKREF, val,
|
|
ctx->position);
|
|
ctx->max_backref = MAX(val, ctx->max_backref);
|
|
}
|
|
else
|
|
{
|
|
/* extension: accept unknown escaped char
|
|
* as a literal
|
|
*/
|
|
|
|
node = tre_ast_new_literal(ctx->mem, *s, *s, ctx->position);
|
|
}
|
|
|
|
ctx->position++;
|
|
}
|
|
|
|
s++;
|
|
}
|
|
break;
|
|
|
|
case '.':
|
|
{
|
|
if (ctx->cflags & REG_NEWLINE)
|
|
{
|
|
tre_ast_node_t *tmp1;
|
|
tre_ast_node_t *tmp2;
|
|
tmp1 = tre_ast_new_literal(ctx->mem, 0, '\n' - 1,
|
|
ctx->position++);
|
|
tmp2 = tre_ast_new_literal(ctx->mem, '\n' + 1, TRE_CHAR_MAX,
|
|
ctx->position++);
|
|
if (tmp1 && tmp2)
|
|
{
|
|
node = tre_ast_new_union(ctx->mem, tmp1, tmp2);
|
|
}
|
|
else
|
|
{
|
|
node = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
node = tre_ast_new_literal(ctx->mem, 0, TRE_CHAR_MAX,
|
|
ctx->position++);
|
|
}
|
|
|
|
s++;
|
|
}
|
|
break;
|
|
|
|
case '^':
|
|
{
|
|
/* '^' has a special meaning everywhere in EREs, and at beginning of
|
|
* BRE.
|
|
*/
|
|
|
|
if (!ere && s != ctx->re)
|
|
{
|
|
goto parse_literal;
|
|
}
|
|
|
|
node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOL, -1);
|
|
s++;
|
|
}
|
|
break;
|
|
|
|
case '$':
|
|
{
|
|
/* '$' is special everywhere in EREs, and in the end of the string in
|
|
* BREs.
|
|
*/
|
|
|
|
if (!ere && s[1])
|
|
{
|
|
goto parse_literal;
|
|
}
|
|
|
|
node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOL, -1);
|
|
s++;
|
|
}
|
|
break;
|
|
|
|
case '*':
|
|
case '|':
|
|
case '{':
|
|
case '+':
|
|
case '?':
|
|
{
|
|
if (!ere)
|
|
{
|
|
goto parse_literal;
|
|
}
|
|
}
|
|
|
|
case 0:
|
|
{
|
|
node = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
{
|
|
parse_literal:
|
|
len = mbtowc(&wc, s, -1);
|
|
if (len < 0)
|
|
{
|
|
return REG_BADPAT;
|
|
}
|
|
|
|
if (ctx->cflags & REG_ICASE && (tre_isupper(wc) || tre_islower(wc)))
|
|
{
|
|
tre_ast_node_t *tmp1, *tmp2;
|
|
|
|
/* multiple opposite case characters are not supported */
|
|
|
|
tmp1 =
|
|
tre_ast_new_literal(ctx->mem, tre_toupper(wc), tre_toupper(
|
|
wc), ctx->position);
|
|
tmp2 =
|
|
tre_ast_new_literal(ctx->mem, tre_tolower(wc), tre_tolower(
|
|
wc), ctx->position);
|
|
if (tmp1 && tmp2)
|
|
{
|
|
node = tre_ast_new_union(ctx->mem, tmp1, tmp2);
|
|
}
|
|
else
|
|
{
|
|
node = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
node = tre_ast_new_literal(ctx->mem, wc, wc, ctx->position);
|
|
}
|
|
|
|
ctx->position++;
|
|
s += len;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!node)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
ctx->n = node;
|
|
ctx->s = s;
|
|
return REG_OK;
|
|
}
|
|
|
|
#define PUSHPTR(err, s, v) do { \
|
|
if ((err = tre_stack_push_voidptr(s, v)) != REG_OK) \
|
|
return err; \
|
|
} while (0)
|
|
|
|
#define PUSHINT(err, s, v) do { \
|
|
if ((err = tre_stack_push_int(s, v)) != REG_OK) \
|
|
return err; \
|
|
} while (0)
|
|
|
|
static reg_errcode_t tre_parse(tre_parse_ctx_t *ctx)
|
|
{
|
|
tre_ast_node_t *nbranch = 0;
|
|
tre_ast_node_t *nunion = 0;
|
|
int ere = ctx->cflags & REG_EXTENDED;
|
|
const char *s = ctx->re;
|
|
int subid = 0;
|
|
int depth = 0;
|
|
reg_errcode_t err;
|
|
tre_stack_t *stack = ctx->stack;
|
|
|
|
PUSHINT(err, stack, subid++);
|
|
for (; ; )
|
|
{
|
|
if ((!ere && *s == '\\' && s[1] == '(') || (ere && *s == '('))
|
|
{
|
|
PUSHPTR(err, stack, nunion);
|
|
PUSHPTR(err, stack, nbranch);
|
|
PUSHINT(err, stack, subid++);
|
|
s++;
|
|
if (!ere)
|
|
{
|
|
s++;
|
|
}
|
|
|
|
depth++;
|
|
nbranch = nunion = 0;
|
|
continue;
|
|
}
|
|
|
|
if ((!ere && *s == '\\' && s[1] == ')') || (ere && *s == ')' && depth))
|
|
{
|
|
ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
|
if (!ctx->n)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
err = parse_atom(ctx, s);
|
|
if (err != REG_OK)
|
|
{
|
|
return err;
|
|
}
|
|
|
|
s = ctx->s;
|
|
}
|
|
|
|
parse_iter:
|
|
|
|
/* extension: repetitions are accepted after an empty node
|
|
* eg. (+), ^*, a$?, a|{2}
|
|
*/
|
|
|
|
switch (*s)
|
|
{
|
|
case '+':
|
|
case '?':
|
|
{
|
|
if (!ere)
|
|
{
|
|
break;
|
|
}
|
|
|
|
/* fallthrough */
|
|
}
|
|
|
|
case '*':
|
|
{
|
|
int min = 0;
|
|
int max = -1;
|
|
if (*s == '+')
|
|
{
|
|
min = 1;
|
|
}
|
|
|
|
if (*s == '?')
|
|
{
|
|
max = 1;
|
|
}
|
|
|
|
s++;
|
|
ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0);
|
|
if (!ctx->n)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
/* extension: multiple consecutive *+?{,} is unspecified,
|
|
* but (a+)+ has to be supported so accepting a++ makes
|
|
* sense, note however that the RE_DUP_MAX limit can be
|
|
* circumvented: (a{255}){255} uses a lot of memory..
|
|
*/
|
|
|
|
goto parse_iter;
|
|
}
|
|
|
|
case '\\':
|
|
{
|
|
if (ere || s[1] != '{')
|
|
{
|
|
break;
|
|
}
|
|
|
|
s++;
|
|
goto parse_brace;
|
|
}
|
|
|
|
case '{':
|
|
if (!ere)
|
|
{
|
|
break;
|
|
}
|
|
|
|
parse_brace:
|
|
err = parse_dup(ctx, s + 1);
|
|
if (err != REG_OK)
|
|
{
|
|
return err;
|
|
}
|
|
|
|
s = ctx->s;
|
|
goto parse_iter;
|
|
}
|
|
|
|
nbranch = tre_ast_new_catenation(ctx->mem, nbranch, ctx->n);
|
|
if ((ere && *s == '|') || (ere && *s == ')' && depth) ||
|
|
(!ere && *s == '\\' && s[1] == ')') || !*s)
|
|
{
|
|
/* extension: empty branch is unspecified (), (|a), (a|)
|
|
* here they are not rejected but match on empty string
|
|
*/
|
|
|
|
int c = *s;
|
|
nunion = tre_ast_new_union(ctx->mem, nunion, nbranch);
|
|
nbranch = 0;
|
|
if (c != '|')
|
|
{
|
|
if (c == '\\')
|
|
{
|
|
if (!depth)
|
|
{
|
|
return REG_EPAREN;
|
|
}
|
|
|
|
s += 2;
|
|
}
|
|
else if (c == ')')
|
|
{
|
|
s++;
|
|
}
|
|
|
|
depth--;
|
|
err = marksub(ctx, nunion, tre_stack_pop_int(stack));
|
|
if (err != REG_OK)
|
|
{
|
|
return err;
|
|
}
|
|
|
|
if (!c && depth < 0)
|
|
{
|
|
ctx->submatch_id = subid;
|
|
return REG_OK;
|
|
}
|
|
|
|
if (!c || depth < 0)
|
|
{
|
|
return REG_EPAREN;
|
|
}
|
|
|
|
nbranch = tre_stack_pop_voidptr(stack);
|
|
nunion = tre_stack_pop_voidptr(stack);
|
|
goto parse_iter;
|
|
}
|
|
|
|
s++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* from tre-compile.c
|
|
*/
|
|
|
|
/* TODO:
|
|
* - Fix tre_ast_to_tnfa() to recurse using a stack instead of recursive
|
|
* function calls.
|
|
*/
|
|
|
|
/* Algorithms to setup tags so that submatch addressing can be done. */
|
|
|
|
/* Inserts a catenation node to the root of the tree given in `node'.
|
|
* As the left child a new tag with number `tag_id' to `node' is added,
|
|
* and the right child is the old root.
|
|
*/
|
|
|
|
static reg_errcode_t tre_add_tag_left(tre_mem_t mem, tre_ast_node_t *node,
|
|
int tag_id)
|
|
{
|
|
tre_catenation_t *c;
|
|
|
|
c = tre_mem_alloc(mem, sizeof(*c));
|
|
if (c == NULL)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
c->left = tre_ast_new_literal(mem, TAG, tag_id, -1);
|
|
if (c->left == NULL)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
c->right = tre_mem_alloc(mem, sizeof(tre_ast_node_t));
|
|
if (c->right == NULL)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
c->right->obj = node->obj;
|
|
c->right->type = node->type;
|
|
c->right->nullable = -1;
|
|
c->right->submatch_id = -1;
|
|
c->right->firstpos = NULL;
|
|
c->right->lastpos = NULL;
|
|
c->right->num_tags = 0;
|
|
node->obj = c;
|
|
node->type = CATENATION;
|
|
return REG_OK;
|
|
}
|
|
|
|
/* Inserts a catenation node to the root of the tree given in `node'.
|
|
* As the right child a new tag with number `tag_id' to `node' is added,
|
|
* and the left child is the old root.
|
|
*/
|
|
|
|
static reg_errcode_t tre_add_tag_right(tre_mem_t mem, tre_ast_node_t *node,
|
|
int tag_id)
|
|
{
|
|
tre_catenation_t *c;
|
|
|
|
c = tre_mem_alloc(mem, sizeof(*c));
|
|
if (c == NULL)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
c->right = tre_ast_new_literal(mem, TAG, tag_id, -1);
|
|
if (c->right == NULL)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
c->left = tre_mem_alloc(mem, sizeof(tre_ast_node_t));
|
|
if (c->left == NULL)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
c->left->obj = node->obj;
|
|
c->left->type = node->type;
|
|
c->left->nullable = -1;
|
|
c->left->submatch_id = -1;
|
|
c->left->firstpos = NULL;
|
|
c->left->lastpos = NULL;
|
|
c->left->num_tags = 0;
|
|
node->obj = c;
|
|
node->type = CATENATION;
|
|
return REG_OK;
|
|
}
|
|
|
|
typedef enum
|
|
{
|
|
ADDTAGS_RECURSE,
|
|
ADDTAGS_AFTER_ITERATION,
|
|
ADDTAGS_AFTER_UNION_LEFT,
|
|
ADDTAGS_AFTER_UNION_RIGHT,
|
|
ADDTAGS_AFTER_CAT_LEFT,
|
|
ADDTAGS_AFTER_CAT_RIGHT,
|
|
ADDTAGS_SET_SUBMATCH_END
|
|
} tre_addtags_symbol_t;
|
|
|
|
typedef struct
|
|
{
|
|
int tag;
|
|
int next_tag;
|
|
} tre_tag_states_t;
|
|
|
|
/* Go through `regset' and set submatch data for submatches that are
|
|
* using this tag.
|
|
*/
|
|
|
|
static void tre_purge_regset(int *regset, tre_tnfa_t *tnfa, int tag)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; regset[i] >= 0; i++)
|
|
{
|
|
int id = regset[i] / 2;
|
|
int start = !(regset[i] % 2);
|
|
if (start)
|
|
{
|
|
tnfa->submatch_data[id].so_tag = tag;
|
|
}
|
|
else
|
|
{
|
|
tnfa->submatch_data[id].eo_tag = tag;
|
|
}
|
|
}
|
|
|
|
regset[0] = -1;
|
|
}
|
|
|
|
/* Adds tags to appropriate locations in the parse tree in `tree', so that
|
|
* subexpressions marked for submatch addressing can be traced.
|
|
*/
|
|
|
|
static reg_errcode_t tre_add_tags(tre_mem_t mem, tre_stack_t *stack,
|
|
tre_ast_node_t *tree, tre_tnfa_t *tnfa)
|
|
{
|
|
reg_errcode_t status = REG_OK;
|
|
tre_addtags_symbol_t symbol;
|
|
tre_ast_node_t *node = tree; /* Tree node we are currently looking
|
|
* at. */
|
|
int bottom = tre_stack_num_objects(stack);
|
|
|
|
/* True for first pass (counting number of needed tags) */
|
|
|
|
int first_pass = (mem == NULL || tnfa == NULL);
|
|
int *regset;
|
|
int *orig_regset;
|
|
|
|
/* num_tags: Total number of tags.
|
|
* num_minimals: Number of special minimal tags.
|
|
* tag: The tag that is to be added next.
|
|
* next_tag: Next tag to use after this one.
|
|
* parents: Stack of submatches the current submatch is contained in.
|
|
* minimal_tag: Tag that marks the beginning of a minimal match.
|
|
*/
|
|
|
|
int num_tags = 0;
|
|
int num_minimals = 0;
|
|
int tag = 0;
|
|
int next_tag = 1;
|
|
int *parents;
|
|
int minimal_tag = -1;
|
|
tre_tag_states_t *saved_states;
|
|
|
|
tre_tag_direction_t direction = TRE_TAG_MINIMIZE;
|
|
|
|
if (!first_pass)
|
|
{
|
|
tnfa->end_tag = 0;
|
|
tnfa->minimal_tags[0] = -1;
|
|
}
|
|
|
|
regset = xmalloc(sizeof(*regset) * ((tnfa->num_submatches + 1) * 2));
|
|
if (regset == NULL)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
regset[0] = -1;
|
|
orig_regset = regset;
|
|
|
|
parents = xmalloc(sizeof(*parents) * (tnfa->num_submatches + 1));
|
|
if (parents == NULL)
|
|
{
|
|
xfree(regset);
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
parents[0] = -1;
|
|
|
|
saved_states = xmalloc(sizeof(*saved_states) * (tnfa->num_submatches + 1));
|
|
if (saved_states == NULL)
|
|
{
|
|
xfree(regset);
|
|
xfree(parents);
|
|
return REG_ESPACE;
|
|
}
|
|
else
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i <= tnfa->num_submatches; i++)
|
|
{
|
|
saved_states[i].tag = -1;
|
|
}
|
|
}
|
|
|
|
STACK_PUSH(stack, voidptr, node);
|
|
STACK_PUSH(stack, int, ADDTAGS_RECURSE);
|
|
|
|
while (tre_stack_num_objects(stack) > bottom)
|
|
{
|
|
if (status != REG_OK)
|
|
{
|
|
break;
|
|
}
|
|
|
|
symbol = (tre_addtags_symbol_t)tre_stack_pop_int(stack);
|
|
switch (symbol)
|
|
{
|
|
case ADDTAGS_SET_SUBMATCH_END:
|
|
{
|
|
int id = tre_stack_pop_int(stack);
|
|
int i;
|
|
|
|
/* Add end of this submatch to regset. */
|
|
|
|
for (i = 0; regset[i] >= 0; i++)
|
|
{
|
|
}
|
|
|
|
regset[i] = id * 2 + 1;
|
|
regset[i + 1] = -1;
|
|
|
|
/* Pop this submatch from the parents stack. */
|
|
|
|
for (i = 0; parents[i] >= 0; i++)
|
|
{
|
|
}
|
|
|
|
parents[i - 1] = -1;
|
|
break;
|
|
}
|
|
|
|
case ADDTAGS_RECURSE:
|
|
{
|
|
node = tre_stack_pop_voidptr(stack);
|
|
|
|
if (node->submatch_id >= 0)
|
|
{
|
|
int id = node->submatch_id;
|
|
int i;
|
|
|
|
/* Add start of this submatch to regset. */
|
|
|
|
for (i = 0; regset[i] >= 0; i++)
|
|
{
|
|
}
|
|
|
|
regset[i] = id * 2;
|
|
regset[i + 1] = -1;
|
|
|
|
if (!first_pass)
|
|
{
|
|
for (i = 0; parents[i] >= 0; i++)
|
|
{
|
|
}
|
|
|
|
tnfa->submatch_data[id].parents = NULL;
|
|
if (i > 0)
|
|
{
|
|
int *p = xmalloc(sizeof(*p) * (i + 1));
|
|
if (p == NULL)
|
|
{
|
|
status = REG_ESPACE;
|
|
break;
|
|
}
|
|
|
|
ASSERT(tnfa->submatch_data[id].parents == NULL);
|
|
tnfa->submatch_data[id].parents = p;
|
|
for (i = 0; parents[i] >= 0; i++)
|
|
{
|
|
p[i] = parents[i];
|
|
}
|
|
|
|
p[i] = -1;
|
|
}
|
|
}
|
|
|
|
/* Add end of this submatch to regset after processing this
|
|
* node.
|
|
*/
|
|
|
|
STACK_PUSHX(stack, int, node->submatch_id);
|
|
STACK_PUSHX(stack, int, ADDTAGS_SET_SUBMATCH_END);
|
|
}
|
|
|
|
switch (node->type)
|
|
{
|
|
case LITERAL:
|
|
{
|
|
tre_literal_t *lit = node->obj;
|
|
|
|
if (!IS_SPECIAL(lit) || IS_BACKREF(lit))
|
|
{
|
|
int i;
|
|
if (regset[0] >= 0)
|
|
{
|
|
/* Regset is not empty, so add a tag before the
|
|
* literal or backref.
|
|
*/
|
|
|
|
if (!first_pass)
|
|
{
|
|
status = tre_add_tag_left(mem,
|
|
node,
|
|
tag);
|
|
tnfa->tag_directions[tag] = direction;
|
|
if (minimal_tag >= 0)
|
|
{
|
|
for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
|
|
{
|
|
}
|
|
|
|
tnfa->minimal_tags[i] = tag;
|
|
tnfa->minimal_tags[i + 1] = minimal_tag;
|
|
tnfa->minimal_tags[i + 2] = -1;
|
|
minimal_tag = -1;
|
|
num_minimals++;
|
|
}
|
|
|
|
tre_purge_regset(regset, tnfa, tag);
|
|
}
|
|
else
|
|
{
|
|
node->num_tags = 1;
|
|
}
|
|
|
|
regset[0] = -1;
|
|
tag = next_tag;
|
|
num_tags++;
|
|
next_tag++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ASSERT(!IS_TAG(lit));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case CATENATION:
|
|
{
|
|
tre_catenation_t *cat = node->obj;
|
|
tre_ast_node_t *left = cat->left;
|
|
tre_ast_node_t *right = cat->right;
|
|
int reserved_tag = -1;
|
|
|
|
/* After processing right child. */
|
|
|
|
STACK_PUSHX(stack, voidptr, node);
|
|
STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_RIGHT);
|
|
|
|
/* Process right child. */
|
|
|
|
STACK_PUSHX(stack, voidptr, right);
|
|
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
|
|
|
/* After processing left child. */
|
|
|
|
STACK_PUSHX(stack, int, next_tag + left->num_tags);
|
|
if (left->num_tags > 0 && right->num_tags > 0)
|
|
{
|
|
/* Reserve the next tag to the right child. */
|
|
|
|
reserved_tag = next_tag;
|
|
next_tag++;
|
|
}
|
|
|
|
STACK_PUSHX(stack, int, reserved_tag);
|
|
STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_LEFT);
|
|
|
|
/* Process left child. */
|
|
|
|
STACK_PUSHX(stack, voidptr, left);
|
|
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
|
}
|
|
|
|
break;
|
|
|
|
case ITERATION:
|
|
{
|
|
tre_iteration_t *iter = node->obj;
|
|
|
|
if (first_pass)
|
|
{
|
|
STACK_PUSHX(stack, int, regset[0] >= 0 || iter->minimal);
|
|
}
|
|
else
|
|
{
|
|
STACK_PUSHX(stack, int, tag);
|
|
STACK_PUSHX(stack, int, iter->minimal);
|
|
}
|
|
|
|
STACK_PUSHX(stack, voidptr, node);
|
|
STACK_PUSHX(stack, int, ADDTAGS_AFTER_ITERATION);
|
|
|
|
STACK_PUSHX(stack, voidptr, iter->arg);
|
|
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
|
|
|
/* Regset is not empty, so add a tag here. */
|
|
|
|
if (regset[0] >= 0 || iter->minimal)
|
|
{
|
|
if (!first_pass)
|
|
{
|
|
int i;
|
|
status = tre_add_tag_left(mem, node, tag);
|
|
if (iter->minimal)
|
|
{
|
|
tnfa->tag_directions[tag] = TRE_TAG_MAXIMIZE;
|
|
}
|
|
else
|
|
{
|
|
tnfa->tag_directions[tag] = direction;
|
|
}
|
|
|
|
if (minimal_tag >= 0)
|
|
{
|
|
for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
|
|
{
|
|
}
|
|
|
|
tnfa->minimal_tags[i] = tag;
|
|
tnfa->minimal_tags[i + 1] = minimal_tag;
|
|
tnfa->minimal_tags[i + 2] = -1;
|
|
minimal_tag = -1;
|
|
num_minimals++;
|
|
}
|
|
|
|
tre_purge_regset(regset, tnfa, tag);
|
|
}
|
|
|
|
regset[0] = -1;
|
|
tag = next_tag;
|
|
num_tags++;
|
|
next_tag++;
|
|
}
|
|
|
|
direction = TRE_TAG_MINIMIZE;
|
|
}
|
|
break;
|
|
|
|
case UNION:
|
|
{
|
|
tre_union_t *uni = node->obj;
|
|
tre_ast_node_t *left = uni->left;
|
|
tre_ast_node_t *right = uni->right;
|
|
int left_tag;
|
|
int right_tag;
|
|
|
|
if (regset[0] >= 0)
|
|
{
|
|
left_tag = next_tag;
|
|
right_tag = next_tag + 1;
|
|
}
|
|
else
|
|
{
|
|
left_tag = tag;
|
|
right_tag = next_tag;
|
|
}
|
|
|
|
/* After processing right child. */
|
|
|
|
STACK_PUSHX(stack, int, right_tag);
|
|
STACK_PUSHX(stack, int, left_tag);
|
|
STACK_PUSHX(stack, voidptr, regset);
|
|
STACK_PUSHX(stack, int, regset[0] >= 0);
|
|
STACK_PUSHX(stack, voidptr, node);
|
|
STACK_PUSHX(stack, voidptr, right);
|
|
STACK_PUSHX(stack, voidptr, left);
|
|
STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_RIGHT);
|
|
|
|
/* Process right child. */
|
|
|
|
STACK_PUSHX(stack, voidptr, right);
|
|
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
|
|
|
/* After processing left child. */
|
|
|
|
STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_LEFT);
|
|
|
|
/* Process left child. */
|
|
|
|
STACK_PUSHX(stack, voidptr, left);
|
|
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
|
|
|
/* Regset is not empty, so add a tag here. */
|
|
|
|
if (regset[0] >= 0)
|
|
{
|
|
if (!first_pass)
|
|
{
|
|
int i;
|
|
status = tre_add_tag_left(mem, node,
|
|
tag);
|
|
tnfa->tag_directions[tag] = direction;
|
|
if (minimal_tag >= 0)
|
|
{
|
|
for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
|
|
{
|
|
}
|
|
|
|
tnfa->minimal_tags[i] = tag;
|
|
tnfa->minimal_tags[i + 1] = minimal_tag;
|
|
tnfa->minimal_tags[i + 2] = -1;
|
|
minimal_tag = -1;
|
|
num_minimals++;
|
|
}
|
|
|
|
tre_purge_regset(regset, tnfa, tag);
|
|
}
|
|
|
|
regset[0] = -1;
|
|
tag = next_tag;
|
|
num_tags++;
|
|
next_tag++;
|
|
}
|
|
|
|
if (node->num_submatches > 0)
|
|
{
|
|
/* The next two tags are reserved for markers. */
|
|
|
|
next_tag++;
|
|
tag = next_tag;
|
|
next_tag++;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (node->submatch_id >= 0)
|
|
{
|
|
int i;
|
|
|
|
/* Push this submatch on the parents stack. */
|
|
|
|
for (i = 0; parents[i] >= 0; i++)
|
|
{
|
|
}
|
|
|
|
parents[i] = node->submatch_id;
|
|
parents[i + 1] = -1;
|
|
}
|
|
}
|
|
|
|
break; /* end case: ADDTAGS_RECURSE */
|
|
|
|
case ADDTAGS_AFTER_ITERATION:
|
|
{
|
|
int minimal = 0;
|
|
int enter_tag;
|
|
node = tre_stack_pop_voidptr(stack);
|
|
if (first_pass)
|
|
{
|
|
node->num_tags =
|
|
((tre_iteration_t *)node->obj)->arg->num_tags +
|
|
tre_stack_pop_int(
|
|
stack);
|
|
minimal_tag = -1;
|
|
}
|
|
else
|
|
{
|
|
minimal = tre_stack_pop_int(stack);
|
|
enter_tag = tre_stack_pop_int(stack);
|
|
if (minimal)
|
|
{
|
|
minimal_tag = enter_tag;
|
|
}
|
|
}
|
|
|
|
if (!first_pass)
|
|
{
|
|
if (minimal)
|
|
{
|
|
direction = TRE_TAG_MINIMIZE;
|
|
}
|
|
else
|
|
{
|
|
direction = TRE_TAG_MAXIMIZE;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ADDTAGS_AFTER_CAT_LEFT:
|
|
{
|
|
int new_tag = tre_stack_pop_int(stack);
|
|
next_tag = tre_stack_pop_int(stack);
|
|
if (new_tag >= 0)
|
|
{
|
|
tag = new_tag;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ADDTAGS_AFTER_CAT_RIGHT:
|
|
{
|
|
node = tre_stack_pop_voidptr(stack);
|
|
if (first_pass)
|
|
{
|
|
node->num_tags =
|
|
((tre_catenation_t *)node->obj)->left->num_tags +
|
|
((tre_catenation_t *)node->obj)->right->num_tags;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ADDTAGS_AFTER_UNION_LEFT:
|
|
{
|
|
/* Lift the bottom of the `regset' array so that when processing
|
|
* the right operand the items currently in the array are
|
|
* invisible. The original bottom was saved at ADDTAGS_UNION
|
|
* and
|
|
* will be restored at ADDTAGS_AFTER_UNION_RIGHT below.
|
|
*/
|
|
|
|
while (*regset >= 0)
|
|
{
|
|
regset++;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ADDTAGS_AFTER_UNION_RIGHT:
|
|
{
|
|
int added_tags;
|
|
int tag_left;
|
|
int tag_right;
|
|
tre_ast_node_t *left = tre_stack_pop_voidptr(stack);
|
|
tre_ast_node_t *right = tre_stack_pop_voidptr(stack);
|
|
node = tre_stack_pop_voidptr(stack);
|
|
added_tags = tre_stack_pop_int(stack);
|
|
if (first_pass)
|
|
{
|
|
node->num_tags = ((tre_union_t *)node->obj)->left->num_tags +
|
|
((tre_union_t *)node->obj)->right->num_tags +
|
|
added_tags +
|
|
((node->num_submatches > 0) ? 2 : 0);
|
|
}
|
|
|
|
regset = tre_stack_pop_voidptr(stack);
|
|
tag_left = tre_stack_pop_int(stack);
|
|
tag_right = tre_stack_pop_int(stack);
|
|
|
|
/* Add tags after both children, the left child gets a smaller
|
|
* tag than the right child. This guarantees that we prefer
|
|
* the left child over the right child.
|
|
*/
|
|
|
|
/* XXX - This is not always necessary (if the children have
|
|
* tags which must be seen for every match of that child).
|
|
*/
|
|
|
|
/* XXX - Check if this is the only place where tre_add_tag_right
|
|
* is used. If so, use tre_add_tag_left (putting the tag before
|
|
* the child as opposed after the child) and throw away
|
|
* tre_add_tag_right.
|
|
*/
|
|
|
|
if (node->num_submatches > 0)
|
|
{
|
|
if (!first_pass)
|
|
{
|
|
status = tre_add_tag_right(mem,
|
|
left,
|
|
tag_left);
|
|
tnfa->tag_directions[tag_left] = TRE_TAG_MAXIMIZE;
|
|
status = tre_add_tag_right(
|
|
mem,
|
|
right,
|
|
tag_right);
|
|
tnfa->tag_directions[tag_right] = TRE_TAG_MAXIMIZE;
|
|
}
|
|
|
|
num_tags += 2;
|
|
}
|
|
|
|
direction = TRE_TAG_MAXIMIZE;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
{
|
|
ASSERT(0);
|
|
}
|
|
break;
|
|
|
|
/* end switch(symbol)
|
|
*/
|
|
}
|
|
|
|
/* end while(tre_stack_num_objects(stack) > bottom)
|
|
*/
|
|
}
|
|
|
|
if (!first_pass)
|
|
{
|
|
tre_purge_regset(regset, tnfa, tag);
|
|
}
|
|
|
|
if (!first_pass && minimal_tag >= 0)
|
|
{
|
|
int i;
|
|
for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
|
|
{
|
|
}
|
|
|
|
tnfa->minimal_tags[i] = tag;
|
|
tnfa->minimal_tags[i + 1] = minimal_tag;
|
|
tnfa->minimal_tags[i + 2] = -1;
|
|
minimal_tag = -1;
|
|
num_minimals++;
|
|
}
|
|
|
|
ASSERT(tree->num_tags == num_tags);
|
|
tnfa->end_tag = num_tags;
|
|
tnfa->num_tags = num_tags;
|
|
tnfa->num_minimals = num_minimals;
|
|
xfree(orig_regset);
|
|
xfree(parents);
|
|
xfree(saved_states);
|
|
return status;
|
|
}
|
|
|
|
/* AST to TNFA compilation routines.
|
|
*/
|
|
|
|
typedef enum
|
|
{
|
|
COPY_RECURSE,
|
|
COPY_SET_RESULT_PTR
|
|
} tre_copyast_symbol_t;
|
|
|
|
/* Flags for tre_copy_ast(). */
|
|
#define COPY_REMOVE_TAGS 1
|
|
#define COPY_MAXIMIZE_FIRST_TAG 2
|
|
|
|
static reg_errcode_t tre_copy_ast(tre_mem_t mem, tre_stack_t *stack,
|
|
tre_ast_node_t *ast, int flags,
|
|
int *pos_add,
|
|
tre_tag_direction_t *tag_directions,
|
|
tre_ast_node_t **copy, int *max_pos)
|
|
{
|
|
reg_errcode_t status = REG_OK;
|
|
int bottom = tre_stack_num_objects(stack);
|
|
int num_copied = 0;
|
|
int first_tag = 1;
|
|
tre_ast_node_t **result = copy;
|
|
tre_copyast_symbol_t symbol;
|
|
|
|
STACK_PUSH(stack, voidptr, ast);
|
|
STACK_PUSH(stack, int, COPY_RECURSE);
|
|
|
|
while (status == REG_OK && tre_stack_num_objects(stack) > bottom)
|
|
{
|
|
tre_ast_node_t *node;
|
|
if (status != REG_OK)
|
|
{
|
|
break;
|
|
}
|
|
|
|
symbol = (tre_copyast_symbol_t)tre_stack_pop_int(stack);
|
|
switch (symbol)
|
|
{
|
|
case COPY_SET_RESULT_PTR:
|
|
{
|
|
result = tre_stack_pop_voidptr(stack);
|
|
}
|
|
break;
|
|
|
|
case COPY_RECURSE:
|
|
{
|
|
node = tre_stack_pop_voidptr(stack);
|
|
switch (node->type)
|
|
{
|
|
case LITERAL:
|
|
{
|
|
tre_literal_t *lit = node->obj;
|
|
int pos = lit->position;
|
|
int min = lit->code_min;
|
|
int max = lit->code_max;
|
|
if (!IS_SPECIAL(lit) || IS_BACKREF(lit))
|
|
{
|
|
/* XXX - e.g. [ab] has only one position but two
|
|
* nodes, so we are creating holes in the state space
|
|
* here. Not fatal, just wastes memory.
|
|
*/
|
|
|
|
pos += *pos_add;
|
|
num_copied++;
|
|
}
|
|
else if (IS_TAG(lit) && (flags & COPY_REMOVE_TAGS))
|
|
{
|
|
/* Change this tag to empty. */
|
|
|
|
min = EMPTY;
|
|
max = pos = -1;
|
|
}
|
|
else if (IS_TAG(lit) && (flags & COPY_MAXIMIZE_FIRST_TAG) &&
|
|
first_tag)
|
|
{
|
|
/* Maximize the first tag. */
|
|
|
|
tag_directions[max] = TRE_TAG_MAXIMIZE;
|
|
first_tag = 0;
|
|
}
|
|
|
|
*result = tre_ast_new_literal(mem, min, max, pos);
|
|
if (*result == NULL)
|
|
{
|
|
status = REG_ESPACE;
|
|
}
|
|
|
|
if (pos > *max_pos)
|
|
{
|
|
*max_pos = pos;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case UNION:
|
|
{
|
|
tre_union_t *uni = node->obj;
|
|
tre_union_t *tmp;
|
|
*result = tre_ast_new_union(mem, uni->left, uni->right);
|
|
if (*result == NULL)
|
|
{
|
|
status = REG_ESPACE;
|
|
break;
|
|
}
|
|
|
|
tmp = (*result)->obj;
|
|
result = &tmp->left;
|
|
STACK_PUSHX(stack, voidptr, uni->right);
|
|
STACK_PUSHX(stack, int, COPY_RECURSE);
|
|
STACK_PUSHX(stack, voidptr, &tmp->right);
|
|
STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
|
|
STACK_PUSHX(stack, voidptr, uni->left);
|
|
STACK_PUSHX(stack, int, COPY_RECURSE);
|
|
break;
|
|
}
|
|
|
|
case CATENATION:
|
|
{
|
|
tre_catenation_t *cat = node->obj;
|
|
tre_catenation_t *tmp;
|
|
*result = tre_ast_new_catenation(mem, cat->left, cat->right);
|
|
if (*result == NULL)
|
|
{
|
|
status = REG_ESPACE;
|
|
break;
|
|
}
|
|
|
|
tmp = (*result)->obj;
|
|
tmp->left = NULL;
|
|
tmp->right = NULL;
|
|
result = &tmp->left;
|
|
|
|
STACK_PUSHX(stack, voidptr, cat->right);
|
|
STACK_PUSHX(stack, int, COPY_RECURSE);
|
|
STACK_PUSHX(stack, voidptr, &tmp->right);
|
|
STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
|
|
STACK_PUSHX(stack, voidptr, cat->left);
|
|
STACK_PUSHX(stack, int, COPY_RECURSE);
|
|
break;
|
|
}
|
|
|
|
case ITERATION:
|
|
{
|
|
tre_iteration_t *iter = node->obj;
|
|
STACK_PUSHX(stack, voidptr, iter->arg);
|
|
STACK_PUSHX(stack, int, COPY_RECURSE);
|
|
*result = tre_ast_new_iter(mem, iter->arg, iter->min,
|
|
iter->max,
|
|
iter->minimal);
|
|
if (*result == NULL)
|
|
{
|
|
status = REG_ESPACE;
|
|
break;
|
|
}
|
|
|
|
iter = (*result)->obj;
|
|
result = &iter->arg;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
{
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
*pos_add += num_copied;
|
|
return status;
|
|
}
|
|
|
|
typedef enum
|
|
{
|
|
EXPAND_RECURSE,
|
|
EXPAND_AFTER_ITER
|
|
} tre_expand_ast_symbol_t;
|
|
|
|
/* Expands each iteration node that has a finite nonzero minimum or maximum
|
|
* iteration count to a catenated sequence of copies of the node.
|
|
*/
|
|
|
|
static reg_errcode_t tre_expand_ast(tre_mem_t mem, tre_stack_t *stack,
|
|
tre_ast_node_t *ast, int *position,
|
|
tre_tag_direction_t *tag_directions)
|
|
{
|
|
reg_errcode_t status = REG_OK;
|
|
int bottom = tre_stack_num_objects(stack);
|
|
int pos_add = 0;
|
|
int pos_add_total = 0;
|
|
int max_pos = 0;
|
|
int iter_depth = 0;
|
|
|
|
STACK_PUSHR(stack, voidptr, ast);
|
|
STACK_PUSHR(stack, int, EXPAND_RECURSE);
|
|
while (status == REG_OK && tre_stack_num_objects(stack) > bottom)
|
|
{
|
|
tre_ast_node_t *node;
|
|
tre_expand_ast_symbol_t symbol;
|
|
|
|
if (status != REG_OK)
|
|
{
|
|
break;
|
|
}
|
|
|
|
symbol = (tre_expand_ast_symbol_t)tre_stack_pop_int(stack);
|
|
node = tre_stack_pop_voidptr(stack);
|
|
switch (symbol)
|
|
{
|
|
case EXPAND_RECURSE:
|
|
{
|
|
switch (node->type)
|
|
{
|
|
case LITERAL:
|
|
{
|
|
tre_literal_t *lit = node->obj;
|
|
if (!IS_SPECIAL(lit) || IS_BACKREF(lit))
|
|
{
|
|
lit->position += pos_add;
|
|
if (lit->position > max_pos)
|
|
{
|
|
max_pos = lit->position;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case UNION:
|
|
{
|
|
tre_union_t *uni = node->obj;
|
|
STACK_PUSHX(stack, voidptr, uni->right);
|
|
STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
|
STACK_PUSHX(stack, voidptr, uni->left);
|
|
STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
|
break;
|
|
}
|
|
|
|
case CATENATION:
|
|
{
|
|
tre_catenation_t *cat = node->obj;
|
|
STACK_PUSHX(stack, voidptr, cat->right);
|
|
STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
|
STACK_PUSHX(stack, voidptr, cat->left);
|
|
STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
|
break;
|
|
}
|
|
|
|
case ITERATION:
|
|
{
|
|
tre_iteration_t *iter = node->obj;
|
|
STACK_PUSHX(stack, int, pos_add);
|
|
STACK_PUSHX(stack, voidptr, node);
|
|
STACK_PUSHX(stack, int, EXPAND_AFTER_ITER);
|
|
STACK_PUSHX(stack, voidptr, iter->arg);
|
|
STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
|
|
|
/* If we are going to expand this node at EXPAND_AFTER_ITER
|
|
* then don't increase the `pos' fields of the nodes now, it
|
|
* will get done when expanding.
|
|
*/
|
|
|
|
if (iter->min > 1 || iter->max > 1)
|
|
{
|
|
pos_add = 0;
|
|
}
|
|
|
|
iter_depth++;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
{
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case EXPAND_AFTER_ITER:
|
|
{
|
|
tre_iteration_t *iter = node->obj;
|
|
int pos_add_last;
|
|
pos_add = tre_stack_pop_int(stack);
|
|
pos_add_last = pos_add;
|
|
if (iter->min > 1 || iter->max > 1)
|
|
{
|
|
tre_ast_node_t *seq1 = NULL, *seq2 = NULL;
|
|
int j;
|
|
int pos_add_save = pos_add;
|
|
|
|
/* Create a catenated sequence of copies of the node. */
|
|
|
|
for (j = 0; j < iter->min; j++)
|
|
{
|
|
tre_ast_node_t *copy;
|
|
|
|
/* Remove tags from all but the last copy. */
|
|
|
|
int flags =
|
|
((j + 1 <
|
|
iter->min) ? COPY_REMOVE_TAGS :
|
|
COPY_MAXIMIZE_FIRST_TAG);
|
|
pos_add_save = pos_add;
|
|
status = tre_copy_ast(mem, stack, iter->arg, flags,
|
|
&pos_add, tag_directions,
|
|
©, &max_pos);
|
|
if (status != REG_OK)
|
|
{
|
|
return status;
|
|
}
|
|
|
|
if (seq1 != NULL)
|
|
{
|
|
seq1 = tre_ast_new_catenation(mem, seq1, copy);
|
|
}
|
|
else
|
|
{
|
|
seq1 = copy;
|
|
}
|
|
|
|
if (seq1 == NULL)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
}
|
|
|
|
if (iter->max == -1)
|
|
{
|
|
/* No upper limit. */
|
|
|
|
pos_add_save = pos_add;
|
|
status = tre_copy_ast(mem, stack, iter->arg, 0,
|
|
&pos_add, NULL, &seq2,
|
|
&max_pos);
|
|
if (status != REG_OK)
|
|
{
|
|
return status;
|
|
}
|
|
|
|
seq2 = tre_ast_new_iter(mem, seq2, 0, -1, 0);
|
|
if (seq2 == NULL)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (j = iter->min; j < iter->max; j++)
|
|
{
|
|
tre_ast_node_t *tmp, *copy;
|
|
pos_add_save = pos_add;
|
|
status = tre_copy_ast(mem, stack, iter->arg, 0,
|
|
&pos_add, NULL, ©,
|
|
&max_pos);
|
|
if (status != REG_OK)
|
|
{
|
|
return status;
|
|
}
|
|
|
|
if (seq2 != NULL)
|
|
{
|
|
seq2 = tre_ast_new_catenation(mem, copy, seq2);
|
|
}
|
|
else
|
|
{
|
|
seq2 = copy;
|
|
}
|
|
|
|
if (seq2 == NULL)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
tmp = tre_ast_new_literal(mem, EMPTY, -1, -1);
|
|
if (tmp == NULL)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
seq2 = tre_ast_new_union(mem, tmp, seq2);
|
|
if (seq2 == NULL)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
}
|
|
}
|
|
|
|
pos_add = pos_add_save;
|
|
if (seq1 == NULL)
|
|
{
|
|
seq1 = seq2;
|
|
}
|
|
else if (seq2 != NULL)
|
|
{
|
|
seq1 = tre_ast_new_catenation(mem, seq1, seq2);
|
|
}
|
|
|
|
if (seq1 == NULL)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
node->obj = seq1->obj;
|
|
node->type = seq1->type;
|
|
}
|
|
|
|
iter_depth--;
|
|
pos_add_total += pos_add - pos_add_last;
|
|
if (iter_depth == 0)
|
|
{
|
|
pos_add = pos_add_total;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
{
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
*position += pos_add_total;
|
|
|
|
/* `max_pos' should never be larger than `*position' if the above
|
|
* code works, but just an extra safeguard let's make sure
|
|
* `*position' is set large enough so enough memory will be
|
|
* allocated for the transition table.
|
|
*/
|
|
|
|
if (max_pos > *position)
|
|
{
|
|
*position = max_pos;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static tre_pos_and_tags_t *tre_set_empty(tre_mem_t mem)
|
|
{
|
|
tre_pos_and_tags_t *new_set;
|
|
|
|
new_set = tre_mem_calloc(mem, sizeof(*new_set));
|
|
if (new_set == NULL)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
new_set[0].position = -1;
|
|
new_set[0].code_min = -1;
|
|
new_set[0].code_max = -1;
|
|
|
|
return new_set;
|
|
}
|
|
|
|
static tre_pos_and_tags_t *tre_set_one(tre_mem_t mem, int position,
|
|
int code_min, int code_max,
|
|
tre_ctype_t class,
|
|
tre_ctype_t *neg_classes, int backref)
|
|
{
|
|
tre_pos_and_tags_t *new_set;
|
|
|
|
new_set = tre_mem_calloc(mem, sizeof(*new_set) * 2);
|
|
if (new_set == NULL)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
new_set[0].position = position;
|
|
new_set[0].code_min = code_min;
|
|
new_set[0].code_max = code_max;
|
|
new_set[0].class = class;
|
|
new_set[0].neg_classes = neg_classes;
|
|
new_set[0].backref = backref;
|
|
new_set[1].position = -1;
|
|
new_set[1].code_min = -1;
|
|
new_set[1].code_max = -1;
|
|
|
|
return new_set;
|
|
}
|
|
|
|
static tre_pos_and_tags_t *tre_set_union(tre_mem_t mem,
|
|
tre_pos_and_tags_t *set1,
|
|
tre_pos_and_tags_t *set2, int *tags,
|
|
int assertions)
|
|
{
|
|
int s1;
|
|
int s2;
|
|
int i;
|
|
int j;
|
|
tre_pos_and_tags_t *new_set;
|
|
int *new_tags;
|
|
int num_tags;
|
|
|
|
for (num_tags = 0; tags != NULL && tags[num_tags] >= 0; num_tags++)
|
|
{
|
|
}
|
|
|
|
for (s1 = 0; set1[s1].position >= 0; s1++)
|
|
{
|
|
}
|
|
|
|
for (s2 = 0; set2[s2].position >= 0; s2++)
|
|
{
|
|
}
|
|
|
|
new_set = tre_mem_calloc(mem, sizeof(*new_set) * (s1 + s2 + 1));
|
|
if (!new_set)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
for (s1 = 0; set1[s1].position >= 0; s1++)
|
|
{
|
|
new_set[s1].position = set1[s1].position;
|
|
new_set[s1].code_min = set1[s1].code_min;
|
|
new_set[s1].code_max = set1[s1].code_max;
|
|
new_set[s1].assertions = set1[s1].assertions | assertions;
|
|
new_set[s1].class = set1[s1].class;
|
|
new_set[s1].neg_classes = set1[s1].neg_classes;
|
|
new_set[s1].backref = set1[s1].backref;
|
|
if (set1[s1].tags == NULL && tags == NULL)
|
|
{
|
|
new_set[s1].tags = NULL;
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; set1[s1].tags != NULL && set1[s1].tags[i] >= 0; i++)
|
|
{
|
|
}
|
|
|
|
new_tags =
|
|
tre_mem_alloc(mem, (sizeof(*new_tags) * (i + num_tags + 1)));
|
|
if (new_tags == NULL)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
for (j = 0; j < i; j++)
|
|
{
|
|
new_tags[j] = set1[s1].tags[j];
|
|
}
|
|
|
|
for (i = 0; i < num_tags; i++)
|
|
{
|
|
new_tags[j + i] = tags[i];
|
|
}
|
|
|
|
new_tags[j + i] = -1;
|
|
new_set[s1].tags = new_tags;
|
|
}
|
|
}
|
|
|
|
for (s2 = 0; set2[s2].position >= 0; s2++)
|
|
{
|
|
new_set[s1 + s2].position = set2[s2].position;
|
|
new_set[s1 + s2].code_min = set2[s2].code_min;
|
|
new_set[s1 + s2].code_max = set2[s2].code_max;
|
|
|
|
/* XXX - why not | assertions here as well? */
|
|
|
|
new_set[s1 + s2].assertions = set2[s2].assertions;
|
|
new_set[s1 + s2].class = set2[s2].class;
|
|
new_set[s1 + s2].neg_classes = set2[s2].neg_classes;
|
|
new_set[s1 + s2].backref = set2[s2].backref;
|
|
if (set2[s2].tags == NULL)
|
|
{
|
|
new_set[s1 + s2].tags = NULL;
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; set2[s2].tags[i] >= 0; i++)
|
|
{
|
|
}
|
|
|
|
new_tags = tre_mem_alloc(mem, sizeof(*new_tags) * (i + 1));
|
|
if (new_tags == NULL)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
for (j = 0; j < i; j++)
|
|
{
|
|
new_tags[j] = set2[s2].tags[j];
|
|
}
|
|
|
|
new_tags[j] = -1;
|
|
new_set[s1 + s2].tags = new_tags;
|
|
}
|
|
}
|
|
|
|
new_set[s1 + s2].position = -1;
|
|
return new_set;
|
|
}
|
|
|
|
/* Finds the empty path through `node' which is the one that should be
|
|
* taken according to POSIX.2 rules, and adds the tags on that path to
|
|
* `tags'. `tags' may be NULL. If `num_tags_seen' is not NULL, it is
|
|
* set to the number of tags seen on the path.
|
|
*/
|
|
|
|
static reg_errcode_t tre_match_empty(tre_stack_t *stack,
|
|
tre_ast_node_t *node,
|
|
int *tags, int *assertions,
|
|
int *num_tags_seen)
|
|
{
|
|
tre_literal_t *lit;
|
|
tre_union_t *uni;
|
|
tre_catenation_t *cat;
|
|
tre_iteration_t *iter;
|
|
int i;
|
|
int bottom = tre_stack_num_objects(stack);
|
|
reg_errcode_t status = REG_OK;
|
|
|
|
if (num_tags_seen)
|
|
{
|
|
*num_tags_seen = 0;
|
|
}
|
|
|
|
status = tre_stack_push_voidptr(stack, node);
|
|
|
|
/* Walk through the tree recursively. */
|
|
|
|
while (status == REG_OK && tre_stack_num_objects(stack) > bottom)
|
|
{
|
|
node = tre_stack_pop_voidptr(stack);
|
|
|
|
switch (node->type)
|
|
{
|
|
case LITERAL:
|
|
{
|
|
lit = (tre_literal_t *)node->obj;
|
|
switch (lit->code_min)
|
|
{
|
|
case TAG:
|
|
{
|
|
if (lit->code_max >= 0)
|
|
{
|
|
if (tags != NULL)
|
|
{
|
|
/* Add the tag to `tags'. */
|
|
|
|
for (i = 0; tags[i] >= 0; i++)
|
|
{
|
|
if (tags[i] == lit->code_max)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (tags[i] < 0)
|
|
{
|
|
tags[i] = lit->code_max;
|
|
tags[i + 1] = -1;
|
|
}
|
|
}
|
|
|
|
if (num_tags_seen)
|
|
{
|
|
(*num_tags_seen)++;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ASSERTION:
|
|
{
|
|
ASSERT(lit->code_max >= 1 || lit->code_max <= ASSERT_LAST);
|
|
if (assertions != NULL)
|
|
{
|
|
*assertions |= lit->code_max;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case EMPTY:
|
|
{
|
|
}
|
|
break;
|
|
|
|
default:
|
|
{
|
|
ASSERT(0);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case UNION:
|
|
{
|
|
/* Subexpressions starting earlier take priority over ones
|
|
* starting later, so we prefer the left subexpression over the
|
|
* right subexpression.
|
|
*/
|
|
|
|
uni = (tre_union_t *)node->obj;
|
|
if (uni->left->nullable)
|
|
STACK_PUSHX(stack, voidptr, uni->left)
|
|
else if (uni->right->nullable)
|
|
STACK_PUSHX(stack, voidptr, uni->right)
|
|
else
|
|
ASSERT(0);
|
|
}
|
|
break;
|
|
|
|
case CATENATION:
|
|
{
|
|
/* The path must go through both children. */
|
|
|
|
cat = (tre_catenation_t *)node->obj;
|
|
ASSERT(cat->left->nullable);
|
|
ASSERT(cat->right->nullable);
|
|
STACK_PUSHX(stack, voidptr, cat->left);
|
|
STACK_PUSHX(stack, voidptr, cat->right);
|
|
}
|
|
break;
|
|
|
|
case ITERATION:
|
|
{
|
|
/* A match with an empty string is preferred over no match at
|
|
* all, so we go through the argument if possible.
|
|
*/
|
|
|
|
iter = (tre_iteration_t *)node->obj;
|
|
if (iter->arg->nullable)
|
|
{
|
|
STACK_PUSHX(stack, voidptr, iter->arg);
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
{
|
|
ASSERT(0);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
typedef enum
|
|
{
|
|
NFL_RECURSE,
|
|
NFL_POST_UNION,
|
|
NFL_POST_CATENATION,
|
|
NFL_POST_ITERATION
|
|
} tre_nfl_stack_symbol_t;
|
|
|
|
/* Computes and fills in the fields `nullable', `firstpos', and `lastpos' for
|
|
* the nodes of the AST `tree'.
|
|
*/
|
|
|
|
static reg_errcode_t tre_compute_nfl(tre_mem_t mem, tre_stack_t *stack,
|
|
tre_ast_node_t *tree)
|
|
{
|
|
int bottom = tre_stack_num_objects(stack);
|
|
|
|
STACK_PUSHR(stack, voidptr, tree);
|
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
|
|
|
while (tre_stack_num_objects(stack) > bottom)
|
|
{
|
|
tre_nfl_stack_symbol_t symbol;
|
|
tre_ast_node_t *node;
|
|
|
|
symbol = (tre_nfl_stack_symbol_t)tre_stack_pop_int(stack);
|
|
node = tre_stack_pop_voidptr(stack);
|
|
switch (symbol)
|
|
{
|
|
case NFL_RECURSE:
|
|
{
|
|
switch (node->type)
|
|
{
|
|
case LITERAL:
|
|
{
|
|
tre_literal_t *lit = (tre_literal_t *)node->obj;
|
|
if (IS_BACKREF(lit))
|
|
{
|
|
/* Back references: nullable = false, firstpos = {i},
|
|
* lastpos = {i}.
|
|
*/
|
|
|
|
node->nullable = 0;
|
|
node->firstpos = tre_set_one(mem, lit->position, 0,
|
|
TRE_CHAR_MAX, 0, NULL, -1);
|
|
if (!node->firstpos)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
node->lastpos = tre_set_one(mem, lit->position, 0,
|
|
TRE_CHAR_MAX, 0, NULL,
|
|
(int)lit->code_max);
|
|
if (!node->lastpos)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
}
|
|
else if (lit->code_min < 0)
|
|
{
|
|
/* Tags, empty strings, params, and zero width assertions:
|
|
* nullable = true, firstpos = {}, and lastpos = {}.
|
|
*/
|
|
|
|
node->nullable = 1;
|
|
node->firstpos = tre_set_empty(mem);
|
|
if (!node->firstpos)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
node->lastpos = tre_set_empty(mem);
|
|
if (!node->lastpos)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Literal at position i: nullable = false, firstpos = {i},
|
|
* lastpos = {i}.
|
|
*/
|
|
|
|
node->nullable = 0;
|
|
node->firstpos = tre_set_one(mem, lit->position,
|
|
(int)lit->code_min,
|
|
(int)lit->code_max,
|
|
0, NULL,
|
|
-1);
|
|
if (!node->firstpos)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
node->lastpos = tre_set_one(mem, lit->position,
|
|
(int)lit->code_min,
|
|
(int)lit->code_max, lit->class,
|
|
lit->neg_classes, -1);
|
|
if (!node->lastpos)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case UNION:
|
|
{
|
|
/* Compute the attributes for the two subtrees, and after that
|
|
* for this node.
|
|
*/
|
|
|
|
STACK_PUSHR(stack, voidptr, node);
|
|
STACK_PUSHR(stack, int, NFL_POST_UNION);
|
|
STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->right);
|
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
|
STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->left);
|
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
|
}
|
|
break;
|
|
|
|
case CATENATION:
|
|
{
|
|
/* Compute the attributes for the two subtrees, and after that
|
|
* for this node.
|
|
*/
|
|
|
|
STACK_PUSHR(stack, voidptr, node);
|
|
STACK_PUSHR(stack, int, NFL_POST_CATENATION);
|
|
STACK_PUSHR(stack, voidptr,
|
|
((tre_catenation_t *)node->obj)->right);
|
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
|
STACK_PUSHR(stack, voidptr,
|
|
((tre_catenation_t *)node->obj)->left);
|
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
|
}
|
|
break;
|
|
|
|
case ITERATION:
|
|
{
|
|
/* Compute the attributes for the subtree, and after that for
|
|
* this node.
|
|
*/
|
|
|
|
STACK_PUSHR(stack, voidptr, node);
|
|
STACK_PUSHR(stack, int, NFL_POST_ITERATION);
|
|
STACK_PUSHR(stack, voidptr,
|
|
((tre_iteration_t *)node->obj)->arg);
|
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break; /* end case: NFL_RECURSE */
|
|
|
|
case NFL_POST_UNION:
|
|
{
|
|
tre_union_t *uni = (tre_union_t *)node->obj;
|
|
node->nullable = uni->left->nullable || uni->right->nullable;
|
|
node->firstpos = tre_set_union(mem, uni->left->firstpos,
|
|
uni->right->firstpos, NULL, 0);
|
|
if (!node->firstpos)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
node->lastpos = tre_set_union(mem, uni->left->lastpos,
|
|
uni->right->lastpos, NULL, 0);
|
|
if (!node->lastpos)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case NFL_POST_ITERATION:
|
|
{
|
|
tre_iteration_t *iter = (tre_iteration_t *)node->obj;
|
|
|
|
if (iter->min == 0 || iter->arg->nullable)
|
|
{
|
|
node->nullable = 1;
|
|
}
|
|
else
|
|
{
|
|
node->nullable = 0;
|
|
}
|
|
|
|
node->firstpos = iter->arg->firstpos;
|
|
node->lastpos = iter->arg->lastpos;
|
|
break;
|
|
}
|
|
|
|
case NFL_POST_CATENATION:
|
|
{
|
|
int num_tags;
|
|
int *tags;
|
|
int assertions;
|
|
reg_errcode_t status;
|
|
tre_catenation_t *cat = node->obj;
|
|
node->nullable = cat->left->nullable && cat->right->nullable;
|
|
|
|
/* Compute firstpos. */
|
|
|
|
if (cat->left->nullable)
|
|
{
|
|
/* The left side matches the empty string. Make a first pass
|
|
* with tre_match_empty() to get the number of tags and
|
|
* parameters.
|
|
*/
|
|
|
|
status =
|
|
tre_match_empty(stack, cat->left, NULL, NULL, &num_tags);
|
|
if (status != REG_OK)
|
|
{
|
|
return status;
|
|
}
|
|
|
|
/* Allocate arrays for the tags and parameters. */
|
|
|
|
tags = xmalloc(sizeof(*tags) * (num_tags + 1));
|
|
if (!tags)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
tags[0] = -1;
|
|
assertions = 0;
|
|
|
|
/* Second pass with tre_mach_empty() to get the list of
|
|
* tags and parameters.
|
|
*/
|
|
|
|
status = tre_match_empty(stack, cat->left, tags, &assertions,
|
|
NULL);
|
|
if (status != REG_OK)
|
|
{
|
|
xfree(tags);
|
|
return status;
|
|
}
|
|
|
|
node->firstpos = tre_set_union(mem, cat->right->firstpos,
|
|
cat->left->firstpos, tags,
|
|
assertions);
|
|
xfree(tags);
|
|
if (!node->firstpos)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
node->firstpos = cat->left->firstpos;
|
|
}
|
|
|
|
/* Compute lastpos. */
|
|
|
|
if (cat->right->nullable)
|
|
{
|
|
/* The right side matches the empty string. Make a first pass
|
|
* with tre_match_empty() to get the number of tags and
|
|
* parameters.
|
|
*/
|
|
|
|
status = tre_match_empty(stack, cat->right, NULL, NULL,
|
|
&num_tags);
|
|
if (status != REG_OK)
|
|
{
|
|
return status;
|
|
}
|
|
|
|
/* Allocate arrays for the tags and parameters. */
|
|
|
|
tags = xmalloc(sizeof(int) * (num_tags + 1));
|
|
if (!tags)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
tags[0] = -1;
|
|
assertions = 0;
|
|
|
|
/* Second pass with tre_mach_empty() to get the list of
|
|
* tags and parameters.
|
|
*/
|
|
|
|
status = tre_match_empty(stack, cat->right, tags, &assertions,
|
|
NULL);
|
|
if (status != REG_OK)
|
|
{
|
|
xfree(tags);
|
|
return status;
|
|
}
|
|
|
|
node->lastpos = tre_set_union(mem, cat->left->lastpos,
|
|
cat->right->lastpos, tags,
|
|
assertions);
|
|
xfree(tags);
|
|
if (!node->lastpos)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
node->lastpos = cat->right->lastpos;
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
{
|
|
ASSERT(0);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return REG_OK;
|
|
}
|
|
|
|
/* Adds a transition from each position in `p1' to each position in `p2'. */
|
|
|
|
static reg_errcode_t tre_make_trans(tre_pos_and_tags_t *p1,
|
|
tre_pos_and_tags_t *p2,
|
|
tre_tnfa_transition_t *transitions,
|
|
int *counts, int *offs)
|
|
{
|
|
tre_pos_and_tags_t *orig_p2 = p2;
|
|
tre_tnfa_transition_t *trans;
|
|
int i;
|
|
int j;
|
|
int k;
|
|
int l;
|
|
int dup;
|
|
int prev_p2_pos;
|
|
|
|
if (transitions != NULL)
|
|
{
|
|
while (p1->position >= 0)
|
|
{
|
|
p2 = orig_p2;
|
|
prev_p2_pos = -1;
|
|
while (p2->position >= 0)
|
|
{
|
|
/* Optimization: if this position was already handled, skip it.
|
|
*/
|
|
|
|
if (p2->position == prev_p2_pos)
|
|
{
|
|
p2++;
|
|
continue;
|
|
}
|
|
|
|
prev_p2_pos = p2->position;
|
|
|
|
/* Set `trans' to point to the next unused transition from
|
|
* position `p1->position'.
|
|
*/
|
|
|
|
trans = transitions + offs[p1->position];
|
|
while (trans->state != NULL)
|
|
{
|
|
#if 0
|
|
|
|
/* If we find a previous transition from `p1->position' to
|
|
* `p2->position', it is overwritten. This can happen only
|
|
* if there are nested loops in the regexp, like in
|
|
* "((a)*)*". In POSIX.2 repetition using the outer loop
|
|
* is always preferred over using the inner loop.
|
|
* Therefore the transition for the inner loop is useless
|
|
* and can be thrown away.
|
|
*/
|
|
|
|
/* XXX - The same position is used for all nodes in a
|
|
* bracket expression, so this optimization cannot be
|
|
* used (it will break bracket expressions) unless I
|
|
* figure out a way to detect it here.
|
|
*/
|
|
|
|
if (trans->state_id == p2->position)
|
|
{
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
trans++;
|
|
}
|
|
|
|
if (trans->state == NULL)
|
|
{
|
|
(trans + 1)->state = NULL;
|
|
}
|
|
|
|
/* Use the character ranges, assertions, etc. from `p1' for
|
|
* the transition from `p1' to `p2'.
|
|
*/
|
|
|
|
trans->code_min = p1->code_min;
|
|
trans->code_max = p1->code_max;
|
|
trans->state = transitions + offs[p2->position];
|
|
trans->state_id = p2->position;
|
|
trans->assertions = p1->assertions | p2->assertions |
|
|
(p1->class ? ASSERT_CHAR_CLASS : 0) |
|
|
(p1->neg_classes !=
|
|
NULL ? ASSERT_CHAR_CLASS_NEG : 0);
|
|
if (p1->backref >= 0)
|
|
{
|
|
ASSERT((trans->assertions & ASSERT_CHAR_CLASS) == 0);
|
|
ASSERT(p2->backref < 0);
|
|
trans->u.backref = p1->backref;
|
|
trans->assertions |= ASSERT_BACKREF;
|
|
}
|
|
else
|
|
{
|
|
trans->u.class = p1->class;
|
|
}
|
|
|
|
if (p1->neg_classes != NULL)
|
|
{
|
|
for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++)
|
|
{
|
|
}
|
|
|
|
trans->neg_classes =
|
|
xmalloc(sizeof(*trans->neg_classes) * (i + 1));
|
|
if (trans->neg_classes == NULL)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++)
|
|
{
|
|
trans->neg_classes[i] = p1->neg_classes[i];
|
|
}
|
|
|
|
trans->neg_classes[i] = (tre_ctype_t)0;
|
|
}
|
|
else
|
|
{
|
|
trans->neg_classes = NULL;
|
|
}
|
|
|
|
/* Find out how many tags this transition has. */
|
|
|
|
i = 0;
|
|
if (p1->tags != NULL)
|
|
{
|
|
while (p1->tags[i] >= 0)
|
|
{
|
|
i++;
|
|
}
|
|
}
|
|
|
|
j = 0;
|
|
if (p2->tags != NULL)
|
|
{
|
|
while (p2->tags[j] >= 0)
|
|
{
|
|
j++;
|
|
}
|
|
}
|
|
|
|
/* If we are overwriting a transition, free the old tag array.
|
|
*/
|
|
|
|
if (trans->tags != NULL)
|
|
{
|
|
xfree(trans->tags);
|
|
}
|
|
|
|
trans->tags = NULL;
|
|
|
|
/* If there were any tags, allocate an array and fill it. */
|
|
|
|
if (i + j > 0)
|
|
{
|
|
trans->tags = xmalloc(sizeof(*trans->tags) * (i + j + 1));
|
|
if (!trans->tags)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
i = 0;
|
|
if (p1->tags != NULL)
|
|
{
|
|
while (p1->tags[i] >= 0)
|
|
{
|
|
trans->tags[i] = p1->tags[i];
|
|
i++;
|
|
}
|
|
}
|
|
|
|
l = i;
|
|
j = 0;
|
|
if (p2->tags != NULL)
|
|
{
|
|
while (p2->tags[j] >= 0)
|
|
{
|
|
/* Don't add duplicates. */
|
|
|
|
dup = 0;
|
|
for (k = 0; k < i; k++)
|
|
{
|
|
if (trans->tags[k] == p2->tags[j])
|
|
{
|
|
dup = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!dup)
|
|
{
|
|
trans->tags[l++] = p2->tags[j];
|
|
}
|
|
|
|
j++;
|
|
}
|
|
}
|
|
|
|
trans->tags[l] = -1;
|
|
}
|
|
|
|
p2++;
|
|
}
|
|
|
|
p1++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Compute a maximum limit for the number of transitions leaving
|
|
* from each state.
|
|
*/
|
|
|
|
while (p1->position >= 0)
|
|
{
|
|
p2 = orig_p2;
|
|
while (p2->position >= 0)
|
|
{
|
|
counts[p1->position]++;
|
|
p2++;
|
|
}
|
|
|
|
p1++;
|
|
}
|
|
}
|
|
|
|
return REG_OK;
|
|
}
|
|
|
|
/* Converts the syntax tree to a TNFA. All the transitions in the TNFA are
|
|
* labelled with one character range (there are no transitions on empty
|
|
* strings). The TNFA takes O(n^2) space in the worst case, `n' is size of
|
|
* the regexp.
|
|
*/
|
|
|
|
static reg_errcode_t tre_ast_to_tnfa(tre_ast_node_t *node,
|
|
tre_tnfa_transition_t *transitions,
|
|
int *counts, int *offs)
|
|
{
|
|
tre_union_t *uni;
|
|
tre_catenation_t *cat;
|
|
tre_iteration_t *iter;
|
|
reg_errcode_t errcode = REG_OK;
|
|
|
|
/* XXX - recurse using a stack!. */
|
|
|
|
switch (node->type)
|
|
{
|
|
case LITERAL:
|
|
{
|
|
}
|
|
break;
|
|
|
|
case UNION:
|
|
{
|
|
uni = (tre_union_t *)node->obj;
|
|
errcode = tre_ast_to_tnfa(uni->left, transitions, counts, offs);
|
|
if (errcode != REG_OK)
|
|
{
|
|
return errcode;
|
|
}
|
|
|
|
errcode = tre_ast_to_tnfa(uni->right, transitions, counts, offs);
|
|
}
|
|
break;
|
|
|
|
case CATENATION:
|
|
{
|
|
cat = (tre_catenation_t *)node->obj;
|
|
|
|
/* Add a transition from each position in cat->left->lastpos
|
|
* to each position in cat->right->firstpos.
|
|
*/
|
|
|
|
errcode = tre_make_trans(cat->left->lastpos, cat->right->firstpos,
|
|
transitions, counts, offs);
|
|
if (errcode != REG_OK)
|
|
{
|
|
return errcode;
|
|
}
|
|
|
|
errcode = tre_ast_to_tnfa(cat->left, transitions, counts, offs);
|
|
if (errcode != REG_OK)
|
|
{
|
|
return errcode;
|
|
}
|
|
|
|
errcode = tre_ast_to_tnfa(cat->right, transitions, counts, offs);
|
|
}
|
|
break;
|
|
|
|
case ITERATION:
|
|
{
|
|
iter = (tre_iteration_t *)node->obj;
|
|
ASSERT(iter->max == -1 || iter->max == 1);
|
|
|
|
if (iter->max == -1)
|
|
{
|
|
ASSERT(iter->min == 0 || iter->min == 1);
|
|
|
|
/* Add a transition from each last position in the iterated
|
|
* expression to each first position.
|
|
*/
|
|
|
|
errcode = tre_make_trans(iter->arg->lastpos, iter->arg->firstpos,
|
|
transitions, counts, offs);
|
|
if (errcode != REG_OK)
|
|
{
|
|
return errcode;
|
|
}
|
|
}
|
|
|
|
errcode = tre_ast_to_tnfa(iter->arg, transitions, counts, offs);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return errcode;
|
|
}
|
|
|
|
#define ERROR_EXIT(err) \
|
|
do \
|
|
{ \
|
|
errcode = err; \
|
|
if (/* CONSTCOND */ 1) \
|
|
goto error_exit; \
|
|
} \
|
|
while (/* CONSTCOND */ 0)
|
|
|
|
int regcomp(regex_t *restrict preg, const char *restrict regex, int cflags)
|
|
{
|
|
tre_stack_t *stack;
|
|
tre_ast_node_t *tree, *tmp_ast_l, *tmp_ast_r;
|
|
tre_pos_and_tags_t *p;
|
|
int *counts = NULL;
|
|
int *offs = NULL;
|
|
int i;
|
|
int add = 0;
|
|
tre_tnfa_transition_t *transitions, *initial;
|
|
tre_tnfa_t *tnfa = NULL;
|
|
tre_submatch_data_t *submatch_data;
|
|
tre_tag_direction_t *tag_directions = NULL;
|
|
reg_errcode_t errcode;
|
|
tre_mem_t mem;
|
|
|
|
/* Parse context. */
|
|
|
|
tre_parse_ctx_t parse_ctx;
|
|
|
|
/* Allocate a stack used throughout the compilation process for various
|
|
* purposes.
|
|
*/
|
|
|
|
stack = tre_stack_new(512, 10240, 128);
|
|
if (!stack)
|
|
{
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
/* Allocate a fast memory allocator. */
|
|
|
|
mem = tre_mem_new();
|
|
if (!mem)
|
|
{
|
|
tre_stack_destroy(stack);
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
/* Parse the regexp. */
|
|
|
|
memset(&parse_ctx, 0, sizeof(parse_ctx));
|
|
parse_ctx.mem = mem;
|
|
parse_ctx.stack = stack;
|
|
parse_ctx.re = regex;
|
|
parse_ctx.cflags = cflags;
|
|
parse_ctx.max_backref = -1;
|
|
errcode = tre_parse(&parse_ctx);
|
|
if (errcode != REG_OK)
|
|
{
|
|
ERROR_EXIT(errcode);
|
|
}
|
|
|
|
preg->re_nsub = parse_ctx.submatch_id - 1;
|
|
tree = parse_ctx.n;
|
|
|
|
#ifdef TRE_DEBUG
|
|
tre_ast_print(tree);
|
|
#endif /* TRE_DEBUG */
|
|
|
|
/* Referring to nonexistent subexpressions is illegal. */
|
|
|
|
if (parse_ctx.max_backref > (int)preg->re_nsub)
|
|
{
|
|
ERROR_EXIT(REG_ESUBREG);
|
|
}
|
|
|
|
/* Allocate the TNFA struct. */
|
|
|
|
tnfa = xcalloc(1, sizeof(tre_tnfa_t));
|
|
if (tnfa == NULL)
|
|
{
|
|
ERROR_EXIT(REG_ESPACE);
|
|
}
|
|
|
|
tnfa->have_backrefs = parse_ctx.max_backref >= 0;
|
|
tnfa->have_approx = 0;
|
|
tnfa->num_submatches = parse_ctx.submatch_id;
|
|
|
|
/* Set up tags for submatch addressing. If REG_NOSUB is set and the
|
|
* regexp does not have back references, this can be skipped.
|
|
*/
|
|
|
|
if (tnfa->have_backrefs || !(cflags & REG_NOSUB))
|
|
{
|
|
/* Figure out how many tags we will need. */
|
|
|
|
errcode = tre_add_tags(NULL, stack, tree, tnfa);
|
|
if (errcode != REG_OK)
|
|
{
|
|
ERROR_EXIT(errcode);
|
|
}
|
|
|
|
if (tnfa->num_tags > 0)
|
|
{
|
|
tag_directions =
|
|
xmalloc(sizeof(*tag_directions) * (tnfa->num_tags + 1));
|
|
if (tag_directions == NULL)
|
|
{
|
|
ERROR_EXIT(REG_ESPACE);
|
|
}
|
|
|
|
tnfa->tag_directions = tag_directions;
|
|
memset(tag_directions, -1,
|
|
sizeof(*tag_directions) * (tnfa->num_tags + 1));
|
|
}
|
|
|
|
tnfa->minimal_tags =
|
|
xcalloc((unsigned)tnfa->num_tags * 2 + 1,
|
|
sizeof(*tnfa->minimal_tags));
|
|
if (tnfa->minimal_tags == NULL)
|
|
{
|
|
ERROR_EXIT(REG_ESPACE);
|
|
}
|
|
|
|
submatch_data =
|
|
xcalloc((unsigned)parse_ctx.submatch_id, sizeof(*submatch_data));
|
|
if (submatch_data == NULL)
|
|
{
|
|
ERROR_EXIT(REG_ESPACE);
|
|
}
|
|
|
|
tnfa->submatch_data = submatch_data;
|
|
|
|
errcode = tre_add_tags(mem, stack, tree, tnfa);
|
|
if (errcode != REG_OK)
|
|
{
|
|
ERROR_EXIT(errcode);
|
|
}
|
|
}
|
|
|
|
/* Expand iteration nodes. */
|
|
|
|
errcode = tre_expand_ast(mem, stack, tree, &parse_ctx.position,
|
|
tag_directions);
|
|
if (errcode != REG_OK)
|
|
{
|
|
ERROR_EXIT(errcode);
|
|
}
|
|
|
|
/* Add a dummy node for the final state.
|
|
* XXX - For certain patterns this dummy node can be optimized away,
|
|
* for example "a*" or "ab*". Figure out a simple way to detect
|
|
* this possibility.
|
|
*/
|
|
|
|
tmp_ast_l = tree;
|
|
tmp_ast_r = tre_ast_new_literal(mem, 0, 0, parse_ctx.position++);
|
|
if (tmp_ast_r == NULL)
|
|
{
|
|
ERROR_EXIT(REG_ESPACE);
|
|
}
|
|
|
|
tree = tre_ast_new_catenation(mem, tmp_ast_l, tmp_ast_r);
|
|
if (tree == NULL)
|
|
{
|
|
ERROR_EXIT(REG_ESPACE);
|
|
}
|
|
|
|
errcode = tre_compute_nfl(mem, stack, tree);
|
|
if (errcode != REG_OK)
|
|
{
|
|
ERROR_EXIT(errcode);
|
|
}
|
|
|
|
counts = xmalloc(sizeof(int) * parse_ctx.position);
|
|
if (counts == NULL)
|
|
{
|
|
ERROR_EXIT(REG_ESPACE);
|
|
}
|
|
|
|
offs = xmalloc(sizeof(int) * parse_ctx.position);
|
|
if (offs == NULL)
|
|
{
|
|
ERROR_EXIT(REG_ESPACE);
|
|
}
|
|
|
|
for (i = 0; i < parse_ctx.position; i++)
|
|
{
|
|
counts[i] = 0;
|
|
}
|
|
|
|
tre_ast_to_tnfa(tree, NULL, counts, NULL);
|
|
|
|
add = 0;
|
|
for (i = 0; i < parse_ctx.position; i++)
|
|
{
|
|
offs[i] = add;
|
|
add += counts[i] + 1;
|
|
counts[i] = 0;
|
|
}
|
|
|
|
transitions = xcalloc((unsigned)add + 1, sizeof(*transitions));
|
|
if (transitions == NULL)
|
|
{
|
|
ERROR_EXIT(REG_ESPACE);
|
|
}
|
|
|
|
tnfa->transitions = transitions;
|
|
tnfa->num_transitions = add;
|
|
|
|
errcode = tre_ast_to_tnfa(tree, transitions, counts, offs);
|
|
if (errcode != REG_OK)
|
|
{
|
|
ERROR_EXIT(errcode);
|
|
}
|
|
|
|
tnfa->firstpos_chars = NULL;
|
|
|
|
p = tree->firstpos;
|
|
i = 0;
|
|
while (p->position >= 0)
|
|
{
|
|
i++;
|
|
p++;
|
|
}
|
|
|
|
initial = xcalloc((unsigned)i + 1, sizeof(tre_tnfa_transition_t));
|
|
if (initial == NULL)
|
|
{
|
|
ERROR_EXIT(REG_ESPACE);
|
|
}
|
|
|
|
tnfa->initial = initial;
|
|
|
|
i = 0;
|
|
for (p = tree->firstpos; p->position >= 0; p++)
|
|
{
|
|
initial[i].state = transitions + offs[p->position];
|
|
initial[i].state_id = p->position;
|
|
initial[i].tags = NULL;
|
|
|
|
/* Copy the arrays p->tags, and p->params, they are allocated
|
|
* from a tre_mem object.
|
|
*/
|
|
|
|
if (p->tags)
|
|
{
|
|
int j;
|
|
for (j = 0; p->tags[j] >= 0; j++)
|
|
{
|
|
}
|
|
|
|
initial[i].tags = xmalloc(sizeof(*p->tags) * (j + 1));
|
|
if (!initial[i].tags)
|
|
{
|
|
ERROR_EXIT(REG_ESPACE);
|
|
}
|
|
|
|
memcpy(initial[i].tags, p->tags, sizeof(*p->tags) * (j + 1));
|
|
}
|
|
|
|
initial[i].assertions = p->assertions;
|
|
i++;
|
|
}
|
|
|
|
initial[i].state = NULL;
|
|
|
|
tnfa->num_transitions = add;
|
|
tnfa->final = transitions + offs[tree->lastpos[0].position];
|
|
tnfa->num_states = parse_ctx.position;
|
|
tnfa->cflags = cflags;
|
|
|
|
tre_mem_destroy(mem);
|
|
tre_stack_destroy(stack);
|
|
xfree(counts);
|
|
xfree(offs);
|
|
|
|
preg->TRE_REGEX_T_FIELD = (void *)tnfa;
|
|
return REG_OK;
|
|
|
|
error_exit:
|
|
|
|
/* Free everything that was allocated and return the error code. */
|
|
|
|
tre_mem_destroy(mem);
|
|
if (stack != NULL)
|
|
{
|
|
tre_stack_destroy(stack);
|
|
}
|
|
|
|
if (counts != NULL)
|
|
{
|
|
xfree(counts);
|
|
}
|
|
|
|
if (offs != NULL)
|
|
{
|
|
xfree(offs);
|
|
}
|
|
|
|
preg->TRE_REGEX_T_FIELD = (void *)tnfa;
|
|
regfree(preg);
|
|
return errcode;
|
|
}
|
|
|
|
void regfree(regex_t *preg)
|
|
{
|
|
tre_tnfa_t *tnfa;
|
|
unsigned int i;
|
|
tre_tnfa_transition_t *trans;
|
|
|
|
tnfa = (void *)preg->TRE_REGEX_T_FIELD;
|
|
if (!tnfa)
|
|
{
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < tnfa->num_transitions; i++)
|
|
{
|
|
if (tnfa->transitions[i].state)
|
|
{
|
|
if (tnfa->transitions[i].tags)
|
|
{
|
|
xfree(tnfa->transitions[i].tags);
|
|
}
|
|
|
|
if (tnfa->transitions[i].neg_classes)
|
|
{
|
|
xfree(tnfa->transitions[i].neg_classes);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (tnfa->transitions)
|
|
{
|
|
xfree(tnfa->transitions);
|
|
}
|
|
|
|
if (tnfa->initial)
|
|
{
|
|
for (trans = tnfa->initial; trans->state; trans++)
|
|
{
|
|
if (trans->tags)
|
|
{
|
|
xfree(trans->tags);
|
|
}
|
|
}
|
|
|
|
xfree(tnfa->initial);
|
|
}
|
|
|
|
if (tnfa->submatch_data)
|
|
{
|
|
for (i = 0; i < tnfa->num_submatches; i++)
|
|
{
|
|
if (tnfa->submatch_data[i].parents)
|
|
{
|
|
xfree(tnfa->submatch_data[i].parents);
|
|
}
|
|
}
|
|
|
|
xfree(tnfa->submatch_data);
|
|
}
|
|
|
|
if (tnfa->tag_directions)
|
|
{
|
|
xfree(tnfa->tag_directions);
|
|
}
|
|
|
|
if (tnfa->firstpos_chars)
|
|
{
|
|
xfree(tnfa->firstpos_chars);
|
|
}
|
|
|
|
if (tnfa->minimal_tags)
|
|
{
|
|
xfree(tnfa->minimal_tags);
|
|
}
|
|
|
|
xfree(tnfa);
|
|
}
|